• Aucun résultat trouvé

Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains

N/A
N/A
Protected

Academic year: 2022

Partager "Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains"

Copied!
49
0
0

Texte intégral

(1)

Article

Reference

Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains

WILD, Rebekka, et al.

Abstract

Phosphorus is a macronutrient taken up by cells as inorganic phosphate (P(i)). How cells sense cellular P(i) levels is poorly characterized. Here, we report that SPX domains--which are found in eukaryotic phosphate transporters, signaling proteins, and inorganic polyphosphate polymerases--provide a basic binding surface for inositol polyphosphate signaling molecules (InsPs), the concentrations of which change in response to P(i) availability. Substitutions of critical binding surface residues impair InsP binding in vitro, inorganic polyphosphate synthesis in yeast, and P(i) transport in Arabidopsis In plants, InsPs trigger the association of SPX proteins with transcription factors to regulate P(i) starvation responses. We propose that InsPs communicate cytosolic P(i) levels to SPX domains and enable them to interact with a multitude of proteins to regulate P(i) uptake, transport, and storage in fungi, plants, and animals.

WILD, Rebekka, et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science, 2016, vol. 352, no. 6288, p. 986-990

DOI : 10.1126/science.aad9858 PMID : 27080106

Available at:

http://archive-ouverte.unige.ch/unige:85715

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

!"# !#$

%&'%! !&()!$*#"!+,' )!'!

+%,-+

& " .! !-/!!-01!.!-" .! !-2#-!

#&34 5

01!.!'-2#-!/&34 5

01!" ,! .! !-2#-!/&34 5

01!.!'-,6" !0# !1 .! !-7 -5

$01!9'-"'-2#-!:7'&34 5

(, '9! /!!-!,! 9 .! !-2#-9! /!!

25;55

* !<9'-% /32#-=-5

+9!1!!>-#51!? 5'@5"5A' 5'!'!?5'@,5)5A 5-? 5'@%5,5A

''!!B -!'-5

'''!C#!!'3!5 1!'-1!!'%%%&!

1! !!!5'##!31 '

$@(DDA>ED(EF!,-FF(3'0< F5(G5ED$D5

(3)

!"# !#$

%&'%! !&()!$*#"!+,' )!'!+

%,-+

& " .! !-/!!-01!.!-" .! !-2#-!

#&34 5

01!.!'-2#-!/&34 5

01!" ,! .! !-2#-!/&34 5

01!.!'-,6" !0# !1 .! !-7 -5

$01!9'-"'-2#-!:7'&34 5

(, '9! /!!-!,! 9 .! !-2#-9! /!!

25;55

* !<9'-% /32#-=-5 +9!1!!>-#51!? 5'@5"5A' 5'!'!?5'@,5)5A 5-? 5'@%5,5A

''!!B -!'-5

"'!1'!!1- !1'!1'@"A5)!3 " # 1!! -'45)31!'&"C!3''

! -! 1'!1' 1! 1! ! 1! -1'!1' 1! -1!#!!! 1! -1'!1' !

@ "A 3'! !! ' 1! ! " # -5 &! ! 1 "!1! -1'!1'-'-

" 1!%!15 1 "'!!!&"C1!3' 1!!! " #!1!51!1!' "!

-!! " # !&"C! '!3' !1!!

"11!!1 5@D3!A

%!#1!! !3 ! 1'!1' 1#!! 1! -1'!1'5@E'A

(4)

"11!! --!11!- 1!!&"C!!!3!5' !@$FEDA !'G!"1!'!1! -1'!1'@1! -"A1! -

! 1!'1!@9A" 1!!!1

!1!@=5&A5,!'&"C!1 '"61!

1 ' 1! 1- " 5' " 1! "'!E* "'!HD

#'&"C!3''-&1 1!'!!3 "1 @=5&A5 1 &"C ! <&")%I &%% <G !I&"<G&I @")A 1!!3''"#!61!" !!

5=!!!&"C!F")!1 61#'1!!!

1!!''61!!#!"!3'

!! 5" -1!!'!!!&"C1!3'")'&"C

!- " # 5

!#&"C!-!!!"311'!!

61 1 1 ' &"C ! @=5 &A5 ' 1- !&"C&@*EA!'-9!1 6@A55D J ! ! @ &A5 & ! ' &"C ! ! ' -!1'!1'!@EA!''1'!1'1!C"@"!!1 ! -!1!# !1!LD*A3! #5H$J5J! ! 1# -5''' '-!'&"C!> !!!3! !

@MEDJA' NN!- !# '@=5%.A5'!' 3! 9 ' N$N(!!'!!!' 6 @=5%.A5 ) 6N(!1#!!!!@=5.&A5'G!'

!! !' '1!-NN# O1!O' 6N11

!@=5%.A5&"C!'! '!! !-3'1!!!3

!@A5

!!# 'G!'&"C' @=59A5

&# # /- -)C" ! ' N N 1 &"C B 1!!'!!!' @=590&A@A5% !

!!1!' !&"C)C" @=50A5&<3''-

!!1 !"!!-'!!/-"'% !' 6

(5)

N - - /-( ! N - /-( ! N @'!1' # ".9A

&"C)C"@=50A5!3'&<#!&"C!!

