• Aucun résultat trouvé

Nombre d’exemplairesContraintes en MPa

N/A
N/A
Protected

Academic year: 2022

Partager "Nombre d’exemplairesContraintes en MPa"

Copied!
40
0
0

Texte intégral

(1)

Lecture 1 - Static resistance

Recalls: internal forces, stresses, criteria etc.

CDIM Team @GM

(2)

2

Intro – Why do we need to compute mechanics?

Elements are subjected to mechanical loadings

• Axial load ( tension/compression),

• Radial load ( bending),

• Excentered (non-radial) load ( torsion)

Elements have non-homogeneous shapes stress concentration

• Shoulder (with rounds),

• Holes (screw/pins),

• Grooves (for keys),

• Threads

The elements should ensure two criteria :

• The material should not degrade under the load (static/fluctuating)

• The deflection should not be too large to remain functional axial

radial excentered

(3)

3

Forces / moments

• Joints / Wrenches

• Methodology

Example : crank

Internal forces / moments

• Cohesion wrench

Example : crank

Stresses / strains

• From Forces/Moments

• Critical section

Example : crank

Materials

• Mechanical properties

• Stress criterion

Example : crank

Exercice 1a

Lecture 1 – agenda

A C B

Forces / Moments

A C B

Critical section

Design : choice of material, geometry… depending on

variables

0D : Load

@points 0D : Load

@points

1D : Load along axle 1D : Load along axle

2D : Stresses in a section 2D : Stresses

in a section

Maximal stress in section Maximal stress

in section

A C B

? ?

(4)

4

Forces / Moments

A joint :

• link k between part i and j

• nc mobilities, ns forces/moments

 in 3D, nc+ ns= 6

Kinematics :

• Complete joint : NO degree of freedom (DoF) between part i and j : nc = 0

Welded joint, glued joint, interference fit etc.

• Partial joint : at least 1 DoF between two parts : nc ≥ 1

Revolute joint, sliding joint, cylinder joint etc.

Forces :

• Perfectly rigid joint : no deformation

• Flexible joint : small deformations, elastic or visco-elastic behavior

liaison k pièce j

pièce i

(5)

5

Forces / Moments

Wrenches

Kinematic wrench (translation / rotation)

• Associated Force wrench (force / moment)

Associated? where Xi or Ωi = 0  Fi or Mi ≠ 0, respectively…

… and inversely : where Xi or Ωi ≠ 0  Fi or Mi = 0

• Joint is assumed perfect (no friction) : 1 DoF  no force/moment along that DoF

{ }

1 2 3

1 2 3

1 1

2 2

, , ,

3 3 , , ,

G x x x

G x x x

N M

R M T M

T M

 

 

=  

 

 

r r r

r r r

r r

{ }

1 2 3

1 2 3

1 1

2 2

, , ,

3 3 , , ,

G x x x

G x x x

X

X X

X

 

 

Ω =  Ω 

 Ω 

 

r r r

r r r

r r

1

2 3

⃗ ⃗

(6)

6

Forces / Moments

Loading types

Quasi-static computation

• If translation / rotation speeds are constant

• If symmetrical parts / no unbalance

 if vibrations or fluctuations occur : need to account for it

What about gravity?

• It can be neglected if other loads are much larger

• Need to check before neglecting it!

Constant Loads Fluctuating loads

System at rest Case 1 Case 2

System in movement Case 3 Case 4

(7)

7

Forces / Moments : example crank

0. input :

geometry (complete),

external load q

A B

C

D

l l l

4l

2l q

input : l=0.1m, d=20mm, q=5000 N/m

(8)

8

Forces / Moments : example crank

0. input :

geometry (complete),

external load q

1. unknowns :

reaction wrench in A :

2. equations of equilibrium :

