• Aucun résultat trouvé

A Proof of the Riemann's Hypothesis

N/A
N/A
Protected

Academic year: 2021

Partager "A Proof of the Riemann's Hypothesis"

Copied!
35
0
0

Texte intégral

(1)

HAL Id: hal-02139903

https://hal.archives-ouvertes.fr/hal-02139903v2

Preprint submitted on 11 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

A Proof of the Riemann’s Hypothesis

Charaf Ech-Chatbi

To cite this version:

Charaf Ech-Chatbi. A Proof of the Riemann’s Hypothesis. 2019. �hal-02139903v2�

(2)

A Proof of the Riemann’s Hypothesis

Charaf ECH-CHATBI Tuesday 14 May 2019

Abstract

We present a proof of the Riemann’s Zeta Hypothesis, based on asymp- totic expansions and operations on series. We use the symmetry property presented by Riemann’s functional equation to extend the proof to the whole set of complex numbersC. The advantage of our method is that it only uses undergraduate maths which makes it accessible to a wider audience.

Keywords: Riemann Hypothesis; Riemann zeta function; Zeta Zeros;

Asymptotic distribution of the Prime Numbers; Millennium Problems.

1 The Riemann Hypothesis

The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper, it asserts that all the ’non- obvious’ zeros of the zeta function are complex numbers with real part 1/2.

2 Riemann Zeta Function

For a complex number s, the Zeta function is defined as the following infinite sum:

ζ(s) =

Z1(s) =P+∞

n=1 1

ns, if<(s)>1

1 1− 1

2s−1

Z2(s),whereZ2(s) =P+∞

n=1 (−1)n+1

ns if

<(s)>0, s6= 1 + ln(2)2kπ,kinteger

Z20(s)

ln(2) , ifs= 1 +ln(2)2kπ,knonzero integer

(1) Riemann extended the domain of definition of the zeta function to the whole complex domain using the analytical continuation. The Dirichlet

Maybank. One Raffles Quay, North Tower Level 35. 048583 Singapore. Email:

charaf@melix.net or charaf.chatbi@gmail.com. Lnikedin/Twitter: @sharafmouzak. The opin- ions of this article are those of the author and do not reflect in any way the views or business of his employer.

(3)

eta function η(s) = Z2(s) is convergent when <(s) > 0 and it is used as the analytical continuation of the zeta function on the domain where

<(s)>0. When<(s)0, the Riemann zeta functional equation is used as the analytical continuation for the zeta function.

In his famous paper, Riemann[3] has shown that the Zeta has a func- tional equationζ(1s) = 21−sπ−scos πs2

Γ(s)ζ(s). Using this last one, Riemann has shown that the non trivial zeros of ζ are located sym- metrically with respect to the line <(s) = 1/2, inside the critical strip 0<<(s)<1. Riemann has stated that all these non trivial zeros are very likely located on the critical line<(s) = 1/2 itself. In 1896, Hadamard and De la Vall´ee Poussin independently proved thatζ(s) has no zeros of the forms= 1 +it fortR.

Therefore, to prove this “Riemann Hypothesis” (RH), it is sufficient to prove thatζ has no zero on the right hand side 1/2<<(s)<1 of the critical strip.

3 Proof of the Riemann Hypothesis

Let’s take a complex number s suchs =a0+ib0. Unless we explicitly mention otherwise, let’s suppose thata0>0 andb0>0.

3.1 Case One: 12 < a0 ≤1

In this casesis a zero ofZ2(s) =P+∞

n=1 (−1)n+1

ns . We are going to develop the sequenceZN1(s) =PN

n=1 1

ns as follows:

ForN1

ZN1 =

N

X

n=1

1

ns (2)

=

N

X

n=1

1

na0+ib0 (3)

=

N

X

n=1

n−ib0

na0 (4)

=

N

X

n=1

exp ib0ln (n)

na0 (5)

=

N

X

n=1

cos(b0ln (n))isin(b0ln (n))

na0 (6)

=

N

X

n=1

cos(b0ln (n)) na0 i

+∞

X

n=1

sin(b0ln (n))

na0 (7)

(8)

(4)

Let’s define the sequencesUn,Vnas follows: Forn1 Un = cos(b0ln (n))

na0 (9)

Vn = sin(b0ln (n))

na0 (10)

Let’s define the seriesAn,BnandZnas follows:

An =

n

X

k=1

cos(b0ln (k))

ka0 (11)