-!@=5&A'' !! '1#! -"@ A5

G, ! ! 3 -1 &"C& &"C)C" # ; ! " ! M $ D , 1# -@=5I&A5,!!".9&"C&"! !

!'G N' 6@PGA!#'- !! -@=5IA5' - ! ' PG ' !# ' ! &"C ! - '!1''G,!61'&"C!

!!!! '1! 1! -#! #'N' 6@=5%I&

&A5 !! 1!@A3'&"C&!3"

@=5 I &A5 % ! ' &"C ! - ! !# - 'B!" !!!@$- ;&9L/-&*/-&D

/-&A!! ';&9 -!% '!!"@=50I&A5

/ '1-!1'!1'@""A!' -3'&"C&@=5I&A5'

&"C!'! 1!# -' !3'1'!1'!

'!3 1- #-!" 5

!!!'1! !-!&"C!3 -41! -"-'

! -#! 3'' -4-'&"C!9!1 6 -"

# 50 !!' "( ;3''1!!! 1-!1'!1'@"" "A ! 91! -"!@=5&$A@FA5-'4$ "*

;!1!!' 9 -41! -"-'!!

!#DD,@=5%&$A5 !"&<#9! - ! !!

@=5%A5&"C&!'&"C!$ "* "(3'M$DF$DD!! - 3'>!'!--@=5.&&( &A5&"C&

3$ "*Q "( "$ "! "!B -'! ! 9 -41! -"-'@=5&(&* &A5

! &"C!!4$ "* "(3' "(

9#-!#DDR,5' "( !B- 4!61

! - # ! $ "* ! 3'' 3 ! ! - -'4 !3 B5 9!1 6!&"C9 &"C9 # ' "( 3''

(6)

## '-!!!@=59=&E &A5' '' 1 -!'1 '!! !-! @A5'9 '6 1'!1'!1! "( '!'".91!!1-&< '

&"C)C"@=509=&EA5".9;&9!'!'&"C "

@=59=A5%! '-!!3' "( '-'G !!1 -'!!' 6N@=5=A5.! " -' 4'&"CN' '1!5

&!!!# "( $ "* !&"C&

@=5%.&H &A59!1!!&"C& &"C& -

! ' !!1! -"-'-$ "*3' !!/-(&Q/-H&!%

!# -#1! -"1!!@=59A5'91! -"-'!! -&"C

! "! 41#!@A5

'%!1")<&")%I@")<A1!!'! !!''C"" 61!

!! "1!!'!!!''!!"#!1!@A5 "

' &"C%")< !1 ' !!

1'!-1 @A 3''%")<!5;(S% !! 1 1

!3'3 -1%")<!3' '".9;&9PG$'!3

!3'@=50&DA5".9;&91 '#- 1'!-1'' !! -'".9B!! &"C!!!

%")<@=50A5'#!! ! "''!"%")<1 "

'!!5 ' PG$ 1'!-1 ' 1! ! ' 6 N &"C !

!'11!'! "!!! '@=50A5 &'!!"

!".9;&9PG$1 3!1!3 -1 !1 '"61!!'6- !1!'@=5IA5I61!!"

#!31 '!!!".9;&9PG$ !#

63'!1!!!1 @=5=A5' !

!&"C%")<'1"61!'"#! '"5

" 63 !!113' !-!&"C)C"

' "!! !"1!!#!#! !@=5&A@A5

!&"C "(!1 6! !! !!!- 1! @=5 9=A 3'' - # !1! ! " ! -

(7)

!#!'1 T!1! @A !!' - 1!1 6 "'!EDF

"'!E$'!"'!E @A5&"C1!!3''<")1!

!'1!$,"@A5!'<&"C<")$ "*

!! !3 D U, @=5 %A5 G! 3 !- 611!""""""!%"!><&"CQ<")1!! !@=5.

&A5 "( !3'; !M$DU,3'$ "* !3' M* R,-5 !!

&"C&'<&"CF<")!1 6''1!'1-!1'!1'!1 '1!-&"C! # "!!@=5..

&A@A5 "(31'<&"C".91 '' !! "5= -3<&"C!! !

!<")13'! ! !$ "*5!#!!!

>&"C!F1!!!1 63'!!!!M$U,3''

! "!!@=5.A5' "1!!'1!!

1 &"C1!3''1!!5#''"!!'1 -!! -!6DDR, "!" '! 11'-! ! !1

&"C1!@A5'3! 61 3'-%!1 "$3''!

'! "( "" " @A'#'' "!' '!3!#"

#!1!@A5

< - !1' !' - ! 1 ' &"C !

! 1! ' ' ! ! 1! ! "

! @A51!'&"C! "($ "*3'

# !#!'"" "-' # ! >

='"" "$ "*! "(#'-9!1 6@=5%A5&! - 1! -" !11! !!' "(1! 1!1! -"

- ;3''"" " @ A5''1!

'1!!1!1 &"C!'!31!"" "

@=5A5= - "* # "#!-3' "( # !

@A @ &A5 "" "-' ' " -!&"C!"

!! '!3' !1!' "'!!

-! @A51 '''' -1 - !3&"C!! "Q"" "!3''! !#- 1!

