Numerical aspects of the nonlinear Schr¨ odinger equation
by
Christophe Besse
Laboratoire Paul Painlev´e, Universit´e Lille 1, CNRS, Inria Simpaf Team
Lille
Outline of the talk
1
Motivation
2
Numerical methods for NLS
3
Absorbing boundary conditions for the Schr¨ odinger equations
4
Some numerical experiments.
Motivation
Nonlinear Schr¨ odinger Equation (NLS)
iε∂tψ=−ε2
2∆ψ+V(x)ψ+β|ψ|2ψ , (x, t)∈Rdx×[0;T], u(x,0) =ψ0(x), x∈Rdx.
ψ(x, t): complex-valued wave function V(x): real-valued external potential
β: interaction constant (= 0: linear,+1: repulsive interaction,−1: attractive interaction)
ε: scaled Planck constant
Numerical approximations
ε= 1: standard; 0< ε1andβ=±1→semi-classical regimes efficient, convergent and accurate numerical schemes
Application of NLS
In quantum physics
Interaction between particles with quantum effect
Bose-Einstein condensation (BEC): bosons at low temperature Superfluidity
In plasma physics
wave interaction between electron and ion In semiconductor industry
In quantum chemistry
chemical interaction based on the first principle In nonlinear optics & atom laser
In fluid mechanics (water waves)
NLS is the prototype for many dispersive systems àExamples :
Davey-Stewartson systems
(water waves)( i∂tu+λ∂2xu+∂y2u = ν|u|2u+u∂xψ, α∂2ψ+∂2ψ = χ∂x(|u|2).
Properties of NLS
Time reversible
Time transverse invariant (gauge invariant)
V(x)→V(x) +α⇒ψ→ψe−itα/ε⇒ |ψ|unchanged Mass (wave energy) conservation
Nψ(t) :=
Z
Rd
|ψ(x, t)|2dx≡Nψ(0) :=
Z
Rd
|ψ(x,0)|2dx:=
Z
Rd
|ψ0(x)|2dx, t≥0
Energy ( or Hamiltonian) conservation
Eψ(t) :=
Z
Rd
ε2
2|∇ψ(x, t)|2+V(x)|ψ(x, t)|2+β
2|ψ(x, t)|4 dx≡Eψ(0), t≥0 Dispersion relation without external potential
ψ(x, t) =aei(k·x−ωt/ε) (plane wave solution) ⇒ω=ε2
|k|2+β|a|2
Numerical difficulties
Explicit vs Implicit (or computational cost) Spatial/temporal accuracy
Stability / Convergence
Keep the properties of NLS in the discretized level Time reversible & time transverse invariant Mass & energy conservation
Dispersion conservation
Resolution in the semiclassical regime: 0< ε1 Take BC into account
Outline of the talk
1
Motivation
2
Numerical methods for NLS
3
Absorbing boundary conditions for the Schr¨ odinger equations
4
Some numerical experiments.
Numerical methods for NLS
Classical schemes :
Crank-Nicolson type : Delfour-Fortin-Payre, D´uran-Sanz Serna, ...
Runge-Kutta type : Akrivis-Dougalis-Karakashian, ...
etc ...
àHigh order schemes, convergent, preserving of invariants,BUTsemi-implicit : need of a nonlinear step (Newton)
Example : Crank-Nicolson scheme (CNFD)
iεψn+1−ψn
δt =
−ε2
2∆ +β|ψn+1|2+|ψn|2
2 +V(·, tn+1/2)
ψn+1+ψn 2 = 0, ψ0(x) =ψ0(x), x∈Rd.
whereunis the approximate value ofuat timetn=nδt.
Example : D´ uran-Sanz Serna scheme (SSFD)
iεψn+1−ψn
δt = −ε2 2∆ +β
ψn+1+ψn 2
2
+V(·, tn+1/2)
!ψn+1+ψn 2 = 0,
Possible cures : to decouple linear and nonlinear parts of (NLS)
Numerical methods for NLS
Classical schemes :
Crank-Nicolson type : Delfour-Fortin-Payre, D´uran-Sanz Serna, ...