Bn =

n

X

k=1

sin(b0ln (k))

ka0 (12)

Zn1 = AniBn (13)

When we are dealing with complex numbers, it is always insightful to work with the norm. So let’s develop further the squared norm of the serieZN1 as follows:

ZN1

2 = A2N+BN2 (14)

= N

X

n=1

cos(b0ln (n)) na0

2 +

N

X

n=1

sin(b0ln (n)) na0

2 (15) So

A2N = N

X

n=1

cos(b0ln (n)) na0

2

(16)

=

N

X

n=1

cos2(b0ln (n)) n2a0 + 2

N

X

n=1 n−1

X

k=1

cos(b0ln (k))cos(b0ln (n))

ka0na0 (17)

=

N

X

n=1

cos2(b0ln (n)) n2a0 + 2

N

X

n=1

cos(b0ln (n)) na0

n−1

X

k=1

cos(b0ln (k))

ka0 (18)

=

N

X

n=1

cos2(b0ln (n)) n2a0 + 2

N

X

n=1

cos(b0ln (n)) na0

Ancos(b0ln (n)) na0

(19)

=

N

X

n=1

cos2(b0ln (n)) n2a0 + 2

N

X

n=1

cos(b0ln (n))An

na0 (20)

And the same calculation forBN

(5)

BN2 = N

X

n=1

sin(b0ln (n)) na0

2

(21)

=

N

X

n=1

sin2(b0ln (n)) n2a0 + 2

N

X

n=1 n−1

X

k=1

sin(b0ln (k))sin(b0ln (n))

ka0na0 (22)

=

N

X

n=1

sin2(b0ln (n)) n2a0 + 2

N

X

n=1

sin(b0ln (n)) na0

n−1

X

k=1

sin(b0ln (k))

ka0 (23)

=

N

X

n=1

sin2(b0ln (n)) n2a0 + 2

N

X

n=1

sin(b0ln (n)) na0

Bnsin(b0ln (n)) na0

(24)

=

N

X

n=1

sin2(b0ln (n)) n2a0 + 2

N

X

n=1

sin(b0ln (n))Bn

na0 (25)

Hence we have the new expression of square norm ofZN1:

ZN1

2= 2

N

X

n=1

cos(b0ln (n))An

na0 + 2

N

X

n=1

sin(b0ln (n))Bn

na0

N

X

n=1

sin2(b0ln (n)) + cos2(b0ln (n))

n2a0 (26)

which simplies even further to:

ZN1

2= 2

N

X

n=1

cos(b0ln (n))An

na0 + 2

N

X

n=1

sin(b0ln (n))Bn

na0

N

X

n=1

1 n2a0 (27) Let’s now defineFn andGn as follows:

Fn = cos(b0ln (n))An

na0 (28)

Gn = sin(b0ln (n))Bn

na0 (29)

Therefore

A2N = 2

N

X

n=1

Fn

N

X

n=1

cos2(b0ln (n))

n2a0 (30)

BN2 = 2

N

X

n=1

Gn

N

X

n=1

sin2(b0ln (n))

n2a0 (31)

We will use the formula (13) and writeZN2 as the following:

ZN2(s) = ZN1(s) 1 2s−1Z1N

2(s) (32)

= ANiBN 1 2s−1

AN

2 iBN 2

(33)

= AN 1 2s−1AN

2 i

BN 1 2s−1BN

2

(34)

= AN,NiBN,N (35)

(6)

Where

AN,N =

N 2

X

k=1

cos(b0ln (k))21−a0cos(b0 ln (2k))

ka0 +

N

X

k=N2+1

cos(b0ln (k)) ka0 (36) And

BN,N =

N 2

X

k=1

sin(b0ln (k))21−a0sin(b0 ln (2k))

ka0 +

N

X

k=N2+1

sin(b0ln (k)) ka0 (37) We note here that we are using the same partial sum of the Dirichlet se- rieη(s) =P

n≥1 (−1)n+1

ns that is conditionally convergent when<(s)>0.