$

(8)

#! 1'-! ! 1! @A5 =' - 3 B ! ' 1

! 5<3!!3!1#!1 -1 "Q"" "

-! !!#! !1!&"C!5'" 1'3- 31!1!'-1!# !1'!1'-!11 5

(

(9)

!%

5 ,5/I5<V&'& 1'!1'#!5&'EFE*

@HH(A5

5 559'!&5 5/& G3!&"'!1'%# -" 5 !

"#(&E$FD(@DA5

5 05&!#'1!!'&"C!!1!1'!1' '!!5$%"&')*EFE$@DA5

5 )595)7 .5"!,5& &595:=5,5=!'&"C!

!'- !3-1'!1'1!"'!HD 1!#-5'()!'+

DDFDDE@DDHA5

$5 05)I544!!5,0! 9!"W!95&!# 5"!

!'4!!'%!1")<#! #1'!1' !

!'6- 5"# 5',EEHFHD@DDA5

(5 5/#%#! 1'!1'1! !1'!1''!!%!15

"$# #* ''&I($*FE@D$A5

*5 05!#5!'"59',5&!5/5. !1'!1'61!-'

!#1!C"4!5 !*E((FE*@DA5

E5 ,5)!'!#9 -!!!-!1! -1'!1'1! -5 5*&,$F$(@DDHA5

H5 G5<3#=! !!"'!E1'!!"'!E$11!'

!1'3-!" &'!-#5( '-HH*FDD

@HH$A5

D5 .5&5"5&5&!G5)59'G <IG/ , % <G%0%"% <G

")<&")%I!'"'!1'1!"!0!' !!

%!1"'!1')!!5"# 5&($F(@DA5

5 ;50#9'4!! -!%!13''&"C!

# '#!1 ! !1'!1'!#!5"#+-,H($FH*$

@DDEA5

5 &5#'IC&0!!")<"1'1!!&'!!!"'!1' 0-#!!!&'!!& 5"#"&'.+E$FDD@D(A5

5 0505-!%5)54#5,5.5,! I5;5<V&'"!#=

&3'!"'!1'1!&5#5( 5&.DD$FD@DD*A5

5 5!#%!#,.1!!#! #1'!1'#!

!'# 1 5,-'-F@DDA5

$5 ,5 5"#&"C1'!1'1'!!")<&")%I&%% <G I&"<G&I%!15"$# #* '''H*F$@DA5

(5 :5#&"C&"C'1'!1'#!1!'!' 3'")1'!1'15"$# #* '''H$FE@DA5

*5 /5)! &5;YYY"5!Z%5&' &'1!3' 0 /#55.#5&,*EDF*E@DDEA5

E5 %5/!# !!#! ! -!# -!!1! -1'!1'

!1! -1'!1'5+ &/(H((FH*@DA5

H5 &5.5&' !! 1-!1'!1'>'-!-1'!1'[ !/-.DF(

@D$A5

D5 95%)5!'!,5&'35;!&5)'" 1%E1;1

*

(10)

4-#! #!! 1-!1'!1'-' !1'!1' ! 1! -1'!1' !&'!-#5+ &/+$*F$

@DD$A5

5 ,5%5/!;5,5=!95&5%" '!! !-!' -! !50'1-'**F*(@DDA5

5 G5<350"5<5.!3G3!1!!-!1'!1' ! 1! -1'!1'! &'!-## -!61! -5 ( 5''DHF@DDDA5

5 %5/#,!C"1- !!3' 1'!1'61!5$#,,.$*HFE@D$A5

5 /5.5&'#!11!-!! 1'!1'1!9< %:!

1!5$#5,(/DDFD$@DDA5

$5 5&5/&5, 505!I5;5<V&' !!9- 90;90; '!

9!1 6- !! "-!1'!1'55*'(DHF@DD*A5

(5 \5/##&"CG# - "'!1'& )!!'!' !3'")5"# 5&($E(FH*@DA5

*5 5"#"'!1'@"A#!!'-!! "!!"6'

!'!!1 1 >##!" !- '- 1'!1'!" !5"#"&'-'((F($*@DDHA5

E5 ,50#3!!! '61'!1'#!! 1-!1'!1'-' 1 5"#+/+(F($@DA5

H5 5&#!" 55.&559'!5%5=-505!!!1'-

%!1'!'1!!!! 1! -1'!1'5"$# #

* '+&(F(*@DD$A5

E

(11)

01'5.Y '!' 13' -5"' !1 ! G%<!EE5 %!!!!'#1!3''

"!0.3'!$ @&"C,&!%A$ \@&"C,&! .A$ @&"C&!A$ )@&"C)C"&<A$ @&"C9 "(A$ "@&"C9 "(A5 '&!3'!! !!1-" 61!-5'1!T3 -!'I!1'9! 'I!12!O&#'=3!

"! @="QDD*DA Q I9 % 5 DE$( ' I!1 ,! .! !-

<!@I,.<A! #!"!@!,5)5A'&3G! =DD%

EHDD%$HHHE@!5"5A&G="!!'1""DD"$*(D*@!)555A!I9 5$E&G=$E@!%5,5A50!6131!

"C "C !'&3/'&!" &' 0H

!'I!1&-'!!!= -! =5&11 !!

