• Aucun résultat trouvé

A cosmic pileup

N/A
N/A
Protected

Academic year: 2021

Partager "A cosmic pileup"

Copied!
2
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Skygazing: Astronomy through the seasons, 2018-05-08

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23003330

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A cosmic pileup

Tapping, Ken

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=23c577d6-8e20-4389-88a1-e156885e70e8 https://publications-cnrc.canada.ca/fra/voir/objet/?id=23c577d6-8e20-4389-88a1-e156885e70e8

(2)

A COSMIC PILEUP

Ken Tapping, 8thMay, 2018

All telescopes on the surface of the Earth are limited to seeing what the atmosphere lets through. For looking at short-wavelength radio waves – millimetre waves, we choose high sites, above the thickest part of the atmosphere, and dry ones, because water vapour is a great obscurer of data. One of the driest high places on Earth is the Antarctic Plateau, where most of the water in the air is frozen out. So that is where we find the South Pole Telescope, a ten-metre dish radio telescope dedicated to observing millimetre waves.

This instrument recently picked up something odd. It picked up a radio source which appeared to it as a dot in the sky, but its radiation signature

indicated that dot was a cluster of galaxies. In addition, it was a very long way away. The radio emissions being detected started on their way to us 12.3 billion years ago, only 1.5 billion years after the beginning of the universe, when galaxy and star formation were in full swing.

In order to find out more, the Atacama Large Millimetre Array was pointed at the source. This instrument, also known as ALMA, is an

international project, in which Canada is a member. It is located on the cold, high Atacama Plateau, in Chile. ALMA is a millimetre-wavelength radio imager, and probably the most complex radio telescope in the world. It resolved that dot into a cluster of fourteen galaxies, all heading for each other and for a very big collision.

Galaxies start off small – by cosmic standards – and grow by colliding and coalescing with other galaxies. Then the ones that have become big continue to grow by swallowing the smaller ones. Our galaxy, the Milky Way is surrounded by stars and shreds of gas left from past meals. There are two nearby galaxies – the Large and Small

Magellanic Clouds, which are probably destined to be assimilated at some point in the future.

The Milky Way is about 100,000 light years in diameter, and contains about 250 billion stars. In about four billion years, it is going it collide

head-on with the Andromeda Galaxy, which is similar to the Milky Way but a bit bigger.

A collision involving fourteen galaxies sounds like a good subject for the ultimate disaster movie. However, as in the case of collisions between just two galaxies, the event will be spectacular but not disastrous. On average stars are many light years apart. The chance of two stars colliding is remote. It is highly unlikely they will even pass close enough to each other to disrupt their planetary systems. Inhabitants of planets in colliding

galaxies will probably not see much change over a single lifetime. Over millions of years the shape of their “Milky Way” in the sky will change, and so will some of the constellations. The non-astronomical will probably notice nothing much. The main consequence of the collision is that the ramming together of the clouds of gas and dust in the galaxies will result in instability, cloud collapse and a spurt in the birth of new stars and planets.

Large galaxies usually have black holes in their cores. So this discovery shows a stage set for a collision of fourteen black holes, although probably not simultaneously. As black holes move they lose energy by making bowwaves in spacetime -gravitational waves. This leads to them spiralling together and colliding. These crashes cause strong pulses of gravity waves, which we can detect. At the moment we see the cluster as it was 12.3 billion years ago. In a billion years or so, when these fourteen black holes meet, we will have a grandstand seat. By then our gravity wave detectors should be a lot better than they are now. We will also get to see the magnificent, huge galaxy that cluster has become.

Venus is spectacular in the west after sunset. Jupiter rises at 9 pm, Saturn at 1 am and Mars at 2 am. The Moon will be New on the 15th.

Ken Tapping is an astronomer with the National Research Council's Dominion Radio Astrophysical Observatory, Penticton, BC, V2A 6J9.

Tel (250) 497-2300, Fax (250) 497-2355 E-mail: ken.tapping@nrc-cnrc.gc.ca

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in