Runge-Kutta type : Akrivis-Dougalis-Karakashian, ...
etc ...
àHigh order schemes, convergent, preserving of invariants,BUTsemi-implicit : need of a nonlinear step (Newton)
Example : Crank-Nicolson scheme (CNFD)
iεψn+1−ψn
δt =
−ε2
2∆ +β|ψn+1|2+|ψn|2
2 +V(·, tn+1/2)
ψn+1+ψn 2 = 0, ψ0(x) =ψ0(x), x∈Rd.
whereunis the approximate value ofuat timetn=nδt.
Example : D´ uran-Sanz Serna scheme (SSFD)
ψn+1−ψn ε2
ψn+1+ψn2 !
ψn+1+ψn
Numerical methods for NLS
Relaxation scheme
1 Relaxation scheme: to regard (NLS) as a Schr¨odinger-Poisson system where the Poisson equation for the potentialΥis replaced by the explicit formulaΥ =|ψ|2, that is,
( Υ =|ψ|2, (x, t)∈Rd×R+∗,
iε∂tψ=−ε22∆ψ+V(x)ψ+βψΥ, (x, t)∈Rd×R+∗,
Relaxation scheme (ReFD) CB ’04
Υn+1/2+ Υn−1/2
2 =|ψn|2, x∈Rd, iεψn+1−ψn
δt =
−ε2
2∆ +V(x) +βΥn+1/2
ψn+1+ψn
2 = 0, x∈Rd,
Advantages convergent scheme, efficient, preserves the invariants, easily adaptable Drawbacks Υ6=|u|2 at the discrete level butΥ(x, t) =Rt
0∂s|u|2(x, s)ds
;make proof of convergence harder, second order, Υn>0∀n?.
Numerical methods for NLS
Relaxation scheme
1 Relaxation scheme: to regard (NLS) as a Schr¨odinger-Poisson system where the Poisson equation for the potentialΥis replaced by the explicit formulaΥ =|ψ|2, that is,
( Υ =|ψ|2, (x, t)∈Rd×R+∗,
iε∂tψ=−ε22∆ψ+V(x)ψ+βψΥ, (x, t)∈Rd×R+∗,
Relaxation scheme (ReFD) CB ’04
Υn+1/2+ Υn−1/2
2 =|ψn|2, x∈Rd, iεψn+1−ψn
δt =
−ε2
2∆ +V(x) +βΥn+1/2
ψn+1+ψn
2 = 0, x∈Rd,
Advantages convergent scheme, efficient, preserves the invariants, easily adaptable Drawbacks Υ6=|u|2 at the discrete level butΥ(x, t) =Rt
0∂s|u|2(x, s)ds
;make proof of convergence harder, second order, Υn>0∀n?.
Numerical methods for NLS
Relaxation scheme
1 Relaxation scheme: to regard (NLS) as a Schr¨odinger-Poisson system where the Poisson equation for the potentialΥis replaced by the explicit formulaΥ =|ψ|2, that is,
( Υ =|ψ|2, (x, t)∈Rd×R+∗,
iε∂tψ=−ε22∆ψ+V(x)ψ+βψΥ, (x, t)∈Rd×R+∗,
Relaxation scheme (ReFD) CB ’04
Υn+1/2+ Υn−1/2
2 =|ψn|2, x∈Rd, iεψn+1−ψn
δt =
−ε2
2∆ +V(x) +βΥn+1/2
ψn+1+ψn
2 = 0, x∈Rd,
Advantages convergent scheme, efficient, preserves the invariants, easily adaptable Drawbacks Υ6=|u|2 at the discrete level butΥ(x, t) =Rt
0∂s|u|2(x, s)ds
;make proof of convergence harder, second order, Υn>0∀n?.
Numerical methods for NLS
Splitting scheme
2 Splitting scheme : Splitting methods are based on a decomposition of the flow of (NLS).
We introduceStthe flow of(N LS):ψ(t,·) =Stψ0 and the two flowsXtandYt solutions to
∂tv=iε2∆v :v(·, y) =Xtv(·,0) iε∂tw=V(x)w+β|w|2w= 0 :w(·, y) =Ytw(·,0)
Solve nonlinear ODE analytically since∂t(|w(x, t)|2) = 0⇒ |w(x, t)|=|w(x,0)|. w(x, t) =e−it[V(x)+β|w(x,0)|2]/εw(x,0).