A B

C

D

l l l

4l

2l q

,

input : l=0.1m, d=20mm, q=5000 N/m

0 ! ". $ 0 0

! ". 0

$ 0 0

%&' 0 $ &( ∧ ". * $ " ∗ 2 0

$ 0 0

! " ∗ 11 2 0

3. solution :

0

". 500

0

* !2" !100 . 0

0

" ² ∗ 11 2 275 . 0

0D : Load

@points 0D : Load

@points

(9)

9

Forces / Moments

• Methodology

Objective: Determine the mechanical actions on each solid of the system

Isolate the solid from the system; represent graphically the solid in the same position as in the system

Identify all the contact zones

Draw a calculation scheme (represent vectors) on the system skeleton

Balance of the formulation (Unknowns / Equations)

Possible resolution ? Isolate other solids

to get more equations

NO Problem solved :

all mechanical actions are determined YES

0D : Load

@points 0D : Load

@points

(10)

10

Forces / moments

Internal forces / moments

• Cohesion wrench

Example : crank

Stresses / strains

• From Forces/Moments

• Critical section

Example : crank

Materials

• Mechanical properties

• Stress criterion

Example : crank

Exercice 1a

Lecture 1 – plan

A C B

A C B

A C B

Critical section

Design : choice of material, geometry… depending on

variables

0D : Load

@points 0D : Load

@points

1D : Load along axle 1D : Load along axle

2D : Stresses in a section 2D : Stresses

in a section

Maximal stress in section Maximal stress

in section

? ?

Forces / Moments

(11)

11

Cohesion wrench

Internal Forces / Moments

3⊕→⊖ 7

7 8,9:,9;,9<

⊖ ⊕

Virtual section cut

= ⊖

⊕→⊖ ! ⃗⊖→⊕

⊕→⊖ ! ⊖→⊕

>⃗ >⃗ >⃗

: normal force (tensile force) 7 , : shear forces

: torsion moment

, : bending moments

?

?

Global basis

Local basis

1D : Load along axle 1D : Load along axle

(12)

12

Internal Forces / Moments : example crank

0. input :

geometry (complete),

external load q

reaction wrench in A

A B

C

D

l l l

4l

2l q

input : l=0.1m, d=20mm, q=5000 N/m G

1D : Load along axle 1D : Load along axle

&? 88

8

(13)

13

Internal Forces / Moments : example crank

0. input :

geometry (complete),

external load q

reaction wrench in A

1. unknowns :

reaction wrench in G∈[AB] :

2. equations of equilibrium :

A B

C

D q

input : l=0.1m, d=20mm, q=5000 N/m

3. solution :

G

&? 88

8

A/C 7

7 8,D9:,9;,9<E

1D : Load along axle 1D : Load along axle

/C 0 $ 0

$ 7 0

$ 7 0

/C%?' 0 $ ?& ∧ $ A/C%?'

/C%?' * !2"

0

" ² ∗ 11 2 $ ! 8

! 8

! 8

0

". 500 0 $

A/C

0

7 !". !500

7 0

A/C%?' * 2" 100 . 0

0

!" ∗ 11 2 $ 8. ".

Calculation details :

(14)

14

Internal Forces / Moments : example crank

0. input :

geometry (complete),

external load q

reaction wrench in A

A B

C

D q

input : l=0.1m, d=20mm, q=5000 N/m G

&? 88

8

1D : Load along axle 1D : Load along axle

A/C%?' * 2" 100 . 0

0

!" ∗ 11 2 $ 8. ".

A/C

0

7 !". !500

7 0

3. solution :

0

7

0 7

0

0 0 0

4l

4l

4l

4l

4l

4l -ql

2ql²

-11/2.ql²

-3/2.ql²

A B

A B

(15)

15

Forces / moments

Internal forces / moments

Stresses / strains

• From Forces/Moments

• Critical section

Example : crank

Materials

• Mechanical properties

• Stress criterion

Example : crank

Exercice 1a

Lecture 1 – plan

A C B

A C B

A C B

Critical section

Design : choice of material, geometry… depending on

variables

0D : Load

@points 0D : Load

@points

1D : Load along axle 1D : Load along axle

2D : Stresses in a section 2D : Stresses

in a section

Max stresses in section Max stresses

in section

? ?