We are not changing the partial sum by rearraging the terms of the Dirich- let serie. The representationZN2(s) = AN,N iBN,N is conserving the same terms of the original partial sum of the Dirichlet seriePN

n=1 (−1)n+1

ns . Therefore,AN,N and−BN,N are the real part and the imaginary part of the partial sum of the Dirichlet serie. Hence

N→∞lim AN,NiBN,N = lim

N→∞

N

X

n=1

(−1)n+1

ns =Z2(s) =η(s) (38) Therefore

Conclusion. sis azetazero,ζ(s) = 0, if and only if

N→∞lim AN,N = 0and lim

N→∞BN,N = 0 (39)

Equally,sis azetazero, ζ(s) = 0, if and only if

N→∞lim A2N,N = 0and lim

N→∞BN,N2 = 0 (40)

Remark. The rearragement used in the Riemann rearrangement theorem to make a conditionally convergent serie converge to any number including {+∞,−∞} is not conserving the same terms of the partial sum of the original series.

For simplification, let’s define the following sequences: ForN1:

Un,N=

(cos(b0ln (n))−21−a0cos(b0(ln (2n)))

na0 , ifn N2

cos(b0ln (n))

na0 ifn > N2 (41)

And

Vn,N =

(sin(b0ln (n))−21−a0sin(b0(ln (2n)))

na0 , ifn N2

sin(b0ln (n))

na0 ifn > N2 (42)

And

An,N =

Pn

k=1

cos(b0ln (k))−21−an0cos(b0ln (2k))

ka0 , ifn N2

PN2

k=1

cos(b0ln (k))−21−a0cos(b0ln (2k))

ka0 +Pn

k=N2+1

cos(b0ln (k))

ka0 ifn > N2

AN,N ifnN

(43)

(7)

And

Bn,N =

Pn

k=1

sin(b0ln (k))−21−a0sin(b0ln (2k))

ka0 , ifnN2

PN2

k=1

sin(b0ln (k))−21−a0sin(b0ln (2k))

ka0 +Pn

k=N2+1

sin(b0ln (k))

ka0 ifn >N2

BN,N ifnN

(44) Let’s develop further the squared norm of the serieZN2 as follows:

ZN2

2=A2N,N+BN,N2 (45)

= N

X

n=1

Un,N

2 +

N X

n=1

Vn,N

2

(46) So

A2N,N = N

X

n=1

Un,N

2

(47)

=

N

X

n=1

Un,N+ 2

N

X

n=1 n−1

X

k=1

UnUk,N (48)

=

N

X

n=1

Un,N2 + 2

N

X

n=1

Un,N n−1

X

k=1

Uk,N (49)

=

N

X

n=1

Un,N2 + 2

N

X

n=1

Un,N

An,NUn,N

(50)

=

N

X

n=1

Un,N2 + 2

N

X

n=1

Un,NAn,N (51)

(52) And the same calculation forBN,N

BN,N2 = N

X

n=1

Vn

2

(53)

=

N

X

n=1

Vn,N+ 2

N

X

n=1 n−1

X

k=1

VnVk,N (54)

=

N

X

n=1

Vn,N2 + 2

N

X

n=1

Vn,N n−1

X

k=1

Vk,N (55)

=

N

X

n=1

Vn,N2 + 2

N

X

n=1

Vn,N

Bn,NVn,N

(56)

=

N

X

n=1

Vn,N2 + 2

N

X

n=1

Vn,NBn,N (57) (58)

(8)

Let’s now define the sequences (Fn,N) and (Gn,N) as follows:

Fn,N = Un,NAn,N (59)

Gn,N = Vn,NBn,N (60)

Hence we have the new expression of square norm ofZN2:

ZN2

2= 2

N

X

n=1

Fn,N+ 2

N

X

n=1

Gn,N

N

X

n=1

Un,N2 +Vn,N2

(61) which simplies even further to:

N

X

n=1

Un,N2 +Vn,N2

=

N 2

X

n=1

Un,N2 +Vn,N2

+

N

X

n=N2+1

Un,N2 +Vn,N2

(62)

=

N

X

n=N2+1

1 n2a0 (63)

+

N 2

X

n=1

cos(b0ln (n))21−a0cos(b0(ln (2n)))2

+

sin(b0ln (n))21−a0sin(b0(ln (2n)))2

n2a0 (64)

=

N

X

n=N2+1

1 n2a0 (65)

+

N 2

X

n=1

1 + 22−2a022−a0cos(b0ln (n))cos(b0(ln (2n)))22−a0sin(b0ln (n))sin(b0(ln (2n)))

n2a0 (66)

=

N

X

n=1

1 n2a0 (67) +

N 2

X

n=1

22−2a022−a0

cos(b0ln (n))cos(b0(ln (2n))) + sin(b0ln (n))sin(b0(ln (2n)))

n2a0 (68)

=

N

X

n=1

1 n2a0 +

N 2

X

n=1

22−2a022−a0

cos(b0ln (2))

n2a0 (69)

(70) We have 2a0>1, hence the partial sumsPN

n≥1Un,N2 andPN n≥1Vn,N2 converge absolutely.