Idea :to approximate the flowStby combining the two flowsXtandYt Order 1 (Lie) ZLt =XtYtorZLt =YtXt
Order 2 (Strang) ZSt =Xt/2YtXt/2 orZSt =Yt/2XtYt/2 Higher order See Descombes, Thalhammer
Numerical methods for NLS
Splitting scheme
Convergence :
Theorem (CB, Bid´ egary, Descombes ’02)
∀u0∈H2,T >0,∃Candh0such that∀h∈(0, h0],∀nsuch thatnh≤T
ZLhn
u0−Snhu0
≤Chku0kH2. Moreover, ifu0∈H4, then
ZShn
u0−Snhu0
≤Ch2ku0kH4.
Advantages convergent scheme, efficient, easily adaptable, very well adapted in semi-classical regimes
Drawbacks energy is not preserved, periodic boundary conditions if Fourier for the space variable.
Numerical methods for NLS
Splitting scheme
Convergence :
Theorem (CB, Bid´ egary, Descombes ’02)
∀u0∈H2,T >0,∃Candh0such that∀h∈(0, h0],∀nsuch thatnh≤T
ZLhn
u0−Snhu0
≤Chku0kH2. Moreover, ifu0∈H4, then
ZShn
u0−Snhu0
≤Ch2ku0kH4.
Advantages convergent scheme, efficient, easily adaptable, very well adapted in semi-classical regimes
Drawbacks energy is not preserved, periodic boundary conditions if Fourier for the space variable.
Numerical methods for NLS
Method TSSP CNFD SSFD ReFD
Time Resersible 4 4 4 4
Inv. by Gauge Change 4 6 6 6
Mass Conservation 4 4 4 4
Energy Conservation 6 4 4 4
Dispersion conservation 4 6 6 6
UnconditionalL2 Stability 4 4 4 4
Convergence 4 4 4 4
Explicit Scheme 4 6 6 4
Time accuracy 2thor4th 2th 2th 2th
Outline of the talk
1
Motivation
2
Numerical methods for NLS
3
Absorbing boundary conditions for the Schr¨ odinger equations
4
Some numerical experiments.
ABCs for Schr¨ odinger equations
NLS in R
d(S)
i∂tψ+ ∆ψ+V(x, t, ψ)ψ= 0, (x, t)∈Rd×[0;T] lim
|x|→+∞ψ(x, t) = 0, t∈[0;T] ψ(x,0) =ψ0(x), x∈Rd
whereV =V(x) +f(ψ).
Motivation : the numerical resolution of Schr¨odinger equations leads to introduce a finite computational domain Ω.
=⇒introduction of a regular fictive boundaryΓ
Natural questions :
1 which are the satisfactory conditions to set onΓ×[0, T]such that the approximate solution coincides with the restriction toΩof the true solution?
2 If these conditions exist, how do we handle them numerically?
Does the energy of the approximate solution decay inΩ(stability of the numerical
ABCs for Schr¨ odinger equations
NLS in R
d(S)
i∂tψ+ ∆ψ+V(x, t, ψ)ψ= 0, (x, t)∈Rd×[0;T] lim
|x|→+∞ψ(x, t) = 0, t∈[0;T] ψ(x,0) =ψ0(x), x∈Rd
whereV =V(x) +f(ψ).
Motivation : the numerical resolution of Schr¨odinger equations leads to introduce a finite computational domain Ω.
=⇒introduction of a regular fictive boundaryΓ
Natural questions :
1 which are the satisfactory conditions to set onΓ×[0, T]such that the approximate solution coincides with the restriction toΩof the true solution?
If these conditions exist, how do we handle them numerically?