Forces / Moments

(16)

16

Stresses from Force Wrench

7 7

8,9:,9;,9<

F , F , F

GF HI

J

7 GF HI

J

7 GF HI

J

G F ! F HI

J

G F HI

J

! G F HI

J

F I $ K ! K F 7

I ! K F 7

I $ K

2D : Stresses in a section 2D : Stresses in

a section

(17)

17

Stresses in critical section : example crank

A/C

0 100 . 0

7 !500 0

7 0 ! 275 . 0 ,9

:,9;,9<

A

F I $ K ! K 275

7,854. 10NO

F 7

I ! K !500

3,14. 10NQ$ 100 1,571. 10NR

F 7

I $ K !100

1,571. 10NR I SH

4 31400 3,14. 10NQ0

K SHQ

32 1,571. 10Q00Q 1,571. 10NR0Q K , SHQ

64 7,854. 10 00Q 7,854. 10NO0Q

M

F F

F

&

F 275

7,854. 10NO0,01 3,5. 10RUV

F !500

3,14. 10NQ 1,59. 10XUV

F 100

1,571. 10NR0.01 6,36. 10YUV Input :

& 0 H/20

Solution for the critical point M in the critical section (in A):

Solution for the critical section (in A):

Calculations:

2D : Stresses in a section 2D : Stresses in

a section

Max stresses in section Max stresses

in section

(18)

18

Forces / moments

Internal forces / moments

Stresses / strains

Materials

• Mechanical properties

• Stress criterion

Example : crank

Exercice 1a

Lecture 1 – agenda

A C B

A C B

A C B

Critical section

Design : choice of material, geometry… depending on

variables

0D : Load

@points 0D : Load

@points

1D : Load along axle 1D : Load along axle

2D : Stresses in a section 2D : Stresses

in a section

Max stresses in section Max stresses

in section

? ?

Forces / Moments

(19)

19

Materials : classification (David Duresseix)

Métaux et Alliages

Polymères

Céramiques, Verres et

Produits naturels Composites

Composites avec renfort à base

de fils métalliques (pneumatiques, ..)

Composites avec renfort à base

de fibres et poudres (outils carbures, ..)

Polymères chargés avec des poudres ou

des fibres de verre, carbone ou autres (courtes ou longues)

Metals

&

Alloys

Polymers

Ceramic Glass Organic

(20)

20

Materials : mechanical properties

Elasticity, plasticity : Young modulus, yield and ultimate stress

0

σ = E . ε σE

σR ( Rm)

LimiteσE en MPa ε = ∆l

l

47,5 50 52,5

25 50

Nombre d’exemplaires

Déformation

Contraintes en MPa

1 E

Caractéristiques sur une éprouvette

Caractéristiques sur un lot de pièces

50

Characterisics from one test sample

Characterisics from several test samples

Stress (MPa) Numberof samples

Strain

Statistical spread is generally small on mechanical properties of metallic alloys

(21)

21

Materials : mechanical properties

• Resistance for the bulk material

• Criteria on deviatoric stresses

Von Mises Z[\_^_` Za$ bca d Zfe

TrescaZ[\_^_` Za $ gca d Zfe

• Resistance of the surface material

• Criteria on hydrostatic stress pMAX<pADM

 Needed material properties

• Yield stress (limit elastic stress): Zh,e

• Ultimate stress (strength): Zi,j

• Elasticity Modulus: E (or Shear modulus: G)

• Poisson coefficient: ν

• Admissible pressure : padm

Plasticity should be avoided

Plasticity is due to dislocation motion

Dislocation are driven by shear stresses

Contact lead to high pressures

Damage is engendered

(22)

