• Aucun résultat trouvé

Condensation on a double wood window

N/A
N/A
Protected

Academic year: 2021

Partager "Condensation on a double wood window"

Copied!
86
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building Research), 1958-08-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=f4798c74-9072-4516-a950-6c9e7c1eb189 https://publications-cnrc.canada.ca/fra/voir/objet/?id=f4798c74-9072-4516-a950-6c9e7c1eb189

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20337978

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Condensation on a double wood window

(2)

XATIONAL R E S M R C H COUNCIL

OF

CANADA D I V I S I O N

OF

B U I L D I N G

RESEARCH

COI?DF;1SATION ON A

DOUBLE WOOD WINDOW

by

E,

Wowak and A , G r a n t Wilson

Report No,

1 4 6

o f t h e

D i v i s i

on

of B u i l d i n g R e s e a r c h

O t t a w a A u g u s t

1958

(3)

Windows are import-ant components of almost

all buildings. They pose many problems, as reflected

by the numerous requests for assistance which have

been received by the Division, beginning on the

first day it was in operation. In common.

with

almost all building components, windows are affected

in service by conditions imposed upon them by the

building of which they are

a

part, They cannot,

therefore,

be

studied or assessed adequately by

themselves but must

be

related to the building,

particularly in respect of those important aspects

of performance involving heat, moisture and air.

Experimental work on windorrrs, though greatly

needed, had to await the development of major test

facilities within the Division, A good beginning

has now been made on window work. This report

describes the first major study on condensation on

and between double windows. The extensive analysis

of the problem which is presented will serve to

confirm the complexity of the factors which enter

into their performance.

Ottawa

(4)

TABLE OF CONTENTS

Page I. ANALYSIS OF W I N D O W CONDENSATION PROBLEM 1

a ) Condensation on I n s i d e Surface of I n n e r

Pane 2

b ) Condensation on I n s i d e Surface of Outer

Pane 2

( i ) Water vapour t r a n s m i s s i o n by d i f f u s i o n 3

( i i ) A i r p r e s s u r e d i f f e r e n c e s due t o wind

4

( i i i ) Air p r e s s u r e d i f f e r e n c e s due t o chimney

e f f e c t

4

( i v )

Air

flow c h a r a c t e r i s t i c s of windows 6 ( v ) Water vapour t r a n s m i s s i o n by a i r flow 8

11. DESCRIPTION OF WINDOWS AND TEST INSTALLATION 10 1II.DESCRIPTION OF TESTS AND RESULTS 11

a ) A i r I n f i l t r a t i o n T e s t s 11 b ) Temperature Measurements 1 3 c ) Condensation T e s t s 1 5 I V . DISCUSSION OF RESULTS 21 a ) Condensation on I n s i d e Surface of I n n e r Pane 21

b ) Condensation on I n s i d e Surface of Outer

Pane 2 2

APPENDIX A

-

A i r Plovi C h a r a c t e r i s t i c s Required t o Over-come Condensation Betvie en Panes

APPENDIX B

-

E r r o r s i n Surface Temperature Measurements APPENDIX C

-

E r r o r s i n A i r Temperature Measurements

APPENDIX D

-

E f f e c t of Condensation on Surface Temperatures APPENDIX E

-

EXf e c t of Venting on Heat Flow Through Double

(5)

CONDDTSATION OIJ-

A

DOUBLE WOOD

W I h m W

E. Nowak and A. Grant Wilson

T h i s r e p o r t c o v e r s a s t u d y of t h e c o n d e n s a t i o n performance of a simple wood W ~ I I ~ O V J h a v i n g permanently

in-

s t a l l e d o u t e r g l a z i n g and removable i n n e r g l a z i n g . With t h e window i n s t a l l e d i n t h e B u i l d i n g S e r v i c e s c o l d room, o b s e r v a t i o ~ i s were made of s u r f a c e and a i r t e m p e r a t u r e s and c o n d e n s a t i o n on t h e i n s i d e s u r f a c e of both i n n e r and o u t e r panes. These o b s e r v a t i o n s were made a t d i f f e r e n t c o l d and w a r m room t e m p e r a t u r e s and w a r m room r e l a t i v e h u m i d i t i e s . V a r i a t i o n s were made i n t h e t i g h t n e s s of t h e i n n e r g l a z i n g and t h e degree o f v e n t i n g of t h e s p a c e between t h e panes t o t h e o u t s i d e . Laboratory r e s u l t s a r e compared w i t h t h o s e p r e d i c t e d from simple t h e o r y .

The v a l u e of double w i ~ d o r ~ s i n d e c r e a s i n g heat;

t r a n s m i s s i o n t h r o u g h windov? a r e a s and i n r e d u c i n g t h e conden- s a t i o n of w a t e r vapour on i n s i d e g l a s s s u r f a c e s i s w e l l

known, Some form of double-window arrangement i s v e r y comofi i n Canadian homes. Double windows have a l s o been i n u s e f o r many y e a r s i n most commercial b u i l d i n g s i n a r e a s having

s e v e r e w i n t e r s and a r e b e i n g used more and more i n o t h e r p a r t s of t h e c o u n t r y .

R e g a r d l e s s of t h e t y p e of double wir~dow u s e d , some c o n d e n s a t i o n i n t h e form of w a t e r o r f r o s t on t h e i n s i d e g l a s s s u r f a c e s i s common d u r i n g t h e w i n t e r months. It i s as

l i k e l y t o o c c u r on expensive f a c t o r y s e a l e d double-glazed u n i t s as on s t a n d a r d wood window arrangements.

Condensation between t h e panes, on t h e i n s i d e s u r f a c e of t h e o u t e r palie, i s a l s o a c o m o n occurrence and i s a

p o t e n t i a l problem w i t h a l l window t y p e s e x c e p t , p e r h a p s , f a c t o r y s c a l e d double-glazed u n i t s .

AlIost people a c c e p t a s m a l l amount of window conden- s a t i o n a s i n e v i t a b l e . When it b e g i n s t o s e r i o u s l y o b s t r u c t t h e view t h r o u g h t h e window, however, o r when t h e r u n - o f f w e t s t h e window s i l l s o r wall s u r f a c e s t h e problem assumes

l a r g e r p r o p o r t i o n s . I n modern d w e l l i n g u n i t s a t F o r t Churchill. c a s e s where i c e f i l l e d t h e s p a c e between panes t o c o n s i d e r - a b l e h e i g h t s , have been r e c o r d e d .

(6)

There a r e a number of f a c t o r s t h a t determine whether o r n o t winclom c o n d e n s a t i o n w i l l occul-. It i s corivenient when d i s c u s s i n g t h c s e t o c o n s i d e r c o n d e n s a t i o n on t h e i n s i d e s u r f a c e of t h e i n n e r pane s e p a r a t e l y from c o n d e n ~ a t i o n on t h e i n n e r s u r f a c e o f t h e o u t e r pane.

( a ) Condensation on I n s i d e S u r f a c e o f I n n e r Pane

Condensation on t h e i n s i d . e s u r f a c e of t h e i n n e r pane o c c u r s whenever t h e window s u r f a c e temperature a t a r v p o i n t i s

below t h e dew p o i n t t e m p e r a t u r e of t h e a i r - w a t e r vapour mixture i n t h e room, I t i s u s u a l l y observed j u s t o v e r t h e l o w e r p o r t i o n s o f t h e g l a s s s u r f a c e , sug6estin.g v e r t i c a l s u r f a c e t e m p e r a t u r e g r a d i e n t s . T2ie s u r f a c e t e m p e r a t u r e s of windows f o r g i v e n i n s i d e and o u t s i d e a i r t e m p e r a t u r e s c a n be c a l o u l a t e d by u s i n g h e a t t r a n s m i s s i o n c o e f f i c i e n t s f o r i n s i d . e and o u t s i d e

a i r f i l m s and f o r a i r s p a c e s . Such c a l c u l a t i o n s a r e used as

t h e b a s i s f o r t a b l e s g i v i n g t h e maximum i n s i d e r e l a t i v e

h u m i d i t i e s t h a t can be c a r r i e d i n b u i l d i n g s a t d i f f e r e n t o u t - s i d e t e m p e r a t u r e s w i t h o u t c r e a t i n g wil~dovi c o n d e n s a t i o n . I n making t h e c a l c u l a t i o n s , u n i - d i r e c t i o n a l h e a t flow i s assumed and no a c c o u n t i s t a k e n , t h e r e f o r e , of t h e e f f e c t of convec- t i o n i n t h e s p a c e between panes on v e r t i c a l g r a d i e n t s i n i n s i d e g l a s s s u r f a c e t e m p e r a t u r e s .

