• Aucun résultat trouvé

BALL MILLING AMORPHIZATION IN A VIBRATING FRAME GRINDER

N/A
N/A
Protected

Academic year: 2021

Partager "BALL MILLING AMORPHIZATION IN A VIBRATING FRAME GRINDER"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00230793

https://hal.archives-ouvertes.fr/jpa-00230793

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BALL MILLING AMORPHIZATION IN A VIBRATING FRAME GRINDER

Y. Chen, R. Le Hazif, G. Martin

To cite this version:

Y. Chen, R. Le Hazif, G. Martin. BALL MILLING AMORPHIZATION IN A VIBRAT- ING FRAME GRINDER. Journal de Physique Colloques, 1990, 51 (C4), pp.C4-273-C4-279.

�10.1051/jphyscol:1990433�. �jpa-00230793�

(2)

COLLOQUE DE PHYSIQUE

Colloque C4, suppl6ment au n014, Tome 51, 15 j u i l l e t 1990

BALL MILLING AMORPHIZATION I N A VIBRATING FRAME GRINDER

Y. CHEN, R. LE HAZIF and G. M A R T I N

Centre d'Etudes Nucl6aires de Saclay, CEREM-DTM-SRMP, F-91191 Gif sur Yvette Cedex, France

Resume : On propose un modele simple du t r a n g f e r t d ' e n e r g i e p a r chocs au matkriau en cours de broyage dans un d i s p o s i t i f a p l a t e a u v i b r a n t : 1 1 6 n e r g i e p a r choc v a r i e comme l a masse de l a b i l l e e t l e c a r r e de l ' a m p l i t u d e e t de l a frkquence de v i b r a t i o n du p l a t e a u . Le t o u t e s t r e d u i t d'un f a c t e u r d ' e f f i c a c i t e du t r a n s f e r t q u i depend, e n t r e a u t r e s , de l a r i g i d i t 6 r e l a t i v e de l a b i l l e p a r r a p p o r t au materiau t r a i t & . La frCquence d e s c o l l i s i o n s e n t r e l a b i l l e e t l e m a t e r i a u v a r i e comme l ' a m p l i t u d e e t l a frequence de v i b r a t i o n du p l a t e a u e t comme l ' i n v e r s e de l a g r a v i t e t e r r e s t r e . Pour t e s t e r l ' i n f l u e n c e de c e s param&tres s u r l a s t a b i l i s a t i o n p a r broyage de phases m e t a s t a b l e s , un d i s p o s i t i f o r i g i n a l a e t 6 c o n s t r u i t , q u i permet e n t r e a u t r e s , de proceder des broyages prolongks sous bon v i d e . Les r e s u l t a t s p r e l i m i n a i r e s obtenus s u r NiloZr7 montrent l 'importance du f a c t e u r d ' e f f i c a c i t e pour a t t e i n d r e une amorphisation compl&te du materiau. Sous bon vide, il e s t p o s s i b l e d ' o b t e n i r une f e u i l l e continue de materiau amorphe.

A b s t r a c t : We propose a simple model of energy t r a n s f e r i n t h e course of b a l l m i l l i n g i n a v i b r a t i n g frame device : t h e energy t r a n s f e r r e d per impact goes a s t h e mass of t h e b a l l and t h e square of t h e amplitude and frequency of v i b r a t i o n of t h e frame. A reduction e f f i c i e n c y f a c t o r must be introduced, which depends on t h e b a l l r i g i d i t y with r e s p e c t t o t h a t of t h e m a t e r i a l being p r o c e s s e d . The frequency of impact between t h e b a l l and t h e m a t e r i a l goes a s t h e amplitude and frequency of v i b r a t i o n of t h e frame and a s t h e i n v e r s e of t h e t e r r e s t r i a l g r a v i t a t i o n c o n s t a n t . For a s s e s s i n g t h e r o l e of t h e above parameters i n s t a b i l i z i n g metastable phases by b a l l m i l l i n g , a new device has been b u i l t which allows t o keep good vacuum d u r i n g long time m i l l i n g t r e a t m e n t s . Preliminary r e s u l t s on NiloZr7 p o i n t t o t h e c r u c i a l r o l e of t h e e f f i c i e n c y f a c t o r i n reaching f u l l amorphization. Under good vacuum, continuous f o i l s of amorphous m a t e r i a l can be obtained.