5

H

(12)

Fig. 1. SPX helical bundles provide a positively charged ligand binding surface. (A) Ribbon diagram of apo SPXScVtc4 with core helices in blue and surrounding helices colored from N- to C- terminus in yellow to red. (B) Ribbon diagrams of the reductively methylated SPXScVtc4(left), SPXCtGde1 (middle) and of SPXHsXPR1 (right) shown in two orientations (colors as in A). (C) Electrostatic surface potential of the SPX domains from (B) reveals the SPX basic surface cluster. (D) A sulfate ion is bound to the SPXHsXPR1basic surface cluster. Interacting residues are shown in bonds representation (PBC, in bold; KSC; in italics), a distant Lys residue (SC) is shown alongside. Residue numbers correspond to SPXHsXPR1 (SPXScVtc2 in brackets). (E) Table summaries for NMR titrations of wild-type and mutant SPXScVtc2and SPXHsXPR1with different candidate ligands.

A D

N

1 3

A

N

C

1 2

3

4

6 5

D

N

N C

C

N

C

N

C

N C

N C 180º

C C

B

E

Protein Ligand Kd [mM]

SPXScVtc2 wt Pi 4.8 0.6

SPXScVtc2 wt SO42- 7.1 0.3 PPi

SPXScVtc2 wt 0.53 0.13

SPXScVtc2 Y22F Pi 47.1 22.5 SPXScVtc2 K26A Pi 19.5 1.7 SPXScVtc2 K131A Pi 9.1 1.0 SPXScVtc2 PBC Pi 93.1 38.4 SPXScVtc2 KSC Pi 6.1 2.4

SPXScVtc2 SC Pi 7.5 1.6

SPXScVtc2 N14 Pi 45.3 3.1 SPXScVtc2 meth Pi 60.5 18.4

SPXHsXPR1 wt Pi 22.8 0.3

E

Y22 K158(127) K26

K161(130)

K162(131) K165(134)

N 1

2 3

44

SC K77(71)

2

3 4

10

(13)

N Y22

K26 K30

K125 K128

K129 K132

K133

22 33

4 5

1 2 3

5

N Y22

K26 K30

K143 K147 K146

K150

22

3

4

C C N

55

1 2

Y22

22

3 4

N

C

2

M1 NNH3+

O

N N N N N NHHHHHHHHHHH

K2 HN

N N NHHHH F3

Y22

K26 K30

2

22

1

2 44

5

C D

E

F

Protein Ligand Kd [M]

SPXScVtc2 * SPXScVtc2 * SPXScVtc2 SPXCtVtc4 SPXCtGde1

0.05 ± 0.002 0.04 ± 0.001 0.44 ± 0.19 0.07 ± 0.02 0.28 ± 0.02 5-InsP7

InsP6 InsP6 InsP6 InsP6

B A

0.25 SO4

2-

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 5-InsP7

InsP6

Pi

0.0 0.5 1.0 1.5

0.75 1.25

Ligand concentration [M]

synthesized polyP [nmol/g]

K147 K143

K150 K146

Fig. 2. SPX domains sense InsP signaling molecules.(A) VTC-dependent polyP synthesis by isolated yeast vacuoles in response to increasing concentrations of externally supplied Pi, SO42-, InsP6 and 5- InsP7. (B) Binding affinities of different SPX domains vs. 5-InsP7 and InsP6 by isothermal titration calorimetry and microscale thermophoresis (indicated by an*) (± fitting errors). (C) Ribbon diagram of SPXCtGde1in complex with InsP6 (in bonds representation, colors as in Fig. 1A) and including a 2Fo– Fc

omit electron density map contoured at 1.5 . (D) Close-up view of the SPXCtGde1 with InsP6 – protein interactions depicted as dotted lines. (E) Ribbon diagram and close up view of the SPXCtVtc4 – InsP6

complex. (F) Rotated view of the SPXCtVtc4 complex highlighting the interactions of InsP6with main- chain atoms of helix 1.

11

(14)

wt (PHO1 wild-type)

PBC (Y23F/K27A/K319A)

KSC (K315A/K318A/K322A)

SC (K136A) N15 pho1 - empty vector

D

0246810Pi content [mol Pi /g FW]

WT PBC KSC SC N15 pho1

WT PBC KSC SC N15 pho1 SPX3/ACT2 0.000.040.080.12

WT PBC KSC SC N15 pho1

MGD3/ACT2

WT PBC KSC SC N15 pho1 IPS/ACT2 02468100246810

E

F B

semi-conserved lysine structural control (SC) lysine surface cluster (KSC) phosphate binding cluster (PBC) ScVtc2 Y22 K26K30 K71 K127 K130K131 K134 ScVtc3 Y22 K26K30 K70 K126 K129K130 K133 ScVtc4 Y22 K26K30 K66 K129 K132K133 K136 CtVtc4 Y22 K26K30 K76 K143 K146K147 K150 CtGde1 Y22 K26K30 K65 K125 K128K129 K132 OsSPX4 Y25 K29K33 R85 K151 K154K155 K158 AtPho1 Y23 K27K31K136K315 K318K319 K322 HsXPR1 Y22 K26K30 K77 K158 K161K162 K165