The p r a c t i c a l s o l u t i o n t o s e r i o u s c o n d e n s a t i o n on i n s i d e window s u r f a c e s i s u s u a l l y t o r e d u c e t h e r e l a t i v e humidity i n t h e b u i l d i n g through v e n t i l a t i o n and t h e c o n t r o l o f m o i s t u r e s o u r c e s . The o n l y o t h e r p o s s i b l e c o u r s e i s t o i n c r e a s e i n s i d e g l a s s s u r f a c e t e m p e r a t u r e s by i n c r e a s i n g t h e i n s i d e a i r f i l m h e a t - t r a n s m i s s i o n c o e f f i c i e n t o r by d i r e c t h e a t i n g . It i s f o r t h i s purpose t h a t p r o p e l l o r fans a r e

sometimes used t o f o r c e a i r o v e r t h e i n s i d e s u r f a c e s o f d i s p l a y windows d u r i n g c o l d weather. Such s t e p s a r e n o t p r a c t i c a l f o r most windovrs. However, t h e l o c a t i o r : of h e a t i n g o u t l e t s may

have a marked e f f e c t , b o t h t h r o u g h i n c r e a s i n g t h e f i l m c o e f f i c i e n t and through d i r e c t h e a t i n g . One o t h e r i n f l u e n c i n g f a c t o r i s

t h e degree t o which t h e i n s i d e g l a s s s u r f a c e i s r e c e s s e d w i t h i n t h e window opening.

( b ) Coridensation on I n s i d e S u r f a c e of Outer Pane

C o ~ d e n s a t i o n w i l l occur on t h e i n s i d e s u r f a c e o f t h e o u t e r pane whenever t h e t e m p e ~ a t u ~ e of t h a t s u r f a c e a t any p o i n t i s below t h e dew p o i n t t e m p e r a t u r e of t h e a i r - v a p o u r m i x t u r e i n t h e s p a c e betrseen panes. This s i t u a t i o n w i l l u l t i m a t e l y o c c u r w i t h o u t s i d e t e m p e r a t u r e s lorver t h a n i n s i d e ,

i f t h e g a i n i n w a t e r vapour t o t h e space i s g r e a t e r %ban t h e l o s s .

(7)

V a t e r vapour g e n e r a l l y moves i n t o and o u t o f t h e a i r s p a c e u n d e r tvro f o r c e s . Trapour moves t h r 0 u ~ h t h e m a t e r i a l s a n d c r a c k s i n . 'the v:irtdovr a s s c n ~ b l y a s a r e s u l t o f d i f f e r e n c e s

i n

p a r t i a l p r e s s u r e o f t h e via-tcr vapour by t h e p r o c e s s u s u a . 1 1 ~ r e f e r r e d t o a s d i f f u s i o n . I-t i s a l s o t r a n s f e r r e d a s a component o f t h e a i r which f l o w s t h r o n g h t h e c r a . c k s i n t h e assembly un.der t o t a l a i r p r e s s u r e d i f f e r e n c e s . ( i ) Wc?l;er v a p o u r t r a n s m i s s i o n by d i f f u s i o l l The e q u a t i o n u s e d t o e x p r e s s w a t e r v a p o u r t r a . n s m i s s i o n t h r o u g h homogeneous m a t e r i a l s un.der p a r t i a l p r e s s u r e d i f - f e r e n c e s i s

u

-4 / = A p (1)

where

V/

= w e i g h t o f \.later vapour t r a n s f e r p e r u n i t t i m e A = area of c r o s s s e c t i o n o f f l o w p a t h 1 = l e n g t h p a t h A p = vapour p r e s s u r e d i f f e r e n c e a c r o s s f l o w p a t h u = c o e f f i c i e n t of p e r m e a b i l i t y . The c o e f f i c i e n t o f p e r m e a b i l . i t y i s n o t a c o n s t a n t f o r most m a t e r i a l s b u t v a r i e s w i t h t e m p e r a t u r e and h u m i d i t y c o n d i t i o n s . Most o f t h e m a t e r i a l s u s e d i n window c o n s t r u c t i o r l a r e r e l a - t i v e l y impelmeable, e x c e p t f o r wood. Assenlblies of wood, however, c a n be ma2e r e l a t i v e l y impermcable t h r o u g h p a i n t i n g .

Under t h e s e c i r c u m s t a n c e s t h e cl-aclcs a n d o p e n i n g s i n t h e assembly may p r o v i d e t h e m a j o r p a t h s Tor vapour f l o w by

d i f f u s i o n . The permcabili1;y c o e f f i c i e n t f o r a i r - w a t e r V ~ ~ P O U I ~

m i x t u r e s i s i n d e p e n d e n t o f r e l a t i v e h u m i d i t y a t c o n s t a n t

t e m p e r a t u r e but- d o e s v a r y some~vhat w i t h t e m p e r a t u l - e , becorniq; s m a l l e r a s t h e t e m p ~ r a t u r e d e c r e a s e s . I f , a s a f i r s t a p p r o x i - m a t i o n , t h e c o e f f i c i e n t of permenbilj.ty i s t a k e n a s a c o n s t a n t , t h e v a p o u r f l o w by d i f f u s i o n i n t o and o u t of t h e a i r s p a c e w i l l be d i r e c t l y p r o p o r t i o n a l t o t h e p r e s s u r e d i f f e r e n c e s a c r o s s i n n e r a n d o u t e r p:qnes. The v a p o u r p r e s s u r e d i f f e r e n c e s a c r o s s i n n e r and o u t e r . panes f o r d i f f e r e n t o u t s i d e t e n : p e r a t u r e s arc g i v e n i n Tablc?

I. These v a l u e s have been c s l c c l a t e d

as sum in^

t h a t i n s i d e room and a i r . s p a c e vapour p r c s s u r e s c o r r e s p o n d t o s a t u r a t i o n

a t t h e t e m p e r a t u r e s o f t h e i n n e r s u r f a c e s o f t h e i n n e r cine o u t e r panes r e s p e c t i v e l y . O u t s i d e vapour p r e s s u r e s

talcen a s t h o s e which corresponcled -to sai;r;ra.tio.n a t t h e o u t - s i d e a i r tc-niperalure. Surf;:tce 2;cmpcr.a-Lures were calculat;.cd f o r a n i n s i d e a i r temperatu.r.c o:T 70°P, n s s u r r ~ i n g a n o v e r - s l i

"U"

v a l u e f o r t h c window o f

0.53,

and. i r r s i d c a n d ou~i;sicle f i l m coc-f J i c i e n t s o J 1 . 5 a n d G . t3 :respet:t,ively. T h e s c c c u : f f i - c i e n t s a r e basecl on heat tranr;rnissi.op.! d.::!tri fo:r rvindo:~~s 1.0 -the 1957 ASI-TLL' G.l.litic:.

.

(8)

The vapour p r e s s u r e d i f f e r e n c e a c r o s s t h e i n n e r pane

i s s e v e r a l t i m e s g r e a t e r i n a l l - c a s e s t h a n t h e vapoul- p r e s s u r e d i f f e r e n c e a c r o s s o u t e r pane, t h e r a t i o of t h e s e pr-cssuce

d i f f e r e n c e s i n c r e a s i n g w i t h d e c r e a s i n g ou-tside t e m p e r a t u r e .

Thus, t-o m a i n t a i n outflovr e q u a l t o i n f l o w , t h e e f f e c t i v e r e s i s t a n c e t o vapour flow by d i f f u s i o n of t h e i n n e r g l a z i n g

m u s t

be many t i m e s t h a t of t h e o u t e r g l a z i n g .

( i i ) A i r p r e s s u r e d i f f e r e n c e s due t o wind

A number of f a c t o r s may c o n t r i b u t e t o t o t a l p r e s s u r e d i f f el-ences a c r o s s windows. One of t h e most commonly r e c o g n i z e d

i s wind. A i r movement around a s t r u c t u r e w i l l r e s u l t i n a

p a t t e r n of p r e s s u r e v a r i a t i o n s a t t h e s u r f a c e of t h e s t r u c t u r e . This p r e s s u r e pa-t%ern w i l l depend on t h e shape and s i z e of

t h e b u i l d i n g , t h e i n f l u e n c e of a d j a c e n t b u i l d i n g s o r t e r r a i n and t h e d i r e c t i o n and v e l o c i t y of t h e wind. I n t h e s i m p l e s t c a s e s i t can be assumed t h a t t h e p r e s s u r e s on leeward w a l l s a r e below b a r o m e t r i c w h i l e t h o s e on windward w a l l s a r e above

i t . P r e s s u r e s on t h e windward s i d e may exceed b a r o m e t r i c by a p p r o x i m a t e l y 0.7 t o

0.9

of t h e wind v e l o c i t y head w h i l e t h o s e on t h e leeward s i d e may be of t h e o r d e r of

0.5

v e l o c i t y heads l e s s t h a n b a r o m e t r i c . P r e s s u r e s i n s i d e t h e b u i l d i n g r e s u l t i n g from wind a c t i o n w i l l depend on t h e a i r l e a k a g e of elements of t h e e n c l o s u r e . I f t h e l e a k a g e c h a r a c t e r i s t i c s of a l l exposures a r e s i m i l a r t h e p r e s s u r e s i n s i d e may be of t h e o r d e r of 0.2 t o 0.3 v e l o c i t y h e a d s l e s s t h a n b a r o m e t r i c , I n s i d e p r e s s u r e s may be lower o r h i g h e r , depending on t h e a i r l e a k a g e of windward and leeward exposures.