A s d i s c u s s e d i n a companion paper / l /

,

t h e formation of a non e q u i l i b r i u m phase under b a l l m i l l i n g can be viewed a s an example of a dynamical phase t r a n s i t i o n i n a forced system. The s t a b i l i t y f i e l d of such phases must be looked f o r i n t h e a p p r o p r i a t e c o n t r o l parameters space. We s u g g e s t e d t h a t b e s i d e s t h e t e m p e r a t u r e and a l l o y c o m p o s i t i o n , such parameters a s t h e energy p e r impact and t h e impact frequency should play a c r u c i a l r o l e i n s t a b i l i z i n g non e q u i l i b r i u m p h a s e s . The l a t t e r two q u a n t i t i e s a r e easy t o a d j u s t i n a v i b r a t i n g frame d e v i c e . The purpose of t h i s n o t e i s t o g i v e a very simple mechanistic model of m i l l i n g i n such a device, and t o p r e s e n t p r e l i m i n a r y r e s u l t s o b t a i n e d on a modified m i l l we developed a t Saclay.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1990433

(3)

COLLOQUE DE PHYSIQUE

2 - MECHANISTIC MODEL OF MILLING WITH A VIBRATING FRAMl$

For the sake of simplicity, we consider a vibrating frame on which a vial is attached. The vial contains powder and a single ball of mass m (specific mass p) and radius R. The frame vibrates sinusoYdally with a pulsation 61 and amplitude A ; g is the terrestrial acceleration constant. We assume, for the time being, that every time the ball hits the powder, the kinetic energy of the ball with respect to the frame is fully absorbed by the powder : under such circumstances, the movement of the ball is periodic in time.

-m---

V a c u u n V a l v e I I---

I

--

-)To U a c u u n uanv 1-1 1-1

I I .----,-,,.--=I I-.--=--.,-

l I

I ---\ I

-.m .mm-l

F i x a t i o n s c r e w s '

Fig. 1 : Schematical representation of the ball in the vial, the model for the impact between the ball and the powder, and positions vs time of the ball and the frame.

(4)

I t i s e a s i l y found t h a t :

- t h e v e l o c i t y of t h e b a l l , a s it l e a v e s t h e frame, i s :

- t h e l a t t e r f i x e s t h e h e i g h t h reached by t h e b a l l i n t h e l a b o r a t o r y ( h = vbi2 / 2 g ) , t h e t i m e 2 needed f o r t h e b a l l t o f a l l back on t h e frame :

2 = 2 v b i / g ( 2 )

- t h e a v e r a g e k i n e t i c e n e r g y o f t h e b a l l r e l a t i v e t o t h e frame a t t h e c o l l i s i o n i s (assuming a random dephasing of t h e b a l l movement w i t h r e s p e c t t o t h a t of t h e frame) :

< E > = 1 / 2 m ( <vb2>

+

<vf2>) ( 3 a )

where vf s t a n d s f o r t h e v e l o c i t y of t h e frame, and <> h o l d s f o r t h e average over long t i m e s . Simple a l g e b r a y i e l d s :

< ~ > = 3 / 4 m A*& (3b)

f o r t h e energy p e r impact ;

- Eqs. 2 a n d 3 y i e l d t h e m e c h a n i c a l power t r a n s f e r e d t o t h e m a t e r i a l undergoing t h e c o l l i s i o n :

P = 3 / 8 m A w g ( 4 )

- t h e amout of m a t e r i a l b e i n g s t r a i n e d a t a c o l l i s i o n i s :

ui-4.n R r 2 ( 5 )

where r i s t h e r a d i u s of t h e g r a i n s of powder ( s e e f i g . 1 ) ; - a s a r e s u l t , t h e s p e c i f i c power i n j e c t e d i n t o t h e m a t e r i a l i s :

p = 1/16p ( R 2 / r 2 ) g

Awa

( 6 )

The parameter

a

i s a r e d u c t i o n f a c t o r , which a c c o u n t s f o r two e f f e c t s : - t h e amount of m a t e r i a l , V , ( e q . 5 ) w h i c h i s s t r a i n e d a t a c o l l i s i o n , i s o n l y a f r a c t i o n of t h e t o t a l amount of m a t e r i a l b e i n g p r o c e s s e d ; assuming p e r f e c t mixing o f t h e powder between two impacts r e s u l t s i n t h e f o l l o w i n g e x p r e s s i o n :

p = 1 / 5 ( r n / m t ) p ' g A

w

a ' ( 7 ) with m ' and p ' f o r t h e mass and d e n s i t y of t h e powder i n t h e j a r r ;