Domain truncation
Problem : Mesh an unbounded domain (here in 1D)Rd×[0;T] t
0 x
ψ
TruncationR×[0;T]−→ΩT:= ]xl, xr[×[0;T]
Introduction of a fictitious boundaryΣT :=Σ×[0;T]withΣ :=∂Ω ={xl, xr} ⇒ BC on the boundaryΣT
The boundary condition onxlmust represent the effect of the potential on]− ∞, xl]. Expression of the boundary condtion with the help of the Dirichlet-to-Neumann map:
∂nψ+iΛ+ψ= 0, onΣT
Domain truncation
Problem : Mesh an unbounded domain (here in 1D)Rd×[0;T]
ΩT
T t
xl 0 xr
ΣT
x ψ
TruncationR×[0;T]−→ΩT:= ]xl, xr[×[0;T]
Introduction of a fictitious boundaryΣT:=Σ×[0;T]withΣ :=∂Ω ={xl, xr} ⇒ BC on the boundaryΣT
The boundary condition onxlmust represent the effect of the potential on]− ∞, xl]. Expression of the boundary condtion with the help of the Dirichlet-to-Neumann map:
∂nψ+iΛ+ψ= 0, onΣT
Domain truncation
Problem : Mesh an unbounded domain (here in 1D)Rd×[0;T]
ΩT
T t
xl 0 xr
ΣT
x f(ψ, ∂nψ) = 0 ψ
TruncationR×[0;T]−→ΩT:= ]xl, xr[×[0;T]
Introduction of a fictitious boundaryΣT:=Σ×[0;T]withΣ :=∂Ω ={xl, xr} ⇒ BC on the boundaryΣT
The boundary condition onxlmust represent the effect of the potential on]− ∞, xl].
Expression of the boundary condtion with the help of the Dirichlet-to-Neumann map:
∂nψ+iΛ+ψ= 0, onΣT
What happen if we do not take BC into account
PotentialV(x) =x Initial datum:
gaussian function ψ0(x) =e−x2+10ix
Domain:Ω = [−5; 15]
−5 0 5 10 15
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x
| u(x,t) |
Evolution of|ψ|w.r.t time
∆t= 0.2
Homogeneous Dirichlet Boundary Conditions:
ψ|Σ= 0
⇒Parasistic reflexion
t
Exact Solution
t
0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.3 0.4 0.5 0.6 0.7 0.8 0.9
What happen if we do not take BC into account
PotentialV(x) =x Initial datum:
gaussian function ψ0(x) =e−x2+10ix
Domain:Ω = [−5; 15]
−5 0 5 10 15
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x
| u(x,t) |
Evolution of|ψ|w.r.t time
∆t= 0.2
Homogeneous Dirichlet Boundary Conditions:
ψ|Σ= 0
⇒Parasistic reflexion
t
Approximated numerical solution
t
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
The 1D Eq. without potential
1 Splitting between interior and exterior problems Interior Problem
(i∂t+∂2x)v= 0, x∈Ω, t >0,
∂xv=∂xw, x∈Σ, t >0, v(x,0) =ψ0(x), x∈Ω.
Exterior problem
(i∂t+∂x2)w= 0, x∈Ω, t >0, w(x, t) =v(x, t), x=xl,r, t >0,
lim
|x|→+∞w(x, t) = 0, t >0,
w(x,0) =0, x∈Ω.
000 111 000 111
problem interior problem
left exterior problem
right exterior
(x,t)
xL xR
output: input:
(x ,t)L x(x ,t)L
Dirichlet data Neumann data
v
v w
2 Laplace transform w.r.t time (t→τ) onΩr: ODE inx
3 Argument: w∈L2(Ωr)to select the outgoing wave
4 Inverse Laplace transform
5 Exact boundary condition onxr: ∂xv(x, t)|x=xr=−e−iπ/4∂1/2t v(xr, t) where ∂1/2f(x, t) = 1
√ ∂
Ztf(x, s)|x=xr
√ ds fractional derivative op-
The 1D Eq. without potential
The problem(S)is thus transformed in(Sapp)
The Schr¨ odinger Eq. in Ω
(Sapp)
i∂tψ+ ∆ψ= 0, (x, t)∈ΩT
∂nψ+e−iπ/4∂t1/2ψ= 0, onΣT, ψ(x,0) =ψ0(x), x∈ΩT
Remark:
∂x2+i∂t= (∂n+i√
i∂t)(∂n−i√ i∂t)
Extension to simple cases (1)
V = 0
Expression of the exact Dirichlet-to-Neumann operator
∂nψ+e−iπ/4∂t1/2ψ= 0, onΣT. (ABC0)
V = V
`,rconstant at the exterior of Ω
∂nψ+e−iπ/4eitV`,r∂t1/2
e−itV`,rψ
= 0, onΣT.