Thus, t o t a l a i r p r e s s u r e d i f f e r e n c e s a c r o s s t h e windows on t h e windward s i d e c o r r e s p o n d i n g t o a p p r o x i m a t e l y one v e l o c i t y head can be e x p e c t e d , w h i l e p r e s s u r e d i f f e r e n c e s of 0 , 3

v e l o c i t y heads c a n o c c u r , on t h e leeward s i d e . These p r e s s u r e d i f f e r e n c e s w i l l be i n o p p o s i t e d i r e c t i o n s , t h a t on t h e wind- ward s i d e l e a d i n g t o i n f l o w and t h a t on t h e leeward s i d e l e a d i n g t o outflovr. With h e a t l o s s t h e most s i g n i f i c a n ' t flow r e s u l t s a t t h e h i g h e r p r e s s u r e d i f f e r e n c e

-

u s u a l l y on t h e windward s i d e . Wi-th c o n d e n s a t i o n however, it i s flow from i n s i d e t o o u t t h a t i s u n d e s i r a b l e s i n c e i t r e s u l t s i n a n e t g a i n i n w a t e r vupour t o t h e a i r s p a c e . Table I1 g i v e s t h e p o s s i b l e p r e s s u r e d i f f e r e n c e s a c r o s s a leeward window a s a r e s u l t of wind a c t i o n , based on 0.3 v e l o c i t y h e a d s and w i t h a n

a i r d e n s i t y of 0.075 lb/cu f t .

( i i i ) A i r p r e s s u r e d i f f e r e n c e s due t o chimney e f f e c t

A second major f a c t o r c o n t r i b u t i n g t o t h e t o t a l p r e s s u r e d i f f e r e n c e a c r o s s windows can be c a l l e d s t a c k o r chimney e f f e c t . P r e s s u r e d i f f e r e n c e s a r e c r e a t e d be-tween two i n t e r - c o n n e c t e d

(9)

i n d e n s i t y . F i g u r e l a r e p r e s e n t s

an

e n c l o s e d colurnn o f a i r w i t h a s i n ~ l e o p e n i n g , a t a h i e h e r t e m p e r a t u r e t h a n t h e sur.rounding air. U i ~ d e r t h i s c o n d i t i o n t h e p r e s s u r e s i n s i d e and o u t w i l l be t h e s a n e a t the l e v e l o f t h e o p e n i n g , b u t t h e r e v ~ - i l l be p r e s s u r e d i f f e r e n c e s a t o - t h e r l e v e l s . These w i l l depcad on t h e d i s t a n c e froin t h e l e v e l o f

no

p r e s s u r e d i f f e r e n c e ( o r n e u t r a l z o n e ) a n d t h e d i f I e r c n c e i n densit;? o f i n s i d e and o u t s i d e a i r . Thus, t h e p r e s s u r e i n s i d e w i l l be l e s s t h a n o u t s i d e below t h e o p e n i n g and g r e a t e r t h a n o u t s i d e above t h e opening. F i g u r e l b r e p r e s e n t s a n e n c l o s e d column o f ail- a t a h i g h e r telnpcra-Lure t h a n t h e s u r r o u n d i n g a i r a n d with o p e n i n g s a t ~ L * I O d i f f e r e n t l e v e l s . I n t n i s c a s e , t h e n e u t r a l zone w i l l be sornev~here b e b s ~ e e n th e o p e n i n g s , a n d c l o s e r t o t h e o p e n i n g h a v i n g t h e l e a s t r e s i s t a n c e t o f l o w . If t h e o p e n i n g s have s i m i l a r r e s i s t a n c e s t n e n e u t r a l zone w i l l be midway between them. Again, t h e p r e s s u r e i n s i d e w i l l be l e s s t h a n o u t s i d e below t h e n e u t r a l zone a n d g r e a t e r t h a n o u t s i d e above t h e n e u t r a l zone. Thus, t h e r e w i l l be i n f l o w

a t

t h e bottom and ou'tflow

a t t h e t o p .

T h i s s i t u a t i o n i s a n a l o g o u s t o t h a t which o c c u r s i n a h e a t e d b u i l d i n g . A i r w i l l come i n t h r o u g h o p e n i n g s below t h e n e u t r a l l e v e l and go o u t t h r o u g h o p e n i n g s above. The l o c a - t i o n o f t h e n e u t r a l zone w i l l depend on t h e v e r t i c a l d i s - t r i b u t i o n o f o p e n i n g s between i n s i d e a n d o u t s i d e and t h e i r r e l a t i v e r e s i s t a n c e s . T h i s s u g g e s t s , t h a t t h e n e u t r a l - z o n e l o c a - t i o n might be d e t e r m i n e d by t h e d i s t r i b u t i o n o f c r a c k s i n windows and doors. Any s u c h s i m p l e c a l c u l a t i o n w i l l u s u a l l y

l e a d t o t h e c o n c l u s i o n . t h a t t h e n e u t r a l zone i s below o r i n t h e v i c i n i t y o f t h e f i r s t f l o o r windows i n a s i n g l e s t o r y h o u s e with basement a n d , a 9 p r o x i m a t e l y a t t h e l e v e l o f t h e

s e c o n d f l o o r i n a 0:lo s t o r y house. Although t h e r e have b e e n few e x p e r i m e n t a l d e t e ~ n i n n t i o n s o f n e u t r a l z o n e s i n h o u s e s t h e d a t a a v a i l a b l e (1) s u g g e s t t h a t t h e a c t u a l l e v e l s a r e c o n s i d e r a b l y h i g h e r t h a n t h o s e p r e d i c t e d on t h e b a s i s o f window and door c r a c k s a l o n e . I n s i n g l e s t o r y h o u s e s t h e n e u t r a l zone may b e above f i r s t f l o o r vrindows, w h i l e i n t t r o

s t o r y h o u s e s

it may b e

a t

t h e l e v e l o f t h e second s t o r y windows. !This c a n be e x p l a i n e d , a t l e a s t p a r t l y , by t h e e f f e c t , o f chimney d r a f t on h o u s e p r e s s u r e s . Chimney d r a f t t e n d s g e n e r a l l y , t o l o w e r i n s i d e p r e s s u r e s a t a l l l e v e l s and t h e r e - f o r e h a s t h e e f f e c t o f r a i s i n g t h e l o c a t i o n o f t h e n e u t r a l zone. The p r e s s u r e d i f f e r e n c e between t h e b a s e o f t h e chimney and o u t s i d e norrnally i n c r e a s e s v r i t h i n s i d e - o u t s i d e t e m p e r a t u r e d i f f e r e n c e a t a g r e a t e r r a t e t h a n d o c s t h e p r e s s u r e d i f f e r e n c e be-t-wen a n y p o i n t i n -the house an.d o u t s i d e , s i n c e a v e r a g e

(10)

Thus t h e e f f e c t o f t h e cliimney on tlie n e u t r a l zone lucatioln w i l l v a r y , b e i n g l e a s t e f f e c t i v e a t s m a l l indoor-outdoor ternpcrature d i f f e r e n c e s

.

K i t c h e n e x h a u s t f a n s , when o p e r a t i n g , w i l l cause a

l o w e r i n g of i n s i d e p r e s s u r e s and w i l l have t h e e f f e c t of i n c r e a s i n g t h e h e i g h t of t h e n e u t r a l zone. Ayy tendency t o p r e s s u r i z e t h e house, such

a s

would o c c u r i f a n o u t s i d e a i r

supply d u c t were connected t o t h e r e t u r n s i d e of a f o r c e d warm a i r f u r n a c e , v ~ i l l have t h e o p p o s i t e e f f e c t . A f i r e p l a c e w i t h open damper o r any s i m i l a r s t a c k t e r m i n a t i n g above house l e v e l , w i l l r e s u l t i n a n i n c r e a s e i n t h e h e i g h t of t h e n e u t r a l zone.

The l o c a t i o n of t h e n e u t r a l zone i n c o m e r c i a l b u i l d i n g s depends on t h e s e same f a c t o r s . Again, few measurements have been r e p o r t e d . Unpublished work by t h e ASHAE l a b o r a t o r y on p r e s s u r e d i f f e r e n c e s a c r o s s e n t r a n c e s of t a l l b u i l d i n g s ,

hwaever, s u g g e s t s t h a t t h e n e u t r a l zone l o c a t i o n i n such s t r u c - t u r e s i s g e n e r a l l y w e l l above mid h e i g h t .

The i n s i d e and o u t s i d e pl-essure d i f f e r e n c e s r e s u l t i n g from i n s i d e - o u t s i d e t e m p e r a t u r e d i f f e r e n c e s can be s e e n

i n

Table I11 which g i v e s p r e s s u r e d i f f e r e n c e s p e r f o o t a t d i f f e r e n t o u t s i d e t e m p e r a t u r e s . The v a l u e s a r e based on

an

i n s i d e tempera- t u r e of 70°P and a d e n s i t y of 0.075 lb/cu f t . To d e t e - m i n e

t h e a c - t u a l p r e s s u r e d i f f e r e n c e and i t s d i r e c t i o n a t any l e v e l t h e l o c a t i o l l of t n e n e u t r a l zone

m u s t

be known.

