• Aucun résultat trouvé

Entropy production far from equilibrium in interacting many-body systems

N/A
N/A
Protected

Academic year: 2021

Partager "Entropy production far from equilibrium in interacting many-body systems"

Copied!
32
0
0

Texte intégral

(1)

Entropy production far from equilibrium in

interacting many-body systems

Sven Dorosz

University of Luxembourg

(2)

Far from Equilibrium

within a non equilibrium steady state (part I)

relaxation to a non equilibrium state

(3)

Table of contents

1

Models and Properties

2

Steady State Fluctuation Theorem

3

Rate Functions for Entropy Production

4

Analyzing Fluctuation Ratios for φ

5

Conclusion

(4)
(5)

Stochastic Systems

M

1

M

2

M

n

ASEP

A

+ A

λ

h

A

+ 0

A

+ A

λ

ε

λ

λ

A

+ 0

nA

λ

ε

λ

λ

n0

0

h

ε

h

h

A

0

h

ε

h

h

A

Table:

The back-reactions are taking place with rates ε

h

h

and ε

λ

λ, with

(6)

Markov Dynamics and Master Equation

d

P

(C

i

, t)

d

t

=

X

C

j

6=C

i

[ω(C

j

→ C

i

)P(C

j

, t) − ω(C

i

→ C

j

)P(C

i

, t)]

K

s

(C

i

, C

j

) = ω(C

j

→ C

i

)P

s

(C

j

) − ω(C

i

→ C

j

)P

s

(C

i

)

if K

s

(C

i

, C

j

) = 0 ∀i , j then detailed balance

(7)

Stationary State Probabilities

0 50 100 150 200 250 0 0.01 0.02 0.03 0.04

P

s

(C

i

)

0 50 100 150 200 250 0 0.005 0.01 0.015 0.02 0 50 100 150 200 250

configuration C

i 0 0.005 0.01 0.015 0.02

P

s

(C

i

)

h=0.2 h=1.4 0 50 100 150 200 250

configuration C

i 0 0.005 0.01 0.015 0.02 (a) (b) (c) (d)

(8)

Stationary State

K

=

X

i ,j

|ω(C

j

→ C

i

)P

s

(C

j

) − ω(C

i

→ C

j

)P

s

(C

i

)|

0 1 2 3 4

h

0 0.2 0.4 0.6 0.8

K

M1 M2’ M2 M3 0 0.2 0.4 0.6 0.8

ε

0 0.2 0.4 0.6 0.8

K

M1 M2’ M2 M3 ε=0 h=1

(9)

Stationary State

Steady State Fluctuation Theorem

All parameters are held fixed

(10)

Steady State Fluctuation Theorem

s

tot

= ln

Y

{i }

ω(C

i

→ C

i+1

)

ω(C

i+1

→ C

i

)

+ ln

P

s

(C

0

)

P

s

(C

τ

)

= s

m

+ ∆s

P(s

tot

)

P

(−s

tot

)

= exp(s

tot

)

(11)

Dissipation and Length Scales

(12)

Stationary State

-20 -10 0 10 20 30 40

s

tot 0.0 0.5 1.0 1.5

p(s

tot

)

-20 -10 0 10 20

s

tot -20 -10 0 10 20

ln[p(s

tot

)/p(-s

tot

)]

(a) (b)

(13)

Entropy Change

(14)

Numerical Method

L

µ

= −

X

j

ω(C

j

−→ C

i

)e

−µ ln

ωω(Cj →Ci ) (Ci →Cj )

− r (C

i

)

= −

X

j

ω(C

j

−→ C

i

)

1−µ

ω(C

i

−→ C

j

)

µ

− r (C

i

)

(15)

Numerical Method

Properties of the LDF

ν(µ) = ν(1 − µ)

h˙s

m

i = dν(µ)/dµ|

µ=0

(16)

Mean entropy production rates

0 0.5 1

α

0 2 4 6 8

<d

t

s

m

>

0 1 2 3 4 5

h

0 5 10 15

<d

t

s

m

>

0.2 0.4 0.6 0.8 α 0 100 200 300 - d 2 α <d t sm > (a) (b)

(17)

Numerical Method

Properties of the LDF

χ(σ) = max

µ

{ν(µ) − h˙s

m

iσµ}

χ(−σ) = χ(σ) + h˙s

m

(18)

Rate functions

-20 -10 0 10 20

σ

0 50 100

χ(σ)