We have

A2N,N = 2

N

X

n=1

Fn,N

N

X

n=1

Un,N2 (71)

B2N,N = 2

N

X

n=1

Gn,N

N

X

n=1

Vn,N2 (72)

(9)

Proof Strategy. The idea is to prove that in the case of a complexsthat is in the right hand side of the critical strip 12 < a0 1 and that is aζ zero, that the limitlimn→∞A2n,n= +/− ∞ORthe limitlimn→∞Bn,n2 = +/− ∞. This will create a contradiction. Because ifsis aζzero then the limn→∞A2n,n should be0and thelimn→∞Bn,n2 should be0. And therefore the sequences(PN

n=1Fn,N)N≥1and(PN

n=1Gn,N)N≥1should converge and their limits should be: limn→∞PN

n=1Fn,N = 12limN→∞PN

n=1Un,N2 <

+∞andlimn→∞PN

n=1Gn,N= 12limN→∞PN

n=1Vn,N2 <+∞.

We need the following lemmas during different stages of the proof.

Lemma 3.1. There is exist two constantsK10andK20such that forn1andN1we have: |An,N| ≤K1+K2n1−a0.

Proof. We will make use of the lemma 3.5 in [1]. Let’s N 1. Let’s n1.

Case: n N2

An,N=

n

X

k=1

cos(b0ln (n))21−a0cos(b0(ln (2n)))

ka0 (73)

=

n

X

k=1

121−a0cos(b0ln(2))

cos(b0ln (k)) + 21−a0sin(b0ln(2))

sin(b0ln (k))

ka0 (74)

= 121−a0cos(b0ln(2))

n

X

k=1

cos(b0ln (k))

ka0 + 21−a0sin(b0ln(2))

n

X

k=1

sin(b0ln (k)) ka0 (75)

(76) Therefore using the lemma 3.5 in [1]:

|An,N| ≤

121−a0cos(b0ln(2))

n

X

k=1

cos(b0ln (k)) ka0

(77)

+

21−a0sin(b0ln(2))

n

X

k=1

sin(b0ln (k)) ka0

(78)

121−a0cos(b0ln(2))

K1+K2n1−a0

+

21−a0sin(b0ln(2))

K1+K2n1−a0

(79)

121−a0cos(b0ln(2)) +

21−a0sin(b0ln(2))

K1+K2n1−a0 (80) And this prove the case.

Case: n > N2 We have:

n

X

k=N2+1

cos(b0ln (n)) ka0 =

n

X

k=1

cos(b0ln (n)) ka0

N 2

X

k=1

cos(b0ln (n))

ka0 (81) (82)

(10)

And An,N =

N 2

X

k=1

cos(b0ln (n))21−a0cos(b0(ln (2n)))

ka0 +

n

X

N 2+1

cos(b0ln (n)) ka0 (83)

(84) Therefore using the first case ofn N2 and the lemma 3.5 in [1]:

N 2

X

k=1

cos(b0ln (n))21−a0cos(b0(ln (2n))) ka0

K1+K2(N 2)1−a0

(85)

K1+K2n1−a0 , as (N

2)1−a0 n1−a0 (86) And

n

X

k=1

cos(b0ln (n)) ka0

N 2

X

k=1

cos(b0ln (n)) ka0

n

X

k=1

cos(b0ln (n)) ka0

+

N 2

X

k=1

cos(b0ln (n)) ka0

(87)

K1+ K2n1−a0 +

K1+K2(N 2)1−a0

(88)

K1+ K1+ (K2+ K2)n1−a0, as (N

2)1−a0n1−a0 (89) Therefore

|An,N| ≤K1+ K1+ (K2+ K2)n1−a0 (90) Which proves our case.