( i v ) Air flow c h a r a c t e r i s t i c s of windows

The e q u a t i o ~ i u s u a l l y used t o e x p r e s s a i r flow through windows under t o t a l p r e s s u r e d i f f e r e n c e s i s :

Q = ~ (pIn b where Q = volume r a t e of flow

a p = p r e s s u r e d i f f e r e n c e a c r o s s window

C = a i r l e a k a g e c o z f f i c i e n t

n

= exponent of a i r flow

The p a s s a g e s t h r o u g h which a i r f l o ~ v s i n windov~s a r e u s u a l l y cornplex

i n

form, o f t e n c o l l s i s t i n g of a v a r i e t y of o r i f i c e s , enlargements, c o n t r a c t i o n s , bends, e t c . Plovi i n t h e s e p a s s a g e s may be l a m i n a r o r turlu.ulent, depending on a i r flow r a t e s . Tile exponent o f a i r f l o 7 ~

"nn"

therefore v a r i e s w i t h

I

window t y p e and flow r a t e , h a v i n g v a l u e s between 3 and 1, and

must be determined by t e s - t . Over a c o n s i d e r a b l e range i n flow r a t e s , however, 'In" may be assumed constal-lt fo:r p r a c t i c a l

purpcrses.

In

double wiriilows t h e r c s i s t : 2 n c c 'to air florv of t h e

p,5sc;ages l e a d i n g froin i n s i d e t h e buj-liiing -Lo tl~i: a i r s p a c e

rnay i.lr: d i f f e r e n t from thn-t of :.pa:-;szz:.cs 1 e n d i . n ~ i's.om t h e

(11)

a i r l e a k a ~ e clza.-acteristics o f windo:vs v ~ i t i - 1 r e s p e c t t o h e a t l o s s , whcre o v e r - a l l leakazr? v a l u e s a r e impor-Lalit. The r e l a t i v e a i r l e a k a g e c h a r a c t e r i s t i c s o f p a s s a g e s i n t o and

o u t of t h e a i r s p a c e , however, may be h i g h l y s i g n i f i c a n t f o r condensa-l;ion between panes. This i s app:imn% when -the

d i s t r i b u t i o n of t o t e 1 p r e s s u r e s a n d r e s u l t i n g a i r f l o w s a c r o s s double tvindor~s a r e c o n s i d e r e d .

Figdu r e 2 i l l u s t i . a t e s t h e v a r i a t i o n s i n p r c s s u r e w i t h h e i g h t a c r o s s a double window s u b j e c t e d t o a t e m p e r a t u r e g r a d i e n t vvhere t h e n e u t r a l zonc o c c u r s a t mid-height. I n r e p r e s e n t i n g t h e r e l a t i v e s l o p e s of t h e p r e s s u r e d i s t r i b u t i o n c u r v e s i t w a s assumed t h a t t h e t e m p e r a t u r e of t h e a i r space

w a s c l o s e r t o o u t s i t i e ternpcrature t h a n t o i n s i 6 . e . The p r e s s u r e d i s t r i b u t i o n s ( F i g . 2 a ) w i l l r e s u l t vihenever t h e r e s i s t a n c e t o flow above and below t h e n e u t r a l zone around e i t h e r o r b o t h panes, i s e q u a l . For example, t h i s w i l l o c c u r w i t h t h e passages uniformly d i s t r i b u t e d around t h e periphery of one o r b o t h panes.

Uncler t h e s e circv.mstances t h e a i r space p r e s s u r e i s

between i n s i d e and o u t s i d e p r e s s u r e s a t a l l l e v e l s . Thus i n s i d e p r e s s u r e i s h i g h e r t h a n t h e a i r s p a c e p r c s s u r e above t h e n e u t r a l zonc and l o w e r belotv t h e n e u t r a l zone. S i m i l a r l y , t h e a i r s p a c e p r e s s u r e i s h i g h e r t h a n t h e o u t s i d e p r e s s u r e above t h e n e u t r a l zone and l o w e r below t h e n e u t r a l zone.

The a i r flotvs r e s u l t i n g from t h e s e p r e s s u r e d i s t r i - b u t i o n s w i l l depend on t h e l o c a t i o ~ i s and r e s i s t a n c e s o f t h e p a s s a g e s . Flew w i l l v a r y from z e r o t h r o u g h p a s s a g e s l o c a t e d

a t t h e n e u t r a l zone t o a maxirnun~ t h r o u g h p a s s a g e s a t t h e t o p and b o t t o n of t h e windon. The a i r s p a c e can i n t e r c h a n g e a i r b o t h w i t h t h e i l ~ s i b e and o u t s i d e ; t h e r e l a t i v e amounts

depend on t h e r e l z t i v e r e s i s t a n c e t o flow of t h e passnt:es. I f t h e i n s i d e of t h e wi~dov; were comple-bely s e a l e d t h e a i r space would. in-burchange a i r w i t h t h e ou-tside o n l y .

F i g u r e 2b i l l u s t r a t e s p r e s s u r e d i s t r i b u t i o n s when p a s s a g e s of t h e o u t s i d e pane a t t h e bottom have much lovrer r e s i s t a n c e t o flow t h a n o t h e r p a s s a g e s .

S i m i l a r l y , F i g u r e 2c shovrs p r e s s u r e d i s t r i b u t i o n s w i t h t h e low r e s i s t z l i c e p a s s a g e s a t t h e t o p of t h e o u t s i d e

pane. For t h e s i t u a t i o n s ill-us1;rated

i n

Figs. 2b and 2c a p p r e c i a b l e a i r flow w i l l occur. when t h e r e a r e openings p a s t b o t h i n n e r and outel- panes, -the flow b e i n g from i r l s i d e t o o u t i n t h e f o r m e r and from out-side t o i n i n t h e 1-atter..

F i g u r e

3

i l l v . s t r a t e s t h e v a r i a t i o n s i n prcssure with h e i g h t a c r o s s a double t'indov~ s u b j e c t e d t o a ternperaJ~ure g r a d i e n t vihere t h e n e u t r a l zone i s below t h e winclov~, i. e.

,

where t h e t o t a l . p r c s s u r e i n s i d e i s g r e a t e r t h a n t h e t o t a l

(12)

F i g u r e 3a r e p r e s e n t s t h e p r e s s u r e c o n d i t i o n s when t h e r e s i s t a ~ i c e s t o f l o w around both panes a r e e q u a l . The a i r s p a c e p r e s s u r e i s a p p r o x i m a t e l y mid-way between i n s i d e and o u t s i d e p r e s s u r e s and f l o w i s from i n s i d e t o o u t through a l l

openings. The a i r space does n o t i n t e r c h a n g e a i r w i t h t h e i n s i d e o r o u t s i d e , F i g u r e

3

b r e p r e s e n t s t h e p r e s s u r e d i s t r i - b u t i o n tvhen t h e r e s i s t a n c e t o flow t h r o u g h p a s s a g e s o f t h e i n n e r pane i s much g r e a t e r t h a n t h a t f o r f l o w t h r o u g h p a s s a g e s o f t h e o u t e r pane t h e s e b e i n g e v e n l y d i s t r i b u t e d above and below t h e mid-height o f t h e window, i. e . , w i t h equal openings t o p and bottom, Under t h e s e c o n d i t i o n s t h e p r e s s u r e a t t h e t o p of t h e a i r s p a c e i s g r e a t e r t h a n o u t s i d e and t h e p r e s s u r e

a t t h e bottom i s l e s s , The a i r s p a c e can i n t e r c h a n g e a i r w i t h t h e o u t s i d e , a l l o u t f l o w p a s s i n g t h r o u g h t h e upper p a s s a g e s o f t h e o u t e r pane. This i n c l u d e s b o t h t h e i n f l o w t h r o u g h t h e l o w e r openings o f t h e o u t e r pane and t h e flow from i n s i d e t o t h e ail- space t h r o u g h p a s s a g e s o f t h e i n n e r pane.

These c o n d i t i o n s can o n l y be approached i f t h e p r e s s u r e d i f f e r e n c e r e q u i r e d t o move a l l t h e

a i r

t h r o u g h t h e upper

openings

i n

t h e o u t e r pane i s l e s s t h a n t h a t c r e a t e d by t h e d i f f e r e n c e

i n

weight between t h e columns o f a i r i n t h e space between t h e panes and t h e o u t s i d e , A more d e t a i l e d d i s c u s s i o n . of a i r f l o w c h a r a c t e r i s t i c s of t h e window i s g i v e n i n Appendix A.

F i g u r e 3c r e p r e s e n t s t h e p r e s s u r e d i s t r i b u t i o n when t h e r e s i s t a n c e t o flow t h r o u g h t h e p a s s a g e s o f t h e o u t e r pane

i s much g r e a t e r t h a n t h r o u g h t h o s e o f t h e i n n e r pane, t h e p a s s a g e s o f b o t h panes being e q u a l l y d i s t r i b u t e d above and below t h e mid-height o f t h e window, Under t h i s c o n d i t i o n t h e

a i r space w i l l i n t e r c h a n g e

a i r

w i t h t h e i n s i d e , t h e amount o f a i r f l o w t h r o u g h t h e o u t e r pane b e i n g e q u a l t o t h e d i f f e r e n c e i n i n f l o w and o u t f l o w p a s t t h e i n n e r g l a z i n g .