A

0 0.5 1.0 1.5 2.0

-20 -15 -10 -5 0

0 500 1000 1500 2000 2500 3000 3500 4000

0 0.5 1.0 1.5 2.0

Corrected Heat Rate [μJ/s]kJ/mol of Injectant

Time [s]

Ratio

SPXScVtc2 KSC Kd = 60.6 ± 11.8 M SPXScVtc2 PBC Kd = 21.0 ± 4.0 M SPXScVtc2 wt Kd = 0.44 ± 0.18 M

C

synthesized polyP [nmol/g]

wt/wt Y22F/Y22F

K26A/K26A K126A/K129A

K130A/K133A K133A/K136A

time [min] time [min]

no ligand 0.5 M 5-InsP7

0 5 10 15 20 0 5 10 15 20

0.0 0.2 0.4 0.6 0.8

0.0 0.2 0.4 0.6 0.8

Fig. 3. Mutations in the SPX InsP-binding site affect polyP synthesis in yeast and plant Pi

transport and Pi starvation signaling. (A) Isothermal titration calorimetry of wild-type and of PBC and KSC mutant SPXScVtc2 vs. InsP6 (± fitting errors). (B) Table summaries of the conserved surface cluster residues in the different SPX-domain containing proteins used in this study. (C) PolyP synthesis by isolated vacuoles carrying VTC complexes with corresponding substitutions in the SPX basic surface clusters of subunits Vtc3 and Vtc4 and in the presence or absence of 0.5 M 5-InsP7. (D) Shoot phenotypes of 28-d-old T2 pho1-2 transgenic lines, carrying promPHO1::PHO1:GFP (labeled wild- type) or its mutant variants. (E) Shoot Pi content of the transgenic lines from D. (F) Normalized relative expression of selected Pi-starvation induced genes in the different pho1-2 complementation lines.

12

(15)

protein ligand Kd [μM]

OsSPX4/OsPHR2 OsSPX4/OsPHR2

OsSPX4/OsPHR2 OsSPX4/OsPHR2 OsPHR2 OsPHR2/5-InsP7

OsSPX4-PBC/OsPHR2 OsSPX4/OsPHR2 OsSPX4/OsPHR2 OsSPX4/OsPHR2

7.0 ± 1.0 n. d.

49 ± 13 n. d.

n. d.

11.2 ± 3.3

n. d.

n. d.

n. d.

80

0.3 ± 0.1* 2.5 ± 0.4* 5-InsP7

PPi

InsP6 Pi OsSPX4 OsSPX4

InsP6 PPPi

ATP 1,3,4,5,6-InsP5

OsSPX4/OsPHR2 OsSPX4/OsPHR2

5-InsP7 InsP6

A

OsSPX4-HA OsSPX4-HA OsPHR2

OsPHR2 HA-beads

20M ligand

input M PD

+ - -

+ - -

+ + InsP7

+ + Pi

+ InsP7

-

* *

< <

*

<

Corr. Heat Rate [μJ/s]kJ/mol of Injectant

B Time [s]

-20 -15 -10 -5

0 500 1000 1500 2000 2500 3000 3500 4000

0 2 1 0

1.0

0.5 1.5 2.0 2.5

5-InsP7 vs. OsSPX4/OsPHR2 InsP6 vs. OsSPX4/OsPHR2 InsP5 vs. OsSPX4/OsPHR2 InsP6 vs. OsSPX4-PBC/OsPHR2

Fig. 4. InsPs trigger the association of plant SPX proteins with PHR transcription factors. (A)In vitro pull-down of full-length OsSPX4 containing a C-terminal HA-tag. Interaction with full-length untagged OsPHR2 in the presence of either 20 M 5-InsP7 or Pi, respectively. (B) Isothermal titration calorimetry of OsSPX4/OsPHR2 vs. different ligands (5-InsP7, black; InsP6, dark-blue; 1,3,4,5,6-InsP5, magenta; OsSPX4-PBC mutant vs. InsP6, light-blue) and including table summaries for different titrations (± fitting errors, n.d. no detectable binding). The * indicates experiments performed by microscale thermophoresis.

13

(16)

!" #$% &# ''(

( # "' (

)'* *#

*

%+

,-!./

0#--/

% -/

-

(17)

( '$%$/#1!

2 !3# 34%%5 45 26%%$/4-7/895 # %% 4/:;<(5 45 = !%'# '4%$5 ' 1!

;+ #0 ' 3 2$/ 4-7->85=

= :(-- 45 ! ' 4( !!5 # 2$/ 6 2$: 4 -7-8:5 22- 4-7:9>5 2$/ 4-!-?,5 2- 4-!-8/5= %'4!5'# ! ;+ #0!#@2/ @:='!

' 1! 8+!

# # A B = 'C#= + AD:-4E,5&D#' 2$/ 6 = 4501+

=#= # -.1/ #

=#=@E;99F9; ,>G% = -;G += =9,H!E!# 4&%5-;

= '# :9 /.99+# /G= =A !3C#0 =!

4.9%I>8.991 :H! JH!K9-L 4'I'5&(D-#:.99%1 4A$5:

& 455 = 0+!,4('5D = # >999+# /G-% = .D% 1:M 4 5== =.