Lemma 3.2. For a large n, N and N0 such N0 n < n+ 1 N2 We can write An,N = E1(n) +γn such that limn→+∞γn = 0 and E1(n) = n1−a0

X1sin b0ln (n)

+X2cos b0ln (n)

where X1 and X2 two real constants defined as follows:

X1 =

a3b0+b3(1a0)

(b0)2+ (1a0)2 (91) X2 =

a3(1a0)b3b0

(b0)2+ (1a0)2 (92) a3 = 121−a0cos(b0ln (2)) (93) b3 = 21−a0sin(b0ln (2)) (94) Proof. We have limN→+∞AN,N = 0. Let’s >0. Let’sN0 be such that for each N N0: |AN,N| ≤. Let’s take n, N and N0 suchN0 n <

n+ 1N2. We have|AN,N| ≤. Therefore:

(11)

We have the notationddn= cos(b0ln (n))21−a0cos(b0(ln (2n))) . We are going to use the lemma 3.2 in [1]. Let’s develop further:

AN,NAn,N =

N 2

X

k=n+1

ddk

ka0 +

N

X

k=N2+1

cos(b0ln (k))

ka0 (95)

=

N 2

X

k=n+1

ddk

ka0

N 2

X

k=n+1

Z k+1 k

e1(t)dt+

N

X

k=N2+1

cos(b0ln (k)) ka0

N

X

k=N2+1

Zk+1 k

e(t)dt (96)

+

N 2

X

k=n+1

Z k+1 k

e1(t)dt+

N

X

k=N2+1

Zk+1 k

e(t)dt (97)

=

N 2

X

k=n+1

ddk

ka0

N 2

X

k=n+1

Z k+1 k

e1(t)dt+

N

X

k=N2+1

cos(b0ln (k)) ka0

N

X

k=N2+1

Zk+1 k

e(t)dt (98)

+ Z N

n+1

e1(t)dt+ Z N

N 2+1

e(t)dt (99)

=−E1(n+ 1) +

N 2

X

k=n+1

ddk

ka0

N 2

X

k=n+1

Z k+1 k

e1(t)dt+

N

X

k=N2+1

cos(b0ln (k)) ka0

N

X

k=N2+1

Zk+1 k

e(t)dt (100)

+E1(N) +E(N)E(N

2 + 1) (101) Therefore from the lemma 3.2 in [1]:

|An,NE1(n+ 1)| ≤ |AN,N|+

N 2

X

k=n+1

ddk

ka0

N 2

X

k=n+1

Z k+1 k

h(t)dt

(102)

+

N

X

k=N2+1

cos(b0ln (k)) ka0

N

X

k=N2+1

Z k+1 k

g(t)dt

+

E1(N) +E(N)E(N 2 + 1)

(103)

+K5

a0

1 na0 1

(N2)a0

+K1

a0

1

(N2)a0 1 (Na0)

+

E1(N) +E(N)E(N 2 + 1)

(104) (105) We haveN0 n < n+ 1N2. So

|An,NE1(n+ 1)| ≤+K5

a0

1 na0 + 1

na0

+K1

a0

1 na0 + 1

na0

+

E1(N) +E(N)E(N 2 + 1)

(106)

+ 2K1+K5

a0

1 na0 +

E1(N) +E(N)E(N 2 + 1)

(107) Quick calculation gives us: E1(N) +E(N)E(N2) = 0. We apply the

lemma 3.8 in [1] to the functionE, we have limN→+∞E(N2+ 1)−E(N2) = 0. Therefore: limN→+∞E1(N) +E(N)E(N2) = 0.

|An,NE1(n+ 1)| ≤+ 2K1+K5

a0

1 na0 +

E1(N) +E(N)E(N 2 + 1)

(108)

Références

Documents relatifs

On souhaite projeter une mire, succession d’un grand nombre de bandes opaques et transparentes de même largeur a = 0, 25 mm grâce à une lentille de vergence V = 10 Dioptrie..

[r]

Un calculette programmable ou un tableur font apparaître une stabilité autour de 5 pour les 100 premiers termes, puis vers 7 ensuite, ce qui laisserait entendre que la

A la grande table se trouvent les adultes et les adolescents dont les âges sont égaux à tous les produits des âges des plus jeunes pris deux à deux.. Déterminer les âges de tous

abscisses et le ordonnées des trois points. 2) pour les configurations de la famille F caractérisées par min(U,W) &lt; V &lt;max(U,W) 1 et min(X,Z)&lt;Y&lt;max(X,Z)

En effet, on peut facilement montrer que l'espérance du nombre de parties jouées est donnée pour un triplet (a,b,c)

D´ evelopper cette fonction en s´ erie de

[r]