(v) \Taker vapour t r a n s m i s s i o n by a i r flow

The f o r e g o i n g d i s c u s s i o n of p r e s s u r e d i s t r i b u t i o n s a c r o s s double windows h a s shown t h a t , w i t h t h e a i r - f l o w r e s i s t a n c e o f t h e i n s i d e pane s u f f i c i e n t l y h i g h e r t h a n t h e

o u t s i d e pane, and w i t h t h e openings

i n

t h e o u t s i d e pane l o c a t e d

a t t h e t o p and bottom of t h e window, t h e a i r s p a c e c a n i n t e r - change a i r w i t h t h e o u t s i d e even when a n o v e r - a l l flow from i n s i d e t o o u t s i d e o c c u r s , The r e l a t i o n s h i p between t h e s e a i r f l o w s and c o n d e n s a t i o n can be shown by a simple mass b a l a n c e ,

If vapour f l o w by d i f f u s i o n i s n e g l e c t e d t h e n e t g a i n of w a t e r vapour by t h e a i r space a s a r e s u l t o f a i r f l o w f r o m

(13)

w l ~ o r e

Qi i s volume r a t e o f flovi i n t o t h e a i r s p a c e from t h e i n s i d e di i s t h e d e n s i t y o f t h e i n s i d e a i r

$

i s t h e s p e c i f i c h u m i d i t y o f t h e i n s i d e a i r i s t h e s p e c i f i c h u m i d i t y o f t h e a i r i n t h e s p a c e between t h e p a n e s , The n e t l o s s o f w a t e r v a p o u r by t h e a i r s p a c e as a r e s u l t o f a i r f l o w from t h e o u t s i d e i s g i v e n by t h e e q u a t i o n where Qo i s t h e volume r a t e o f f l o w i n t o t h e a i r s p a c e from t h e o u t s i d e do i s t h e d e n s i t y o f t h e o u t s i d e a i r $s between t h e panes i s t h e s p e c i f i c h u m i d i t y o f t h e a i r i n t h e s p a c e

$

i s t h e s p e c i f i c h u m i d i t y o f t h e o u t s i d e a i r . To p r e v e n t c o n d e n s a t i o n t h e n e t g a i n i n w a t e r v a p o u r by t h e a i r s p a c e must e q u a l t h e n e t l o s s o f w a t e r v a p o u r by t h e a i r s p a c e . E q u a t i n g e q u a t i o n ( 2 ) t o

( 3 ) it

c a n be shown t h a t The minimum r a t i o s o f o u t s i d e t o i n s i d e a i r t o p r e v e n t c o n d e n s a t i o n a t d i f f e r e n t o u t s i d e t e m p e r a t u r e s a r e g i v e n i n T a b l e I V , These v a l u e s have been c a l c u l a t e d assuming s p e c i f i c h u m i d i t i e s f o r i n s i d e room and a i r s p a c e c o r r e s p o n d i n g t o s a t u r a t i o n a t t h e t e m p e r a t u r e s o f t h e i n n e r and o u t e r p a n e s , r e s p e c t i v e l y . O u t s i d e s p e c i f i c h u m i d i t i e s were t a k e n a s t h o s e c o r r e s p o n d i n g t o s a t u r a t i o n a t t h e o u t s i d e a i r t e m p e r a t u r e . S u r f a c e t e m p e r a t u r e s u s e d were t h o s e g i v e n i n T a b l e I. The v a l u e o f t h e minimum r a t i o i n c r e a s e s w i t h d e c r e a s i n g o u t s i d e t e m p e r a t u r e , Another f a c t o r which p r o d u c e s t o t a l p r e s s u r e d i f f e r c n c c s between t h e air' s p a c e and o u t s i d e i s a change i n i t s tempera- t u r e . If t h e window i s riot s e a l e d t h i s p r e s s u r e d i f f e r e n c e w i l l c a u s e a i r f l o w t o o r from t h e a i r s p a c e and t h e window

i s s a i d t o "brcat,hcfl. The t o t a l amount o f a i r i n t e r c h a n g e c a n be c a l c u l a t e d from t h e s i m p l e G a s Laws and w i l l depend or1 t h e mcignitude o f t h e tcmperatul.e change artd t h e volume of

(14)

t h e a i r e n c l o s e d i n t h e space between t h e panes. Whether t h e a i r space w i l l l o s e o r g a i n w a t e r vapour a s a r e s u l t of t h i s mechanism w i l l depend on whether t h e major openings a r e around t h e o u t e r o r i n n e r panes.

11. DESCRIPTION O F WINDOWS AND TEST INSTALLATIOIf

A l l t e s t s d e s c r i b e d i n t h i s r e p o r t were c a r r i e d . o u t on t h r e e specimens of a window h a v i n g i n n e r and o u t e r g l a z i n g s i n t h e same s a s h , d e t a i l s of which a r e shown i n Fig.

4.

The o u t e r g l a z i n g was f i x e d and s e a l e d t o t h e s a s h w i t h puat;ty. The i n n . e r g l a z i n g w a s normally f i x e d b u t h e l d i n p l a c e on t h e wood s a s h w i t h aluminum c l i p s s o t h a t it could be removed f o r

c l e a n i n g .

During t h e c o n d e n s a t i o n t e s t s v a r i a t i o n s were made in

t h e i n n e r g l a z i n g t o a l t e r t h e r e s i s t a n c e t o a i r . and w a t e r vapour flow from t h e i n s i d e t o t h e a i r space ( P i g .

5 ) .

P i g u r e

5a shows t h e i m c x g l a z i n g i n a l i g h t s t a i n l e s s s t e e l frame i n d i r e c t c o n t a c t w i t h t h e wood s a s h . P i g u r e 5b shovrs t h e i n n e r g l a z i n g i n a n alurninu~n frarne w i t h a r u b b e r g a s k e t . P i g u r e 5c shows t h e i n n e r g l a z i n g i n a s t a i n l e s s s t e e l frame t h e p e r i m e t e r of which i s caulked. The r e s i s t a n c e t o l e a k a g e around t h e o u t e r pane w a s a l t e r e d by p r o v i d i n g d i f f e r e n t

I

numbers oP z - i n c h v e n t h o l e s i n t h e t o p and bottom members of t h e s a s h a s shovvn

i n

P i g .

4 .

During t n e i n v e s t i g a t i o n t h e windows were i n s t a l l e d i n a

4-

by 8 - f t i n s u l a t e d wood frame w a l l panel ( P i g . 6 ) .

Ble s p a c e s between t h e s a s h e s of t h e windows and t h e frames of t n e openi:lgs were s e a l e d w i t h c a u l k i n g conipound a s shown i n

Pig.

5.

P i g u r e

7

shows t h e p l a n of t h e c o l d room. The w a l l

parlel fo-med p a r t of a p a r t i t i o n v?hich d i v i d e d t h e c o l d roo1n i n t o a l a r g e and s m a l l co:npartment. I n t h i s r e p o r t t h e l a r g e and s m a l l compartments a r e termed c o l d room and w a r x i room

r e s p e c - t f v e l y . During t h e c o n d e n s a t i o n and t e m p e r a t u r e measure-

ment t e s t s t h e c o l d room provided outdoor c o n d i t i o n s vihile t h e

warm room provided c o n d i t i o n s i n s i d e b u i l d i n g s .

The main d i f f u s e r provided t h e cool in,^ i n t h e c o l d room f o r m o s t of t h e tssts. The d i f f u s e r c o n t a i n e d t h e r e f r i g e r a - t i o n e v a ~ o ~ - a t o r c o i l s and t h e e l c c - t r i c r e h e a t elements. A

f a n c i r c u l a t e d a i r o v e r t h e c o i l s and r e h e a t e r s . Ilie air t e m p e r a t u r e v a r i a t i o n a t any p o i n t i n t h e c o l d room d i d no-t

exceed f 0.35OF. !The f l o o r - t o - c e i l i n g a i r temperature

g r a d i e n t d i d no-t exceed 1°P. T h i s was a c h i e v e d by t h e u s e o f

a modulatin[; t e m p e r a t u r e cont-v-oller which r e g u l a t e d t h e e l e c - t r i x l i n p u t t o the h e a t e r s , w i t h t h e r e f r i s e r a t i o n s y s t e m

(15)

The a i r rnovsd i n a do~vnward d i r e c t i o n o v e r t h e o u t e r s u r f a c e of t h e windows. a i r v e l o c i t y was n o t uniform b e i n g

7

rnph f o r tlie t o p wirldow, 6 mph f o r t h e c e n t r e window and 5 mph f o r t h e bo-ttorn window a s measured by a velorneter.

l'he warin room was h e a t e d by g r a v i t y baseboard con- v e c t o r s l o c a t e d appl-oxima-tely 9 i n . froni t h e f l o o r on. t h e w a l l o p p o s i t e t h e p a r t i t i o n . The e l e c t r i c a l i n p u t t o t h e c o n v e c t o r s was r e g u l a t e d by a t e m p e r a t u r e c o n t r o l l e r . During some t e s t s t h e a i r t e m p e r a t u r e a t t h e c e n t r e o f t h e room

a t a p o i n t

4$ f e e t from t h e f l o o r w a s maintained a t 70°J? w i t h i n

f

l o , w h i l e i n o t h e r t e s t s

it was maintained a t

approximately 73 OF.