- a t t h e c o l l i s i o n , t h e impact e n e r g y i s n o t t o t a l l y t r a n s f e r r e d t o t h e powder; p a r t of it i s a b s o r b e d by p l a s t i c and e l a s t i c d e f o r m a t i o n of t h e b a l l ; t h e f r a c t i o n of t h e impact e n e r g y t r a n s f e r r e d t o t h e powder i s a', a number which i s m a t e r i a l dependent.

T y p i c a l v a l u e s a r e a s f o l l o w s :

A = l m m ,

w

= 314 r a d / s e c . , m = 1 Kg, R = 2 . 5 cm, r = 1 pm : p =some eV/

atom/ second t i m e s

a .

The l a t t e r r e d u c t i o n f a c t o r i s unknown. Most of t h e above power i s d i s s i p a t e d i n t o h e a t , a s m a l l f r a c t i o n of it (some % ) w i l l r e s u l t i n p o i n t - d e f e c t s o r a n t i s i t e d e f e c t s c r e a t i o n / 2 / .

Such f i g u r e s a r e t y p i c a l of power i n j e c t i o n s i n t o t h e l a t t i c e d u r i n g h i g h e n e r g y h i g h i n t e n s i t y i r r a d i a t i o n s w i t h c h a r g e d p a r t i c l e s ( e . g . i n a high v o l t a g e e l e c t r o n microscope) / 3 / . The l a t t e r s a r e known t o induce phase

(5)

C4-276 COLLOQUE DE PHYSIQUE

o h a n g e s , s u c h a s p r e c i p i t a t e f o r m a t i o n o r d i s s o l u t i o n , o r d e r - d i s o r d e r t r a n s i t i o n s , a m o r p h i z a t i o n o r c r y s t a l l i z a t i o n .

F o r a s s e s s i n g w h e t h e r t h e t y p e o f p h a s e t o b e s t a b i l i z e d by b a l l m i l l i n g c a n b e r a t i o n n a l i z e d i n t e r m s o f i n j e c t e d power a n d o f i m p a c t f r e q u e n c y , w e e q u i p e d a v i b r a t i n g frame a n d s t a r t e d s t u d y i n g t h e c o n d i t i o n s f o r b a l l m i l l i n g a m o r p h i z a t i o n o f N i l o Z r 7 , much i n t h e same way a s i n r e f . / l / ; comparing t h e m i l l i n g c o n d i t i o n s f o r a m o r p h i z a t i o n u n d e r b o t h t y p e s o f m i l l i n g ( p l a n e t a r y a n d v i b r a t i n g f r a m e ) w i l l h e l p c h o o s i n g t h e p r o p e r c o n t r o l p a r a m e t e r s of t h e d y n a m i c a l s t a t e o f t h e a l l o y u n d e r m i l l i n g . We now g i v e p r e l i m i n a r y r e s u l t s .

3 FIRST RESULTS

3a- E x p e r i m e n t a l p r o c e d u r e :

F o r t h e s a k e o f comparison w i t h t h e r e s u l t s o b t a i n e d i n r e f . ( l ) , we s t a r t e d w i t h a N i l o Z r 7 compound p r o d u c e d b y l e v i t a t i o n m e l t i n g i n t h e l a b o r a t o r y , s t a r t i n g from 9 9 . 9 % p u r i t y m a t e r i a l . T y p i c a l l y , p i e c e s o f i n g o t w e i g h t i n g a p p r o x i m a t e l y 5 grams were i n t r o d u c e d i n t o a m o d i f i e d v i a l o f a

" P u l v e r i s e t t e 0" v i b r a t i n g f r a m e m a n u f a c t u r e d by FRITSCH.

F i g . 2 : M o d i f i e d V i a l a t t a c h e d t o t h e f r a m e .