-1.5 -1 -0.5 0 0.5 1 1.5

σ

-10 -5 0 5 10

χ

(σ)

(a) (b)

(19)

Rate functions

-1 0 1 2

µ

-0.2 -0.1 0.0 0.1

ν

(

µ)

-2 0 2 4

σ

0 0.5 1

χ

(

σ

)

-4 -2 0 2 4

σ

-0.5 0.0

χ

’(

σ

)

-4 -2 0 2 4

σ

0.00 0.25 0.50

χ

’’(

σ

)

-4 -2 0 2 4

σ

0.012 0.013 0.014

χ

’’(

σ)

(a) (b) (c) (d) (e)

(20)

transient processes

the system is driven out of its steady state

by a time dependent reaction rate

(21)

The Jarzynski relation

System S described by a Hamiltonian H(λ)

h(t) = {h

0

, h

1

, ..., h

M−1

, h

M

}

definition of work W =

M−1

P

i

=0

H(C

i

, h

i+1

) − H(C

i

, h

i

)

he

−βW

i = e

−β∆F

∀ h(t)

The average is taken over all trajectories in configuration space.

(22)

The Crooks Relation

Comparing a process and its time reversed process:

P

F

(W ) = P

R

(−W )e

β(W −∆F )

D.E.Crooks, J.Stat. Phys. 90, 1481 (1998)

discrete case expressed as stationary probabilities

(23)

Three Reaction Diffusion Systems

M

1

M

2

M

2

(24)

Configuration space

M_1, M_2’

λ

h

h

λ

D

D

D

n=5

n=4

λ

h

h

D

D

D

D

n=3

M_2

(25)

Exact Fluctuation Relation for φ

-4 -2 0 2 4 6 8

φ

-4 -2 0 2 4 6 8

ln (P

F

(

φ)/

P

R

(

−φ))

D=1 D=10 -5 0 5

φ

-5 0 5 10 h(t)~ sin(πt/(2M)) h(t)~ t3

(a)

(b)

(26)

Distributions for the Observable φ

-5 0 5

φ

10-4 10-2 100

P

F

(

φ),

P

R

(-φ)

-5 0 5

φ

10-4 10-2 100 -5 0 5

φ

10-4 10-2 100 -5 0 5

φ

10-4 10-2 100

P

F

(

φ),

P

R

(-φ)

-5 0 5

φ

10-4 10-2 100 (a) (b) (c) (d) (e)

(27)

General Fluctuation Ratios for φ

-6 -4 -2 0 2 4 6 8

φ

-8 -4 0 4 8

ln (P

F

(

φ)/

P

R

(

−φ))

D=5 D=10 -2 0 2 4 6

φ

-4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 8

φ

-3 -2 -1 0 1 2 3

ln (P

F

(

φ)/

P

R

(

−φ) − φ

-3 0 3 6

φ

-3 -2 -1 0 1 2 3 (c) (d) (a) (b)

(28)

Conclusion

Detailed characterization of non equilibrium steady states

(NESS) for reaction diffusion systems

Discussion of stationary probabilities

and |K | as a distance from equilibrium

Characterization of entropy production in NESS

(29)

Heterogeneous Nucleation near Structured Wall

(30)

Heterogeneous Nucleation near Structured Wall

(31)

Heterogeneous Nucleation near Structured Wall

(32)

Heterogeneous Nucleation

Références

Documents relatifs

In summary, we have studied reaction-diffusion systems and showed that the absence of microscopic reversibility can lead for transient fluctuation ratios for the observable ␦␾

Explanation of sampling for path generation In order to enhance the exploration of rare states we apply a version of the pruned-enriched Rosenbluth method (PERM), 16 i.e., when

A crucial concept in their work is that of local quantum Gibbs states, which are quantum statistical equilibria with prescribed particle, current, and energy densities at each point

In this section, we recall some known results about the null-controllability of linear and semilinear parabolic systems with Neumann boundary conditions to put in perspective

Far from equilibrium steady states of 1D-Schrödinger-Poisson systems with quantum wells II... 1D-Shrödinger-Poisson systems with quantum

Far from equilibrium steady states of 1D-Schrödinger-Poisson systems with quantum wells

Rikvold, Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: Universality with respect to the stochastic dynamics,

As far as the latter case is con- cerned, it is proved in [17] and Theorem 3.1 in [31] that the nonexistence of solutions of the equation −F (D 2 u) = f (u) in R n (and even in R n−1