V = V (t) : Gauge change
We set: v(x, t) =ψ(x, t)e−iV(t) with V(t) = Z t
0
V(s)ds.
Then i∂tψ= (i∂tv−V(t)v)eiV(t), wherevis solution to the equation without potential
Non constant potentials
IfV =V(x, t), then the Laplace transform can not be used anymore.
One have to introduce a new tool:pseudodifferential calculus.
Pseudodifferential Operators in 1D
A pseudodifferential operatorP(x, t, ∂t)is described by its total symbolp(x, t, τ)in the Fourier space (τis the covariable oft)
P(x, t, ∂t)u(x, t) =Ft−1 p(x, t, τ)ˆu(x, τ)
= Z
R
p(x, t, τ)u(x, τˆ )eitτdτ
Notations: P=Op(p) , p(x, t, τ) =σ(P(x, t, ∂t))
Non constant potentials
IfV =V(x, t), then the Laplace transform can not be used anymore.
One have to introduce a new tool:pseudodifferential calculus.
Pseudodifferential Operators in 1D
A pseudodifferential operatorP(x, t, ∂t)is described by its total symbolp(x, t, τ)in the Fourier space (τis the covariable oft)
P(x, t, ∂t)u(x, t) =Ft−1 p(x, t, τ)u(x, τˆ )
= Z
R
p(x, t, τ)u(x, τˆ )eitτdτ
Notations: P=Op(p) , p(x, t, τ) =σ(P(x, t, ∂t))
Non constant potentials
Examples
The fractional operators ∂
t1/2and I
tα/2∂1/2t f(t) = 1
√π∂t
Z t 0
f(s)
√t−sds
Itα/2f(t) = 1 Γ(α/2)
Zt 0
(t−s)α/2−1f(s)ds
Nonlocal w.r.t time convolution operator
Operator ∂t ∂t1/2 It1/2 It
↓ ↓ ↓ ↓
Symbol iτ e−iπ/4√
−τ eiπ/4
√−τ
1 iτ
Non constant potentials
CaseV = 0
TBC: ∂nψ+e−iπ/4∂t1/2ψ= 0, onΣT.
∂nψ−iOp √
−τ
ψ= 0, onΣT.
Case constantV =V
TBC: ∂nψ+e−iπ/4eitV∂t1/2 e−itVψ
= 0, onΣT.
∂nψ−iOp√
−τ +V
(ψ) = 0, onΣT.
Lemma
Ifais a symbol belonging toSmindependent oft, andV =V(x), then Op(a(τ −V(x)))ψ=eitV(x)Op(a(τ))
e−itV(x)ψ
CaseV =V(t): Gauge change Antoine, Besse et Descombes, 2006
∂nψ−i eiV(t)Op √
−τ e−iV(t)ψ
= 0, onΣT.
Non constant potentials
CaseV = 0
TBC: ∂nψ+e−iπ/4∂t1/2ψ= 0, onΣT.
∂nψ−iOp √
−τ
ψ= 0, onΣT.
Case constantV =V TBC: ∂nψ−ieitVOp √
−τ
e−itVψ
= 0, onΣT.
∂nψ−iOp√
−τ +V
(ψ) = 0, onΣT.
Lemma
Ifais a symbol belonging toSmindependent oft, andV =V(x), then Op(a(τ −V(x)))ψ=eitV(x)Op(a(τ))
e−itV(x)ψ
CaseV =V(t): Gauge change Antoine, Besse et Descombes, 2006
∂nψ−i eiV(t)Op √
−τ e−iV(t)ψ
= 0, onΣT.
Non constant potentials
CaseV = 0
TBC: ∂nψ+e−iπ/4∂t1/2ψ= 0, onΣT.