A humidifying system and a dehumidifying system operated bjr a c o n t a c t meter-type of e l e c t r i c hygrometer m a i n t a i n e d t h e d e s i r e d r e l a t i v e h u m i d i t i e s i n t h e room. Wet- and dry-bulb t e m p e r a t u r e s were observed w i t h a n

a s p i r a t i n g psychrometer a t a p o i n t n e a r t h e t h e r m o s t a t l o c a - t i o n . The h u m i d i t i e s determined from t h e o b s e r v a t i o n s of wet- and dry-bulb t e m p e r a t u r e s were maintained w i t h i n

f

1 p e r c e n t d u r i n g t h e t e s t s .

DESCRIPTION OF TESTS AND RESULTS ( a ) A i r I n f i l t r a t i o n T e s t s

A i r i n f i l t r a t i o n t e s t s were c a r r i e d o u t on t h e double window shown i n Fig. 5b t o determine s e p a r a t e l y t h e charac-

t e r i s t i c s o f a i r flow around t h e i n n e r and o u t e r panes. Tbe method of c a r r y i n g o u t t h e t e s t s was one commonly employed by o t h e r i n v e s t i g a t o r s . It c o n s i s t e d o f s e a l i n g one s i d e of t h e window i n t o a n a i r t i g h t compartment and i n t r o d u c i n g 01- withdrawing a i r a t such a r a t e as t o m a i n t a i n a given p r e s s u r e d i f f e r e n c e a c r o s s t h e window.

A l a r g e v a r i a b l e a r e a flovnneter h a v i n g a range of 0 t o 33 cfm was used t o measure a i r flow i n one o f t h e t e s t s ,

It was c a l i b r a t e d a g a i n s t a l a b o r a t o r y o r i f i c e m e t e r which was t h o u g h t t o have a p o s s i b l e e r r o r of -1 p e r c e n t . m e

a i r flow i n a l l o t h e r t e s t s w a s measured w i t h a s m a l l e r flowmeter h a v i n g a range of 0 t o 2.1 cfm. The c a l i b r a t i o n s u p p l i e d by t h e manufac-turer sf t h e s m a l l flotvmeter was a c c e p t e d . I t was p o s s i b l e t o r e a d t h e l a r g e and small flow- m e t e r s t o w i t h i n

?

0.13 and 0.01 cfm r e s p e c t i v e l y .

A displacement-type micromanometer i n c o n j u n c t i o n w i t h a s e n s i t i v e s i n g l e - p a n b a l a n c e was used t o measure p r e s s u r e d i f f e r e n c e s between 0 and 0.01 i n . o f w a t e r . A

Betz micromanometer was used t o measure p r e s s u r e d i f f e r e n c e s vihen t h e y exceeded 0.01 i n . of w a t e r . The displacement-type

and Betz micrornanometers were s e n s i t i v e t o p r e s s u r e changes of approximately 0.0001 and 0,001 i n . of w a t e r , r e s p e c t i v e l y .

(16)

All

t h e t e s t s were c a r r i e d ou t w h i l e t h e window x a s i n s t a l l - e d i n t h e c e n t r e opening 05 t h e w a l l p a n e l i n t h e

c o l d room, The a i r c o n d i t i o n s i n t h e c o l d and warm rooms were measured and c o n t r o l l e d a t app-~.o;:irnately 7Z0P and 50 p e r c e n t R.II, Tl?e measured a i r flow vTas g r e a t e r t h a n t h e a c t u a l viindow l e a k a e e by t h e arnoul~t of l e a k a g e through t n e c o n s t r u c t i o n of t h e compartment. A l l a i r l e a k a g e f i g u r e s have been c o r r e c t e d f o r t h e compartment l e a k a g e e x c e p t t h o s e o b t a i n e d i n two

t e s t s where t h e measured p r e s s u r e d i f f e r e n c e s were l e s s t h a n 0.01 i n , o f w a t e r . In a d d i t i o n , a i r f l o w s o b t a i n e d u n d e r

a c t u a l t e s t c o n d i t i o n s have been c o n v e r t e d t o f l o w s which would o c c u r m i t h a i r a t a s t a n d a r d d s n s i t y of 0.075 lb/cu f t , based on t h e f l o w equatiorl f o r t h e windovi o b t a i n e d by t e s t .

F i g u r e 8 g i v e s t h e a i r - f l o w c h a r a c t e r i s t i c s f o r t h e f i x e d o u t e r g l a z i n g w i t h 23 and 46 v e n t h o l e s i n t h e wood s a s h f o r t h e range o f p r e s s u r e d i f f e r e n c e s between 0 and 0.01 i n . of wa-Lcr. Pie p r e s s u r e d i f f e r e n c e s i n t h e lower p a r t o f t h i s r a n g e correspond t o d i f f e r e n c e s a v a i l a b l e t o cause i n t e r c h a n g e

Of a i r by chimney a c t i o n between t h e a i r s p a c e and o u t s i d e . There

a r e s e v e r a l r e a s o n s vrhy t h e

air

flow t h r o u g h 23 v e n t h o l e s i s n o t e x a c t l y one-half t h e a i r f l o w t h r o u g h 46 v e n t h o l e s a t a l l c o r r e s p o n d i n g p r e s s u r e d i f f e r c n c e s , Probably t h e r e

were v a r i a - t i o n s i n t h e r e s i s t a n c e s t o a i r f l o w of t h e v e n t h o l e s s i n c e t h e y were d r i l l e d by hand i n t o t h e wood s a s h , The flow- m e t e r c a l i b r a t i o n curve s u p p l i e d by the m a n u f a c t u r e r was t h o u g h t t o have a g r e a t e r p e r c e n t a g e e r r o r a t t h e lower f l o v ~ s . Also, t h e p e r c e n t a g e e r r o r i n r e a d i n g t h e f l o l m e t e r i n c r e a s e s as t h e s c a l e r e a d i n g d e c r e a s e s , I n a d d i t i o n t o t h e s e s o u r c e s o f e r r o r t h e l e a k a g e through t h e c o n s t r u c t i o n of t h e compartment w a s n e g l e c t e d i n t h e s e t e s t s . T h i s v ~ o u l d r e s u l t i n a g r e a t e r p e r - c e n t a g e of e r r o r

i n

measured a i r f l o w t h r o u g h 23 h o l e s t h a n through 46 h o l e s . F i g u r e s 9 and 1 0 g i v e t h e c h a r a c t e r i s t i c s of a i r flow f o r t h e o u t e r pane w i t h one and

46

v e n t h o l e s r e s p e c t i v e l y i n t h e wood s a s h f o r t h e range o f p r e s s u r e d i f f e r e n c e s bettveen 0 and 0.5 i n . of w a t e r . The observed flow through one h o l e

i s n o t 1/46 o f t h e f l o w through 46 h o l e s because o f t h e

r e a s o n s just mentioned, The c h a r a c t e r i s t i c s 02 a i r f l o w f o r t h e ou-tes pane w i t h one o r more h o l e s can be c a l c u l a t e d w i t h t h e l e a s t e r r o r from t h e c h a r a c t e r i s t i c c u r v e s f o r a i r flow around t h e o u t e r pane w i t h 46 v e n t h o l e s i n t h e wood s a s h ,

A p r e l i m i n a r y s e r i e s o f t e s t s were c a r r i e d o u t a t a v a r i e t y o f p r e s s u r e d i f f e r e n c e s i n t h e r a n g e betrrecn 0,315 and 0.788 i n . of w a t e r t o determine t h e c h a r a c t e r i s t i c s o f a i r f l o n f o r t h e e n t i r e window w i t h from one t o 4 5 v e n t h o l e s i n t h e wood s a s h . F i g u r e 11 g i v e s t h e r e s u l t s f o r t h e t e s t s where t h e p r e s s u r e on t h e i n s i d o W E S {:.reat-er t h a n t h a t on t h e

o u t s i d e , A t t h e maximum p r e s s u r e d i f f e r c n c e u s e d i n t h e t e s t ,

Fig. 11- i n d i c a t e s t h a t t h e a i r flow d i d n o t i n c r e a s e a f t e r t h e number o r v e n t h o l e s exceeded 18, The r e s u l t s ob-t-ained

(17)

t h e a i r flow d i d n o t i n c r e a s e a f t e r t h e number o f v e n t h o l e s i n t h e wood s a s h exceeded

30

a t t h e same p r e s s u r e d i f f e r e n c e . A t t h i s p o i n t t h e p r e s s u r e between t h e panes i s t h e same a s t h e o u t s i d e p r e s s u r e and t h e a i r flow i s u n a f f e c t e d by t h e presence o f t h e ou-ter pane.

The a i r f l o w s t h r o u g h t h e window w i t h 46 v e n t h o l e s o b t a i n e d duxi= t h e p r e l i m i n a r y t e s t s a r e g i v e n i n Fig. 1 2 , Curve A r e p r e s e n t s t h e a i r l e a k a g e c h a r a c t e r i s t i c of t h e i n s i d e g l a z i n g when flow o c c u r s from t h e a i r s p a c e t o t h e i n s i d e w h i l e c u r v e B r e p r e s e n t s t h e c h a r a c t e r i s t i c of t h e i n s i d e g l a z i n g when f l o w o c c u r s from t h e i n s i d e t o t h e a i r space.