22

Materials : example crank

A M

F F

F

F 275

7,854. 10NO0,01 3,5. 10RUV

F !500

3,14. 10NQ 1,59. 10XUV

F !100

1,571. 10NR0.01 6,36. 10YUV

Fkl F $ 3m

& 0 H/20

Solution for the critical point M in the critical section (in A):

m= F $ F

Unknown: F F

Fkl F $ 3%F $ F ' 3,66. 10RUV 366 UV

Solution for von Mises (at the critical point in the critical section):

The design/ dimensioning aims at checking:

If known dimensions verification

If not calculation of the minimum dimension α Is a safety factor depending on:

- Operating conditions (intermittent, continuous), regularity - Industrial filed: automotive, aeronautics, etc…

Zn^ d Ze f

Maximal stress in section Maximal stress

in section

(23)

23

Influence of element shape : stress concentration factor

• Some typical cases

0,1 0,5 0,8

2,2 2,6 3,0

d / w

D d F

F

max ) 0

σ(

σMax =Kt

Facteur de concentration de contraintes Kt

0,1 0,5 0,8

2,2 2,6 3,0

d / w

D d F

F D d F

F

max ) 0

σ(

σMax =Kt

Facteur de concentration de contraintes Kt

1,0

0,1 0,2 0,3

1,4 1,8 2,2 2,6 3,0

Facteur de concentration de contraintes

Kt

D / d = 3

D / d = 1,5 D / d = 1,1

D / d = 1,05 D / d = 1,02

r / d r

D d

Mf Mf

max ) 0

σ(

σMax =Kt

1,0

0,1 0,2 0,3

1,4 1,8 2,2 2,6 3,0

Facteur de concentration de contraintes

Kt

D / d = 3

D / d = 1,5 D / d = 1,1

D / d = 1,05 D / d = 1,02

r / d r

D d

Mf Mf

r

D d

Mf Mf

max ) 0

σ(

σMax =Kt

1,0

0,1 0,2 0,3

1,4 1,8 2,2 2,6 3,0

Facteur de concentration de contraintes Kt

r / d r

D d

F F

max ) 0

σ(

σMax =Kt

D / d = 1,5 D / d = 1,1

D / d = 1,05 D / d = 1,02

1,0

0,1 0,2 0,3

1,4 1,8 2,2 2,6 3,0

Facteur de concentration de contraintes Kt

r / d r

D d

F F

r

D d

F F

max ) 0

σ(

σMax =Kt

D / d = 1,5 D / d = 1,1

D / d = 1,05

D / d = 1,02 1,0

0,1 0,2 0,3

1,4 1,8 2,2 2,6 3,0

Facteur de concentration de contraintes Kt

r / d r

D d

F F

max ) 0

σ(

σMax = Kt

D / d = 1,5 D / d = 1,1

D / d = 1,05 D / d = 1,02 1,0

0,1 0,2 0,3

1,4 1,8 2,2 2,6 3,0

Facteur de concentration de contraintes Kt

r / d r

D d

F F

r

D d

F F

max ) 0

σ(

σMax = Kt

D / d = 1,5 D / d = 1,1

D / d = 1,05 D / d = 1,02

F

l o

p . F d F

q

r

(24)

24

Example : Shaft of a starter/alternator

A C B

D

(25)

25

Example : Shaft of a starter/alternator

(26)

26

Example : Shaft of a starter/alternator

t T

x

y 53° 53°

(27)

27

Example : Shaft of a starter/alternator

• Problem definition

• Centers of bearings

• Center of pulley

• Center of the wire winding

• Data

• Unknown : F

B

, F

D

• Derive all calculation as a function of the shaft diameter

L

x z

FA d

e

Cm

A

D B

e/2

C y

-Cm

FB FD

L e d FA Cm

150 mm 90mm 25mm -2000N 80 N.m

σr σD σE

700 MPa 300 MPa 600 MPa

(28)

28

Forces / moments

Internal forces / moments

Stresses / strains

Materials

• Mechanical properties

• Stress criterion

Example : crank

Exercice 1a

Lecture 1 – plan

A C B

A C B

A C B

Critical section

Design : choice of material, geometry… depending on

variables

0D : Load

@points 0D : Load

@points

1D : Load along axle 1D : Load along axle

2D : Stresses in a section 2D : Stresses

in a section

Max stresses in section Max stresses

in section

? ?