F o r g r i n d i n g i n vacuo o r u n d e r a c o n t r o l l e d a t m o s p h e r e , t h e v i a l was m o d i f i e d a s c a n b e s e e n on f i g s . l , 2 . S t a t i c vacuum b e t t e r t h a n some 1 0 - ~ T o r r s c o u l d b e k e p t f o r a t l e a s t 130 h o u r s m i l l i n g t i m e . The v i a l s and b a l l s a r e e i t h e r made o f t u n g s t e n c a r b i d e (WC) o r of quenched s t e e l (QS)

.

T y p i c a l w e i g h t o f t h e b a l l i s 1 Kg, w h i c h c o r r e s p o n d s t o a b a l l d i a m e t e r of a p p r o x i m a t e l y 50 mm and 6 3 mm f o r WC and QS r e s p e c t i v e l y .

The v i b r a t i o n a m p l i t u d e ( 2 A i n e q s . 3-7) r a n g e d from . 5 t o 2 . 5 mm, most e x p e r i m e n t s b e i n g done w i t h 1 mm. The v i b r a t i o n f r e q u e n c y was 50 Hz.

(6)

M i l l e d m a t e r i a l was a n a l y s e d b y X r a y d i f f r a c t i o n a n d , i n some c a s e s , o b s e r v e d b y e l e c t r o n m i c r o p r o b e , a n d s c a n n i n g o r t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y .

3b- E x p e r i m e n t a l r e s u l t s

The r e s u l t s o b t a i n e d depend b o t h on t h e t y p e o f a t m o s p h e r e a n d on t h e n a t u r e of t h e b a l l (WC o r QS)

.

A t early t i m e s , t h e f o l l o w i n g i s o b s e r v e d , i r r e s p e c t i v e o f t h e p r o c e d u r e : a f t e r a few m i n u t e s , t h e i n g o t i s b r o k e n i n t o c o a r s e p i e c e s = O . l m m i n s i z e , a n d t h e n i n t o a f i n e r powder ( 1 0 t o 50 p m i n d i a m e t e r a f t e r a b o u t 5 h o u r s ) . The e v o l u t i o n a t l a t e r s t a g e s d e p e n d s i n a c r u c i a l way on t h e n a t u r e o f t h e b a l l u s e d a n d o f t h e a t m o s p h e r e .

F i g . 3 : Amorphous powder a f t e r 30 h o u r s m i l l i n g w i t h WC b a l l ( r e s i d u a l 02 a t m o s p h e r e )

.

A f t e r a b o u t 30 h o u r s m i l l i n g , a f u l l y ( r e s p e c t i v e l y p a r t i a l ) amorphous s t a t e i s o b s e r v e d when m i l l i n g p r o c e e d s w i t h t h e WC ( r e s p . QS) b a l l . If m i l l i n g i s p e r f o r m e d i n t h e p r e s e n c e o f some Oxygen p a r t i a l p r e s s u r e , t h e m a t e r i a l i s o b t a i n e d i n t h e form o f a powder, w i t h a g r a i n s i z e of a b o u t 20 pm ( f i g . 3 ) ; s u c h m o r p h o l o g i e s h a v e o f t e n b e e n d e s c r i b e d i n t h e l i t e r a t u r e . On t h e c o n t r a r y , i f m i l l i n g i s p e r f o r m e d i n v a c u o

,

t h e m e t a l l i c powder s t i c k s t o t h e v i a l a n d g e t s c o m p a c t e d i n t h e f o r m o f a c o n t i n u o u s m e n i s c u s which c o v e r s t h e b o t t o m o f t h e v i a l ( f i g . 4 ) . I n t h i s c a s e , o n l y t h e t h i n n e r p e r i p h e r y o f t h e f o i l i s f u l l y amorphous. The c e n t e r p a r t , 2 mm t h i c k i s amorphous i n t h e u p p e r p a r t o n l y . A s u s u a l , some t u n g s t e n c a r b i d e c o n t a m i n a t i o n i s o b s e r v e d when u s i n g t h e WC b a l l .

A t s t i l l l a t e r s t a g e s (>l00 h o u r s ) , t h e e v o l u t i o n o f t h e compound depends d r a m a t i c a l l y on t h e a t m o s p h e r e . Under some oxygen p a r t i a l p r e s s u r e , t h e a l l o y s decomposes i n t o t h r e e d i s t i n c t p h a s e s : Z i r c o n i a , p u r e N i c k e l and

(7)

C4-278 COLLOQUE DE PHYSIQUE

an unidentified intermetallic compound.That the oxidation of amorphous ZrX alloys (X= Cr, Cu) leads to the rejection of X is a well established fact

/ 4 / . More unusual is the observation that, in vacuo

,

the structure obtained

at earlier stages remains stable : the metallic foil still covers the bottom of the vial. Whether or not the thickness of the amorphized layer increases with milling time is not yet clear.