A second s e r i e s of t e s t s were c a r r i e d o u t t o determine t h e a i r l e a k a g e c h a r a c t e r i s t i c s f o r t h e i n n e r pane. I n t h e i n t e r i m , however, t h e i n s i d e g l a z i n g tvas removed and t h e n r e f a s t e n e d t o t h e wood s a s h by t h e 6 aluminum c l i p s , The a i r l e a k a g e c h a r a c t e r i s t i c s o f t h e i n s i d e g l a z i n g o b t a i n e d i n t h e s e t e s t s a r e a l s o g i v e n i n P i g . 1 2 . Curve C r e p r e s e n t s a i r flow from t h e a i r s p a c e t o t h e i n s i d e w h i l e curve

D

i n d i c a t e s a i r f l o w from t h e i n s i d e t o t h e a i r space. The d i f f e r e n c e between c u r v e s A and C , and c u r v e s B and D i s

a t t r i b u t a b l e t o t h e change of r e s i s t a n c e o f t h e i n s i d e g l a z i n g a f t e r b e i n g r e f a s t e n e d t o t h e wood s a s h . The c u r v e s a l s o

i n d i c a t e t h a t t h e r e s i s t a n c e t o a i r flow i s g r e a t e s t when

it

o c c u r s from t h e i n s i d e t o t h e a i r space.

(b ) Temperature Measurements

Temperature m e a s u r e ~ e n t s were made a t a v a r i e t y o f

i n s i d e - o u t s i d e a i r t e m p e r a t u r e d i f f e r e n c e s on windoivs i n s t a l l e d i n each of t h e t h r e e openings of t h e w a l l p a n e l as shown i n Fig.

6.

A l l t e m p e r a t u r e s were measured w i t h No. 30

B.S.

c o p p e r - c o n s t a n t a n thel-mocouples i n con j u n c t i o n w i t h a n e l e c - t r o n i c temperature i n d i c a t o r . The t o p window was t h e most f u l l y i n s t r u m e n t e d and thermocouple l o c a t i o n s a r e shovm i n Fig. 1 3 . I n t h e c e n t r e and bottom w i ~ d o w s thermocouples viere l o c a t e d a t mid-height,

a t

10 i n c h e s above and below mid-height i n t h e a i r s p a c e and on t h e i n n e r and o u t e r

s u r -

f a c e s of t h e i n n e r and o u t e r panes.

It

was

d i f f i c u l t t o o b t e i n

an

a c c u r a t e measurement of

s u r f a c e t e m p e r a t u r e . !!hvo d i f f e r e n t methods of f a s t e n i n g t h e thermocouples were used w i t h o u t complete s u c c e s s . !be s u r f a c e t e m p e r a t u r e s r e p o r t e d i n t h i s s e c t i o n a r e t h e a r i t h m e t i c mean of t h e measured t e m p e r a t u r e s a t i n n e r and o u t e r s u r f a c e s

o b t a i n e d w i t h thermocouples i n s t a l l e d as shown i n Fig. 131

method 2. Appendix B d i s c u s s e s t h e accuracy of t h i s procedur(>, The thermocouples used i n t h e measurement o f a i r t e m p e r a t u r e were u n s h i e l d e d . The p o s s i b l e d i f f e r e n c e s between measured and a c t u a l a i r tempcra-lures a r e d i s c u s s e d i n Appendix C.

(18)

All. window t e m p e r a t u r e s r e p o r t e d i n t h i s s e c t i o n were o b t a i n e d mith t h e w a r n room b e i n g o p e r a t e d a t low h u m i d i t i e s t o minimize s u r f a c e condensation. A t no time was t h e r e con- d e n s a t i o n on t h e i n s i d . e s u r f a c e o f t h e i n s i d e pane; c o n d e n s a t i o n on t h e i n s i d e s u r f a c e of t h e o u t e r pane f i r s t o c c u r r e d a t a

c o l d room t e m p e r a t u r e of OOP. S u r f a c e t e m p e r a t u r e measurements t a k e n d u r i n g c o n d e n s a t i o n t e s t s a r e d i s c u s s e d i n Appendix D.

A v e r t i c a l s t r i n g o f thermocouples w a s i n s t a l l e d a t t h e c e n t r e o f t h e mazm room and t e m p e r a t u r e g r a d i e n t s were ob- t a i n e d f o r each t e s t , T y p i c a l g r a d i e n t s o b t a i n e d a t d i f f e r e n t c o l d room t e m p e r a t u r e s a r e g i v e n i n P i g ,

14..

Some measurements were made o f v e r t i c a l a i r t e m p e r a t u r e g r a d i e n t s i n t h e c o l d

room, b u t t h e s e d i d n o t exceed one degree.

F i g u r e l 5 g i v e s a t y p i c a l s e t o f v e r t i c a l t e m p e r a t u r e g r a d i e n t s o b t a i n e d f o r t h e t o p window a t a n i n s i d e

-

o u t s i d e a i r t e m p e r a t u r e d i f f e r e n c e o f 70°F. A l a r g e g r a d i e n t i n t h e a i r s p a c e i s e v i d e n t , i n d i c a t i n g t h a t c o n v e c t i o n

i s a n impor-

t a n t mechanism o f h e a t t r a n s f e r a c r o s s t h e s p a c e .

!&is a i r

t e m p e r a t u r e g r a d i e n t i s r e f l e c t e d i n t h e i n s i d e s u r f a c e t e m p e r a t u r e o f t h e i n n e r pane, t h e s u r f a c e t e m p e r a t u r e b e i n g a p p r o x i m a t e l y 34OF a t t h e bottom and 44OF a t t h e t o p . There i s o n l y a 3-degree v a r i a t i o n i n t h e i n s i d e s u r f a c e t e m p e r a t u r e of t h e o u t e r pane from t o p t o bottom. This g r a d i e n t i s l e s s t h a n t h a t on t h e i n n e r pane s i n c e t h e o u t s i d e f i l m c o e f f i c i e n t i s h i g h e r t h a n t h e i n s i d e one.

A l l t h e s e g r a d i e n t s a r e dependent on t h e i n s i d e

-

o u t s i d e

a i r t e m p e r a t u r e d i f f e r e n c e s . F i w r e s 1 6 , 1 7 and 18 g i v e t h e v e r t i c a l t e m p e r a t u r e g r a d i e n t s f o r t h e i n n e r pane, a i r s p a c e and t h e o u t e r pane o f t h e t o p window a t a number o f c o l d room t e m p e r a t u r e s w i t h a n i n s i d e a i r t e m p e r a t u r e 09 70°F a t t h e 45-ft l e v e l , There were d i f f e r e n c e s i n t h e v e r t i c a l tempera- t u r e v a r i a t i o n s of t h e t h r e e windows. For t h e t o p , c e n t r e and bottom windov~s r e s p e c t i v e l y , t h e s e g r a d i e n t s were

5 ,

8, and

14OF

f o r t h e o u t e r pane, 43, 51 and 40°P f o r t h e a i r s p a c e and 1 5 , 20, and 20°F f o r t h e i n n e r pane a t a n i n s i d e

-

0utsid.e

a i r

t e m p e r a t u r e d i f f e r e n c e of 100°P. A i r t e m p e r a t u r e s 1 3/4 i n , from t h e i n s i d e s u r f a c e s of t h e i n n e r pane o f t h e t o p , c e n t r e and bottom windovis were 68, 66, and 65OP r e s p e c t i v e l y . The v a r i a t i o n s i n t h e v e r t i c a l t e m p e r a t u r e g r a d i e n t s o f t h e windows a r e perhaps a t t r i b u t a b l e i n p a r t t o v a r i a t i o n s i n t h e c o n v e c t i o n c o e f f i c i e n t s w i t h h e i g h t on t h e s u r f a c e s f a c i n g t h e w a r m and c o l d rooms.

The e f f e c t s o f v a r i o u s amounts o f a i r flovi from t h e out-side i n t o t h e a i r s p a c e on t h e t e m p e r a t u r e s o f t h e a i r space and i n n e r and o u t e r panes o f t h e c e n t r e window were s t u d i e d a t c o l d room t e m p e r a t u r e s of 0 and -30°F. A t b o t h c o l d room t e m p e r a t u r e s measurements were begun w i t h a l l t h e v e n t h o l e s open i n t h e t o p and bottom members o f t h e wood sash.

(19)

s u c c e s s i v e l y decreased. These t e s t s (Table V ) showed t h a t t h e t e m p e r a t u r e a t t h e t o p of t h e air. s p a c e i n c r e a s e d by approximately 3OP when t h e c e n t r e vent- h o l e s i n t h e t o p and bottom members of t h e s a s h were c l o s e d . A s more v e n t h o l e s were c l o s e d t h e t e m p e r a t u r e a t t h e t o p of t h e a i r s p a c e graclually i n c r e a s e d . There was a l s o some i n c r e a s e

i n

t h e s u r f a c e t e m p e r a t u r e s of b o t h t h e i n n e r and o u t e r panes, \%en all. t h e h o l e s were c l o s e d t h e t e m p e r a t u r e a t t h e t o p of t h e a i r space i r c r e a s e d by approximately 1 0 and 16OF a t

c o l d room ternperz%ures of 0 and -30°P r e s p e c t i v e l y , Under t h e s e same t e s t c o n d i t i o n s t h e r e was a n i n c r e a s e i n s u r f a c e t e m p e r a t u r e of approximately 2OP o n l y , The i n c r e a s e i n h e a t flow t h r o u ~ h a double window a s a r e s u l t of a i r i n t e r c h a n g e between t h e a i r space and o u t s i d e i s d i s c u s s e d i n Appendix E.