'4$5.$ 4:99B:@/IB:@/

>8:H!5.$# 4.9%I>8-1 : :

(18)

H!5=:$2 # # = :.9 3 89 ' 1! ;+ #=' # %$

-)-99 -; /G% # ;+! ##%$ = ' C1:M %! #= ' 8+ ## #= @2/

@: 1:M # = 3 # 3!+ # 454:9I1 @

>9,991 9.%5-; /G = + >. :;I;9 4 5 = = !3C1: !89 G

$/2!%%(' ##

-.ND4/.#ID:9I1 @

>9:.91 -E%(9.4:! +54%55 -.ND 3 4-.D:@/9-I1 @>.5' 9/D ' = ' = -. L 4'I'5 # 3 C

# + # 4 A5 = #= -:

#ID-.41/5:@//L-9999-I1 @>. ! # :.L4'I'5A ,O !2&&I&&&=D#

4D5$#=3 ( 2$/ = ! ' 3 = :(-- ' 4-9#ID:9I1 @;.,99 1 9.%5%2! 3-?L4'I'5 ,,.99-41/5:@/9-I1 @;. = 3 #-.L4'I'5#!

:-, O ! &E:? 0 405 ,

(19)

0 1+ 22-4.#ID:9I1 @>9 :>.1 9.E%(5 -/41/5:@/-;L4'I'5#9-

%I8. = ## ,9 L4'I'5%22- 3 !

# :/,O 0 !&E:?(#&;+

= 2-4-,.#ID:9I1 @>9:99 1 9:.%-9&;5#= ## #:.L4'I'5 ,,.99-41/5:(9-A!%I;.Q #-?.O D 2&&& ! 3 #:.L 4'I'5 #% # $/ # +=&;)2$/ -9#ID:9I1 @>9 :991 9:.%-9&; 3-,L4'I'5,,.9;L 4'I'5 % .9 -. L 4'I'5 = 3 !(# :>.

O= # ! D !2&&&E # #=2E45

% $/ 2!%% 2! = ' # # (45 # '%%4EA!&E,#,5 --4EA!&E-3,5 ('22-2$/ 2-

= #' ' 2$/ R/ R. %

= ' #@@%45 %D AS%4 #D5( = 45 + 3 % - =

@$&%M 45 =# @$("4)II===' #5 = =# (A45 =45

/

(20)

0 2$: 22- = 1 +3 .!&> =

&; ' & # 3 01+-.1! 2$:= = AB # = -9#ID 14:.I1 @>9:.91 -E%(9.%5 .9TDE:@= /.9TD%U1-/ = 01 :.1 :@/I1 :@/ >9

= 9-..-9:9 /9 -99 = 1 :@/

&;= 999:.99>.9:9/ - '' # &;

### &; ' ##2%

= + ( = :?8 B ;993 A($&&&!;99%#

1 +

= '# #+ 0 # + !-.1!V JS!-.1K 2$:

# = 45 -!-.1!V =

=-:840-5-9:/40:5+ =,;.9340-5

>8-:340:58:/ == ! 9;

#= #%:-4A5= 3#:.;40-5

= = = ,--.

45= #C

=WX WX1 - -.1

'E 4B5=#

.

(21)

= JDK # JK +

+ =

!"#

-!1 = A/993 :?8B ' E =) 4X 5 4#QQQCC Q'

# Q # 5 # 45 4 35 # ( # = '# 4E,X>:;QE:@X/>?QE,@E X,,-QE@!;X:.95 ,-J-K!1 ,-!1 =

= -!# -#A-;:3:9:3 :?8B ' ( # = 45-,J-K!1 ==-!#A-9- -:.3 :?8B '(# = ' # 4E, X>>9Q E,@E X /?9Q E@!;X,?.5 =0# (%?.

ACDA 2V% 0# %V>99

% 0#-, 0#-/

%= 3 #!

( = =' 45

! "

-99#49:>-9C5 $ ;.;#4:/;?C5

!+#$#! 42!(5=' = 14:D5%= '14:D5 E04-D5%

:?9#4:/;?C5E&= # =

;

(22)

,-!1 ( 4-. 5 + = '= /:/#4:/;?C5A(4>9L=

= 5 9G% += ' %=

04# )@(@(I@:9)-5#,:.#%

49:./?,L5-14/993:?8BE,XI5)>,/!>-;4:95 .>-!..94/5./>!.:?4.5.:,!/?;4-.5/8;4%F--.?93 -5//.!/::4/5,;94%F-:93-5:8/!:;,4/5Q,-Y-Z1 4-;:3:?8BE,XI5)!-,?!::9!:.>!,--Q,-14-;:3:?8B E,XI5)!-9.!!->,45!-?,!!:/-45!:/-!!:8>45!:8?!!,,;45Q

4@:@()@Q8)-59.Q4&5 .:./1:1 :@:/; J4M:1 5:MK

;;-9;,8;;-9;,,

&'(

+ %-->#499?:-9C5= '14:

D5/8TD49,;>/9C5EAS= = 8/TD 49,>/9C5A%0(4#$)&A45 5 %

= -. % = %D(

8.TD49,>/9C5@ :.TD49,>

/9C5%0(= %+= -9 ' %= 14:D5;/#49-8 :9C5!3#$#! /,9TD49/.