Forces / Moments

(29)

29

Second moment of area (J. Colmars, GM)

• General definition • Examples

(30)

30

Example : Shaft of a starter / alternator

• Calculation of all external actions

• Internal forces/moment, cohesion wrench

0D : Load

@points 0D : Load

@points

1D : Load along axle 1D : Load along axle

(31)

31

Example : Shaft of a starter / alternator

• Stresses in section B+

F I $ K ! K

F 7

I ! K

F 7

I $ K

B M

F F

F s 0

H/20

,D9:,9;,9<E

F F F

Solution for the critical point in the critical section:

Solution for the critical section :

Fkl F $ 3m

Fkl

=

m= F $ F F F

Solution for von Mises :

2D : Stresses in a section 2D : Stresses

in a section

Max stresses in section Max stresses

in section

(32)

32

Example : Shaft of an starter / alternator

• Resistance criteria as a function of shaft diameter:

• One neglects the shear force 

• Expressed as a condition on d

• Using the provided material, compute the condition on d for:

Fkl d

d

H t

α=1  d=

α=2 d=

(33)

33

Example : Shaft of a starter / alternator (correction)

• Calculation of all external actions

• Internal forces/moment, cohesion wrench

F

B

$F

D

$F

A

0 et F

A

.%d$e'$F

B

.e 0 d’où : F

B

-F

A

.%d$e'/e et F

D

F

A

.d/e

ƒ ^ „ƒ•. …

a !aƒƒƒ• ^a ƒ

b ƒ ^b !‡ƒ•. … ˆ

ab 0D : Load

@points 0D : Load

@points

1D : Load along axle 1D : Load along axle

(34)

34

Example : Shaft of a starter / alternator (correction)

• Stresses in section B+

F I $ K ! K 50 ∗ 64 SHQ

F 7

I ! K !2000

SH !80 ∗ 32 SHQ

F 7

I $ K 80 ∗ 32 SHQ

B M

F F

F

s

,D9:,9;,9<E

F 50 ∗ 64 SHQ H

2 50 ∗ 32 SH

F !2000

SH F 80 ∗ 16

SH

Fkl F $ 3m

m= F $ F F F

s 0

H/20

,D9:,9;,9<E

Solution for the critical point in the critical section:

Solution for the critical section:

Solution for von Mises :

Fkl F $ 3%F $ F '

Fkl 50 ∗ 32

SH $ 3% !2000

SH $ 80 ∗ 16

SH '

2D : Stresses in a section 2D : Stresses

in a section

Max stresses in section Max stresses

in section

(35)

35

Example : Shaft of an starter / alternator (correction)

• Resistance criteria

• One neglects the shear force 

• Genralization, case of a transmission shaft, in the critical section:

Fkl 50 ∗ 32

SH $ 3% !2000

SH $ 5 ∗ 16

SH ' dFq

f

Fkl 50 ∗ 32

SH $ 3% 5 ∗ 16

SH ' dFq

f

H t f Fq

50 ∗ 32

S $ 3 80 ∗ 16 S

H t f Fq

, ∗ 32

S $ 3 ∗ 16

S

,

F

kl

F $ 3m

α=1  d=11,3 mm α=2 d= 14,3 mm

(36)

36

Exercise 1: Bar bending torsion (correction)

• External action 0. input :

geometry,

external load F

1. unknowns :

reaction wrench in 0 :

2. equations of equilibrium :