∂nψ−iOp √
−τ
ψ= 0, onΣT.
Case constantV =V TBC: ∂nψ−ieitVOp √
−τ
e−itVψ
= 0, onΣT.
∂nψ−iOp√
−τ +V
(ψ) = 0, onΣT.
Lemma
Ifais a symbol belonging toSmindependent oft, andV =V(x), then Op(a(τ −V(x)))ψ=eitV(x)Op(a(τ))
e−itV(x)ψ
CaseV =V(t): Gauge change Antoine, Besse et Descombes, 2006
∂nψ−i eiV(t)Op √
−τ e−iV(t)ψ
= 0, onΣT.
Non constant potentials
CaseV = 0
TBC: ∂nψ+e−iπ/4∂t1/2ψ= 0, onΣT.
∂nψ−iOp √
−τ
ψ= 0, onΣT.
Case constantV =V TBC: ∂nψ−ieitVOp √
−τ
e−itVψ
= 0, onΣT.
∂nψ−iOp√
−τ +V
(ψ) = 0, onΣT.
Lemma
Ifais a symbol belonging toSmindependent oft, andV =V(x), then Op(a(τ −V(x)))ψ=eitV(x)Op(a(τ))
e−itV(x)ψ
CaseV =V(t): Gauge change Antoine, Besse et Descombes, 2006
With potential V = V (x, t) + f (|ψ|) : two strategies
Use of pseudodifferential calculus
No More Exact! : Artifical Boundary Condition
1) Gauge change
v(x, t) =e−iV(x,t)ψ(x, t), with V(x, t) = Z t
0 V(x, s, ψ)ds.
Involve operators
eiV(x,t)Op √
−τ
e−iV(x,t)ψ
2) Direct method
No Gauge change Involve operators
Opp
−τ +V(x, t, ψ) (ψ)
Equivalent strategies forV =V(x), non equivalent forV =V(x, t)
With potential V = V (x, t) + f (|ψ|) : two strategies
Nonlinearities and general repulsive potentialsx∂xV >0forx∈Ω
V = f (x, ψ)
V =f(x, ψ)andV(x, t) =Rt
0f(x, ψ(x, s))ds Absorbing boundary conditions (ABC) forM= 4:
ABC41: ∂nψ+e−iπ/4eiV∂1/2t
e−iVψ
−i∂nV 4 eiVIt
e−iVψ
= 0 ABC42: ∂nψ−ip
i∂t+Vψ+1
4∂nV(i∂t+V)−1ψ= 0
Extension to higher dimensions
Take into account the geometry: convex set with general boundary, smooth, with curvatureκ.
n Ω
Generalized coordinates systemof the bound- ary with respect to normal variablerand curvilinear abscissas
∆ =∂r2+κr∂r+h−1∂s h−1∂s
κr=h−1κ: curvature of a parallel surfaceΣr toΣ h(r, s) = 1 +rκ
⇒ L=∂r2+κr∂r+i∂t+h−1∂s h−1∂s
+V Schr¨odinger equation with variable coefficients:
pseudo-differential calculus
τ
s n
r M(s)
M′(r,s)
Nonlocality
Nonlocal both in space and time.
Localizing in space: two approaches, valid for both strategies
”Taylor” approach: Taylor expansion of the symbols for|τ| ξ2
−τ−ξ2+V =−τ
1 +ξ2 τ −V
τ
Thereby:
p−τ−ξ2+V ≈√
−τ
1 + ξ2 2τ − V
2τ
=√
−τ−ξ2 2
√1
−τ +V 2
√1
−τ
=⇒Localizing in space only
Pad´e approximation approach:
Opp
−τ−ξ2+V
∼p
i∂t+ ∆Σ+V modOP S−1 formal approximation of√
·by Pad´e approximants=⇒Localizing both in spaceAND
Conclusion
Two possible approaches for each strategy, so 4 families of ABC.