19-8::9C5-*! 3= %= -.

=49[5# =

,-1( + = '=

,:#49-8:9C5A(4>9L== 51=

' = :@4'# /G5

% = + 48.#99.,.8L5%

!-8 # 4= I@,)-6-):'I'5- 14/993:?8BE,XI5)-9;-4EAS5>,:!>9/4:85;?84 :5.>?!/>,4,95/9,4EAS5,,-!:?>4EAS5:.84-5-?.4 EAS5->,!-984EAS5Q,-Y-Z14-;:3:?8BE,XI5)!-?/

>

(23)

!:;-!-9;84 % F-,;35!-:/94 % F-/935Q ,-14-;:3 :?8B E,XI5)!-,>!!::>45!::>!!,-;45!-9-9!!--9.45!-:/94%F -:; 3 -:; 35Q 4@: E)@Q 8)-5) 9,Q 4&5 ;9;9@:>>4!5-/:?-/?--/:?-.9?

&'(

% '= % 89 :4:!,5 / :4;!>5-.#4?.

T-9C5 .!!&.& =' + !A@

= 4/)--9D5 88#499?.--C51 @, -/#I 4-/, T-,C5= % += / :4/ 5 = 4::D5= %# = :.% = '# = ==

C = 3! 3

= I .!!&.' 4;:#8,>

T \ 88L + = F

>/99-Q ];/L4;9/T5-,1 MQF-9:.>8 =

= 5 -14.993:?8B +X I5)/8:4%F?83%F?83-5//84%F?.3%F?.3%F?.

3-5//.4%F?.3%F?.3%F?.3-5/:.4%F?.3%F?.

3-5/--4:5Q ,-Y-Z14-;:3:?8B+XI5,,>

:?;:-8!/?;!8,;4 % F-8:35Q 4&5 ;->@:>> 4:!5 ,;8?9;;,;8?9;.

"(

0' =#=-D"E ,9['#

' @E;99 98!-? ' = 45$

=A #A(

' ' = 45%= !99/#I'

8

(24)

= 4-9IB@;8-.9B9.

::995 # (%!# #4-(%!#:/9 9:.#I 5 :>[

9.N.!&>( 89N C=+=

-;9N4-9IB@;8-.9B:99-:

E%(9-.L4'I'5%2!-99 -.NE(&5 ?;!=

= =C -.

!E(&+= %( +&1&2 4 E'5#^+F/-.^F..94F.,95 :>[

% 3= ' =

!;94#&5 '+

N# ' % + # += =

# &+#= ,99 _# B # % = # ' 99:#I40#:(5999.#I40#>5(

-9 :>[ = = % -99=+=-99

= _;8=1 @ = # &; = -/.!&,-/.;!&/ -,/.;!&.=

")"*

&%+=# 1 &% 4%(&5

= 3 # &%4:9I1 @>9:991 9:.

%5 += :.[-9TD&; :>9 T := _/9T=! 2$:'%

&.&/&,1 1 #= # # :# :99T=!2$:& 2$/

=-9T'-99T&;02-

;9T= 3 # &% #,991 # /99T&; @: .9T @2/

?

(25)

4>.T5= -9TD&# 4.99T5(%4:

51 4:51 4.51 4.5=_' -.9( # # &%

= 3 # 1 ( 3 E ( = ' %# @2/@:= _#

@2/4.99T5 @:4.9T5 -99T.!&>&;1 1 = # &.

&/&,=

)+*

A# &; .!&> 2$: = .9 = = .9 1%(!@#

/8845-. #:.I1 @>9:.9 1 9-#IA(99.L%=!:9%+= #-9 ::999 +# ' ### + =

# = % += 1%

41 % %# 5 % = # 1%--.41 %%#5 =.I,9I. II'%DE=

= .9L% == ,9L %M%! # ,+= #!#C # .= 1# ! ## = '

% &; .!&>#@2/!@:+@:

= ' # ` D # B E!(D&&E 41 %%#5-99 @:= +=-99 @2/ #:9%I89-.9B 9:.%9-#IA( 99.L%=:9%+= # -9 ::999 +# + = # =

= '+ DE==

:9L % == .9LD# ! # -9

(26)

+-:LA #!%M%! # , += #!#C &; =

, -&-'+.

" = A"/>/: U': U', U'/

" A"/>/:':))DS:',)) 1%:'/)) 2=

A"/>/:'/)) 2 4 5 # # $%: $%,#= # 45!

$%, $%/ # # = # # ,9; ,9, ' E ## C' $, $/= ##=2 $%+

' ' ==

##$ > =/9!?9L'

=!$,I$/4=I=5% ' = $% '

/ 01$2

( # ## #@- 0

;+!&& #= E,: 45' # :-

@- =@-2 =

#&!0#%#=

( & # ,- . $,-9- 45%: # = # # ! #,9T#I#> = #= = I#-9I-/ # -.9Na6:6- '=

45D 3 @-!0=

# bD>99 4b 5= (

--

(27)

;,c E&_'= -:1(& #=#1&

& # = % 3@-+' = # ! # =!