F 0

O’

C l

a

,

0 ! $ 0 0

! 0

$ 0 0

%0' 0 $ =Œ ∧ %! ' $ V 0

$ 0 0

! 0

3. solution :

0

0

!V0

0D : Load

@points 0D : Load

@points

(37)

37

F 0

O’

C l

a Exercise 1: Bar bending torsion (correction)

• Cohesion wrench 0. input :

geometry (complete),

external load

reaction load in O

1. unknowns :

reaction wrench in G :

2. equations of equilibrium : 3. solution :

G

=? 88

8

A/C 7

7 8,D9:,9;,9<E

1D : Load along axle 1D : Load along axle

/C 0 $ 0

$ 7 0

$ 7 0

/C%?' 0 $ ?= ∧ $ A/C%?'

/C%?' !V

0

$ ! 8

! 8

! 8 0

0$

A/C

0

7 !

7 0

A/C%?' V

0

% ! 8'

Calculation details :

(38)

38

Exercise 1: Bar bending torsion (correction)

• Stresses in section O+

F I $ K ! K K

F 7

I ! K !

I !V K

F 7

I $ K V

K

O M

F F

F

=

,D9:,9;,9<E

I SH

4 1,26. 10N 0

Solution for A and B in the critical section:

F K H

2

F !

I

F V

K H 2

=& 0 H/20

Solution for the critical section:

Calculation :

2D : Stresses in a section 2D : Stresses

in a section

Max stresses in section Max stresses

in section

K SHQ

32 2,51. 10NY K K 2

F 0

F J -•Ž

<<

F

=s 0

H/20

F 72 UV F 1,2 UV F 24 UV

=& 0 H/20

F 0

F 49 UV

=s 0 F H/20

(39)

39

Exercise 1: Bar bending torsion (correction)

• Design with plain tube

O A

F F

F

Fkl F $ 3m

m= F $ F F F

Von mises :

Fkl F $ 3%F $ F ' Fkl & 83 UV

I SH

4 1,26. 10N 0 Stresses values :

K SHQ

32 2,51. 10NY K K 2 F 72 UV

F 1,2 UV F 24 UV

=& 0 H/20

F 0

F 49 UV

=s 0 F H/20

Fkl s 85 UV

 α=3.93

 α=3.83

Discussion :

B

F F

F

(40)

40

Exercise 1: Bar bending torsion (correction)

• Design with hollow tube

O A

F F

F

Von mises : Fkl &

I’ S%H !H' 4

Stresses values as a function of di (neglectingT2) : K’ S%HQ!HQ'

32 K’ K’

2

Fkl s ?

di =

Discussion :

B

F F

F

F K’ H F 0 2

F V

K’ H 2

=& 0 H/20

F 0

F J - •Ž•’

<<

F

=s 0

H/20

with α=1

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

2014 The role of conformational disorder in solid-solid phase transitions of linear chain molecules (n-alkanes) arranged in a layer is studied in terms of a

Our neglect of an excess heat capacity term is a consequence of the fact that the heat capacity of the two stable intermediate compounds is very close to those of the

The Kauzmann temperature of vanishing entropy,TK, often considered as an ideal glass transition temperature, is 257 K for Cu and the average AcP1-' is 4.7 (Fig. The

« un ensemble d’éléments différenciés, en interactions dynamiques, organisés en fonction d’une finalité, dans un contexte déterminé. Ainsi chaque être vivant,

Absorption spectra for device based on HgTe 4k nanocrystals using interdigitated electrodes made of gold contact deposited on a Si/SiO 2 substrate (dark blue),

Il établi une liaison covalente et deux liaisons hydrogène avec deux atomes accepteurs qui sont liés au même atome X [25, 26] (figure 4a), la figure 4b présente aussi

To determine the cost of operations when clients and servers do not agree on the current epoch we used a simple micro-benchmark that conducted a single read and write operation on a