A f i n a l t e s t was c a r r i e d o u t on t h e c e n t r e window a t an i n s i d e - o u t s i d e a i r t e m p e r a t u r e d i f f e r e n c e of 70°P t o determine t h e e f f e c t of i n c r e a s i n g t h e w i d t h o f t h e s i l l from 1 3/4 t o

4

3/4 i n , Table V I g i v e s measured t e m p e r a t u r e s f o r s i l l v ~ i d t h s o f 1 3/4, 2 3/4, 3 3/4 and

4 3/4

i n . There w a s no a p p r e c i a b l e change i n t h e measured t e m p e r a t u r e s as a r e s u l t of changing t h e s i l l w i d t h i n t h e above r a n g e , ( c ) Condensation T e s t s Two s e r i e s of t e s t s were c a r r i e d o u t t o p e r m i t o b s e r v a t i o n of t h e e x t e n t of c o n d e n s a t i o n on t h e i n s i d e s u r f a c e s of t h e i r a e r and o u t e r panes under v a r i o u s t e s t c o n d i t i o n s . P i g u r e 5c shows t h e bo-Ltom vaindow and F i g . ?a i s a c r o s s s e c t i o n o f t h e o t h e r two windows i n t h e f i r s t

s e r i e s of t e s t s , Some v e n t i n g of t h e a i r space t o o u t s i d e was provided i n t h e c e n t r e window. The t e s t s r e v e a l e d t h a t

it would be advantageous t o modify t h e i n n e r g l a z i n g t o r e d u c e t h e amount of w a t e r vapour being t r a n s f e r r e d t o t h e a i r s p a c e , I n t h e second s e r i e s of c o n d e n s a t i o n t e s t s t h e bottom airLdow had i n n e r g l a z i n g a s b e f o r e w h i l e t h e c e n t r e and t o p had

modified i n n e r g l a z i n g s a s shown i n Fig. 5b. Various d e g r e e s of v e n t i n g of t h e a i r s p a c e t o o u t s i d e were provided i n t h e bottom and c e n t r e windows.

I n t h e t w o s e r i e s of c o n d e n s a t i o n t e s t s t h e c o l d room t e m p e r a t u r e was c y c l e d f o r a two-week p e r i o d follovred by

s t e a d y s t a t e t e s t s a t d i f f e r e n t cold. room t e m p e r a t u r e s and

r e l a t i v e h u m i d i t i e s i n t h e warm room, The c y c l i n g t e s % a viere c a r r i e d o u t t o determine t h e e f f e c t of t h e " b r e a t h i n g a c t i o n " o f t h e a i r between t h e panes on t h e accumulation of c o n d e n s c t i o n on t h e i n s i d e s u r f a c e of t h e o u t e r pane, During

t h e s e t e s t s t h e c o l d room t e m p e r a t u r e w a s c y c l e d d a i l y between

-6.20 and

-

20°F r r ~ h i l e a t e m p e r a t u r e of 70°P and 30 p c r c e n t R.II. were maintaizied i n t h e w a r m room. A d a i l y c y c l e c o n s i s t e d of lo:-;criny; t h e t - c ~ t i p c r a ~ u r c from +20 t o - 2 0 ° P i n 8 I l o ~ j r s ,

raisin,; i t - f r o 5 1 - 2 0 -to -t20°1J in 13 h0ur.s and f ir1:11 1 ;L- m:~intc?irlin{; -t2C!oii' f o r t h e rcr:!aining 8 lloul'::;,

(20)

During t h e s t e a d y s t a t e t e s t s t h e t e m p e r a t u r e and r e l a t i v e humidity

i n

t h e warm room were c o n s t a n t . The c o l d room t e m p e r a t u r e was a l s o h e l d c o n s t a n t b u t n o t t h e r e l a t i v e humidity. Two l e v e l s of r e l a t i v e h u m i d i t y were m a i n t a i n e d i n t h e warn room a t each of t h e c o l d room t e m p e r a t u r e s . The

l o w e r l ~ u m i d i t y w a s chosen t o

just'

cause c o n d e n s a t i o n a l o n g t h e bottom of t h e i n s i d e s u r f a c e o f t h e i n n e r pane w h i l e t h e h i g h e r humidity provided a more s e r i o u s c o n d e n s a t i o n c o n d i t i o n .

No a t t e m p t s were made t o c l e a r t h e f r o s t from t h e i n s i d e s u r f a c e s of t h e o u t e r panes

i n

t h e i n t e r v a l s between

v a r i o u s t e s t s i n t h e f i r s t s e r i e s . The o b s e r v a t i o n s , t h e r e f o r e , were i n c o n c l u s i v e . I n t h e second s e r i e s , however, t h e o u t e r

panes were c l e a r e d of c o n d e n s a t i o n a t t h e beginning o f each c o l d room t e m p e r a t u r e c o n d i t i o n .

V a r i a t i o n s made i n t h e i n n e r g l a z i n g had no apprc- c i a b l e e f f e c t on t h e c o n d e n s a t i o n on t h e i n n e r s u r f a c e .

The o b s e r v a t i o n s o f c o n d e n s a t i o n on t h e i n s i d e s u r f a c e o f t h e i n n e r pane r e p o r t e d h e r e were made on t h e t o p window, which had i n n e r g l a z i n g a s i n Fig. 5b, s i n c e

it w a s

most f u l l y i n s t r u - mented w i t h thermocouples. There were no v e n t h o l e s i n t h e

s a s h and t h e i n s i d e t e m p e r a t u r e

was

m a i n t a i n e d a t 70°F a t t h e

4&-ft

l e v e l . The e f f e c t of v e n t i n g t h e a i r space on t h e

s u r -

f a c e t e m p e r a t u r e s and on c o n d e n s a t i o n on t h e i n n e r pane i s

shovm i n Table V.

The c o n d e n s a t i o n on t h e i n s i d e s u r f a c e o f t h e i n n e r

pane extended a c r o s s t h e b o t t o n of t h e pane i n a band o f uniform width. P i g u r e 1 9 g i v e s t h e s u r f a c e t e m p e r a t u r e s f o r t h e i n n e r

pane which were o b t a i n e d a t t h e v a r i o u s s t e a d y s t a t e t e s t c o n d i t i o n s . Table V I I g i v e s t h e t e s t c o n d i t i o n s and o b s e r - v a t i o n s of t h e e x t e n t of c o n d e n s a t i o n on t h e i n n e r pane.

The s u r f a c e t e m p e r a t u r e a t t h e upper boundary of c o n d e n s a t i o n

i s e q u a l t o t h e dew p o i n t t e m p e r a t u r e i n t h e warn room.

T h e r e f o r e , t h e e x t e n t of cond.ensation c a n be p r e d i c t e d from t h e measured s u r f a c e t e m p e r a t u r e s i n P i g . 1 9 and t h e lm.ocvn

w a r m room dew p o i n t . These p r e d i c t e d v a l u e s o f t h e e x t e n t o f c o n d e n s a t i o n a r e g i v e n i n t h e t a b l e . An i n d i c a t i o n o f t h e accuracy of s u r f a c e t e m p e r a t u r e d e t e r m i n a t i o n s can be o b t a i n e d by comparing t h e measured v a l u e s o f t e m p e r a t u r e s a t t h e u p p e r boundary o f c o n d e n s a t i o n ob-tained f r o ~ i P i g . 1 3 and given. i n Table V I I w i t h Vne warm roon~ dew p o i n t .

It i s e v i d e n t from t h e t a b l e t h a t t h e r e i s f a i r

agreement between t h e measured and p r e d i c t e d amounts o f conden- s a t i o n . Correspondingly, t h e r e i s v e r y good agreement between t h e s u r f a c e t e m p e r a t u r e s d e t e ~ x i i n e d from -thermocouple r e a d i n g s and t h o s e p r e d i c t e d from o b s u l v a t i o n s of s u r f a c e c o n d e n s s t i o n an.d knoljin roon dew p o i n t tempel-atures

.

Figure

TABLE  OF  CONTENTS
TABLE  IV
TABLE  VII
TABLE  VIII
+5

Références

Documents relatifs

The cur- rent column scanning is marked by a red border around the item (See Fig. The scanning returns in row mode if there is no selected column during a first row scan- ning or if

The typical increase of portal pressure, increase of liver pressure loss, slight decrease of portal flow and major decrease in arterial flow are quantitatively captured by the model

verify the following three points: (i) is the set-up suitable for studying the formation of gas hydrates under pressure?; (ii) could the stirred sys- tem trigger hydrate formation

The objectives of this study are four-fold: 1) to better understand the external aerodynamics of canine olfaction using an anatomically-similar 3D printed model of the dog’s nose;

The top five reasons for 62’s with 3-5 YOS to leave the AF were 1) availability of compara- ble civilian jobs, 2) compatibility of military with spouse or spouse’s job, 3) number of

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

We first tested these mutant HSP-1 and HSP-3 versions in in vitro AMPylation assays using FIC-1 E274G as AMPylator and observed no significant changes in AMPylation levels as

in the previous subsection are then compared between a situation with no adaptation (i.e. when the storage power flows predicted from the off-line dispatching