”Taylor” approach ”Pad´e” approach
Gauge change ABC1,TM ABC1,PM
Direct method ABC2,TM ABC2,PM
↓ ↓
∂t1/2,I1/2t ,It Opp
−τ−ξ2 or v=e−iVu Opp
−τ−ξ2+V
ABC: Taylor approach
Gauge change
ABC21,T ∂nψ+e−iπ/4eiV∂t1/2 e−iVψ
+κ 2ψ
ABC31,T −eiπ/4eiV κ2
8 +∆Σ
2 +i∂sV∂s+1
2(i∂2sV −(∂sV)2)
I1/2t e−iVψ
ABC41,T +ieiV
∂s(κ∂s)
2 +κ3+∂2sκ
8 +i∂sκ∂sV 2
It
e−iVψ
−isg(∂nV) 4
p|∂nV|eiVIt
p
|∂nV|e−iVψ
= 0
Direct method
ABC22,T ∂nψ+e−iπ/4∂t1/2ψ+κ 2ψ
ABC32,T −eiπ/4 κ2
8 +∆Σ
2
It1/2ψ−eiπ/4sg(V) 2
p|V|It1/2p
|V|ψ ABC42,T +i
∂s(κ∂s)
2 +κ3+∂s2κ 8
Itψ−isg(∂nV) 4
p|∂nV|It
p|∂nV|ψ
= 0
ABC: Pad´ e approach
Gauge change
ABC11,P ∂nψ−ieiVp i∂t+ ∆Σ
e−iVψ
ABC21,P + κ
2ψ+∂sVeiV∂s(i∂t+ ∆Σ)−1/2 e−iVψ
− κ
2eiV(i∂t+ ∆Σ)−1∆Σ
e−iVψ
= 0
Direct method
ABC12,P ∂nψ−ip
i∂t+ ∆Σ+V ψ ABC22,P + κ
2ψ−κ
2(i∂t+ ∆Σ+V)−1∆Σψ= 0
Taylor approach conditions
Approximations of∂t1/2,It1/2,It by discrete convolutions, linked to the Crank-Nicolson scheme⇒trapezoidal rule[Schmidt - Yevick (97), Antoine - Besse (03)]
∂t1/2f(tn)≈ r 2
∆t
n
X
k=0
βn−kfk
It1/2f(tn)≈ r∆t
2
n
X
k=0
αn−kfk
Itf(tn)≈∆t 2
n
X
k=0
γn−kfk
(α0, α1, α2, . . .) =
1,1,1 2,1
2,3 8,3
8, . . .
βk= (−1)kαk,∀k≥0 (γ0, γ1, γ2, . . .) = (1,2,2,2, . . .)
Pad´ e approach conditions
[Bruneau - Di Menza (95), Szeftel (04)]
Approximation of√
i∂t+ ∆Σ+V
Rational approximation of the square root by Pad´e approximants
√z≈Rm(z) =
m
X
k=0
amk −
m
X
k=1
amkdmk z+dmk
In theABC2,PM conditions:
pi∂t+ ∆Σ+V ; Rm(i∂t+ ∆Σ+V) Rm
⇒ p
i∂t+ ∆Σ+V ψ ≈
m
X
k=0
amk
! ψ−
m
X
k=1
amkdmk(i∂t+ ∆Σ+V +dmk)−1ψ
| {z }
ϕk
Outline of the talk
1
Motivation
2
Numerical methods for NLS
3
Absorbing boundary conditions for the Schr¨ odinger equations
4
Some numerical experiments.
Numerical application
1d linear caseu(x, t) = s
i
−4t+iexp
−ix2−k0x+k02t
−4t+i
k0= 8, Ω= [−5,5], N= 1024,∆t= 10−3
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
|u|
Evolution of |u|
t=0 t=0.15 t=0.30 t=0.45
2D linear case Explicit solution (2D)
u(x1, x2, t) = i i−4texp
−ix21+x22+ 5ix1+ 25it i−4t
.
Finite Element Approximation(P1):Ωi=D(0,10),3278triangles,∆t= 10−2.
2D linear and nonlinear case with potentials
Linear, Circular domain,
V(x, y) = 5(x2+y2) Linear, Mediator shaped domain, V(x, y) = 5p
x2+y2
Nonlinear, Circular domain, V(x, y) = 0
Nonlinear, Circular domain, V(x, y) =x2+y2