Fig. 4 : Meniscus obtained after 130 hours milling with WC ball under good static vacuum.

C) amorphized zone

A) mixture of amorphized and crystallised zones

4

-

DISCUSSION AND CONCLUSION

We have proposed a very simple analysis of energy transfers occurring in ball milling on a vibrating frame, as well as preliminary results on solid state amorphization of NiloZr7 in a modified device allowing for good vacuum to be maintained in the course of milling.

The mechanistic analysis shows that the energy transferred at each impact, by the ball to the material being processed, scales with mA2w2a, and that the impact frequency goes as wA/g.

(8)

A l t h o u g h v e r y p r e l i m i n a r y , t h e p r e s e n t r e s u l t s p o i n t t o t h e s t r o n g i n f l u e n c e o f t h e e f f i c i e n c y f a c t o r

a.

A Q S b a l l i s s o f t e r t h a n a WC one, by a b o u t a f a c t o r of 4 : f u l l a m o r p h i z a t i o n i s more d i f f i c u l t w i t h t h e l a t t e r b a l l . Wether t h i s d e c r e a s e o f e f f i c i e n c y c a n b e compensated u s i n g a h i g h e r v i b r a t i o n a m p l i t u d e a n d b a l l mass a s p r e d i c t e d by e q . 7 r e m a i n s t o b e a s s e s s e d .

A l s o , t h e good vacuum we c o u l d m a i n t a i n i n t h e p r e s e n t d e v i c e , a l l o w s f o r t h e d i r e c t o b t e n t i o n of m e t a l l i c amorphous f o i l s i n t h e v i a l .

Acknowledgements : The a s s i s t a n c e o f D r s . B o u l a n g e r , Maurice a n d S a p i n i n p e r f o r m i n g t h e TEM, SEM a n d X r a y d i f f r a c t i o n a n a l y s i s , i s g r a t e f u l l y acknowledged, a s w e l l a s u s e f u l d i s c u s s i o n s w i t h P r . Bakker and D r . G a f f e t .

R e f e r e n c e s

/ l / MARTIN, G . a n d GAFFET, E . , t h i s i s s u e .

/ 2 / MECKING, H . and ESTRIN, Y . , S c r i p t a Met. U (1980) 815.

/ 3 / f o r a d i s c u s s i o n , c f . MARTIN, G . , Ann. Chim. F r .

h

(1981) 46.

/ 4 / BAKKER, H., LOEFF, P . I . and WEEBER, A . W . , D e f e c t and D i f f u s i o n Forum, 66-69 (1989) 1169.

MIZUTANI, U.and LEE, C . H . , J . M a t . S c i . ,

E

(1990) 399.

Q U I V Y , A., ThGse, P a r i s (1986)

.

Références

Documents relatifs

A first step was the preparation of alloys based on the Fe-Cr vacuum in jars after studying beforehand optical microscope and the scanning electron microscope morphology of the

We were able to highlight the influence of some milling parameters on the morphology, size and distribution of various powders constituting our alloys based on

If the table tennis ball were at its equilibrium buoyancy position at the moment of impact, this substitution would precisely take us back to the case of a flat water surface (see

The detector has the shape of a spherical shell with a free inner radius of 25 cm and a thick- ness of 20 cm and comprises 162 individual modules of equal solid angle..

As the ball slows down owing to drag, its trajectory follows an exponential spiral as long as the rotation speed remains constant:.. at the characteristic distance L where the

In particular, estimates (3.10), (3.11) and (3.12) (with ν = 1) should be compared with the results on the monochromatic inverse scattering problem obtained by H¨ ahner, Hohage

For example in dimension 3, if one takes the regular simplex and that one moves symmetrically two vertices along the geodesic between them to make them closer and if one does the

Additionally, segregation of nitrogen at defects in the bulk {footnote: Segregation of interstitial atoms to one- and/or two-dimensional crystal defects contributes to an apparent