# -.!:9 D !# # # C -L #

=+ #3:. /[+ # -9 >/,99-.91 .E%(.

%(-E%%:91 0 -c 4E%(

5 -9 ! = % =

#. ;999+# # = # #

;9 :-999+# 0# = E!( ( !$E0 4 5% %%(!04-).999 5 # ! &#! 4 3 A# S( -)>.99 5= #=A# 4(' S(5

# = # & #V %D& #0 + '( (/ 012 #C!%!>

##=! # ! = ' 1(=

V ' !%! = # #+,99.`

C 4 # D S(5 "A + 4(

A50 3 # ,3'#=

,!.=C+

!3

!==# !#@2/4-!,:95 # ! (! # T( ( # 4A5@ 89TD !( :T#@2//T#

!# ##@:4-!/:;5:9T# 4.!&> 5:9

%I89-.9B9.%9.L4'I'5&(D '- D += ,9 /[ #=A

= # = = =.+:99TD= # -:

(28)

4:9%I89-.9B9.%9.L4'I'5&(D

=:9T.!&> 5 >9TD 4?.[5 E = 3E(#:T#@2/!(

/T#@2/!( #

"#(

=#=45=

:/ ,9[ =.NI J-:!

,415K4;9I5%=#=-8!:9 ,9[ @E;99

9/!-9=# 4-899+#, 5

= == !

=.NI J-:!,415K @E;999.(-9 C

= =-9B:@/ : ,9[

! '%= : -9 '= = =%=

= =='#= !89[

+ -9B:@/ = #-9 = - 3 !&

=+ =@/ !+ #D 45% '&> &; = %&; &> = ## ' ,!

&; = C1141=# 1 5 ,!&> = #&;B- '45

-,

(29)

+

2

(" #+ 3 '!= &%

3$% % ( ++ & $% 31+

(# 3 @- +&

3.!&> $%"( 3 ( = (

+

,- 3$% %4 %45:,,/86;94:9-.5

,: B #+B3(D # 0 4 $%

;:/6;:.4:99.5

,, 1 =#b! D)II+#I-9-9,8I:99>:8>4:99>5 ,/ B %, -%6>?.68994-??,5

,. ( %, -'5;.86;>/4:99>5

,; B= , -24 -65:-:;6:-,:4:99/5 ,> &E ' #,5& ,>.6,8,4:99>5

,8 %E0E#(%, -&6?//6?/>4:99,5

,? 1(A E ( ( # , 6,47

-99,>6-99/-4:99-5

/9 0 ( @ 4 &7,9.6,:94-??;5 /- %EE B %4 #05&&:/,6:.?4:99.5 /: & '' ,-7'- '?;::6?;:;4:9-.5

/, d "E#f(( %$%#.9?,6.-9/

4:9-/5

// D '% h %, $%7:,;.6:,>:4:99;5 /. 8 %$?/>6?;:4:99/5

/; ES ( ( $&&/;:6/;?4:99,5 /> #(0A( %$6>,.6>/,4-??85

/8 A(0 97--.6--84-?;;5

/? (3'( # ( $:/-;6:/::4:99;5

.9 (3'(AA1@( 0 0 4 #%

6' >,68.4:9-95

.- B 4 %%:.>>6:;,>4-?8,5

.: % 5:, - - + -5;

-$< $, 4&A1,!?999.-!9>!9:9-/5

., ( %4 4:9-;5)-9-9>/I_--;>-/?9>

./ ' 1', -24 -64-:9/6-:-/4:9-,5

-/

(30)

Pi

A

Pho87

Pho90

Spl2

PM nucleus

cytoplasm

Pho81

Pho85 Pho80

PHO5 Pho4 Pho2

vacuole PiPiPiPiPi

PiPi PiPiPi

Vtc4

Vtc2/3 Vtc1

extracellular

SPX SPX

SPX

SPX

SPX

Pi Na+

Pi Na+

Pho89 SPX

Gde1

Pi

Pi Pi

Pi Pi Pi

Pi Pi Pi Pi

Pi

TTM TTM

vacuole

Spl2

C

PM extracellular

XPR1 Pi

Pi

cytoplasm SPX

Pi Pi Pi

B

SPX NLA PHO2

Ub

PHT1;1

PM

PHO1

cytoplasm

nucleus

Pi Pi Pi Pi Pi

Pi

SPX1

PSI PHR1

apoplast

Ub

SPX

SPX

Ub EM

Pi Pi Pi

SPXSPX-MFS

Fig. S1. SPX domain-containing proteins are involved in Pihomeostasis.Schematic overview of SPX-domain containing proteins:

The name SPX refers toSYG1 andPho81 from yeast, and mammalianXPR1, all of which contain an N-terminal SPX domain (http://www.ebi.ac.uk/interpro/entry/IPR004331). (A) Yeast: Piis taken up via high- (Phosphate metabolism 89, Pho89) and low- affinity phosphate transporters (Phosphate metabolism 87, Pho87;Phosphate metabolism 90, Pho90). Their SPX domains interact with the Spl2 protein (Suppressor of PhosphoLipase C 1 deletion). The cyclin-dependent kinase inhibitor Pho81 regulates transcription of phosphate-regulated genes (such as the PHO5 gene) via the cyclin-dependent kinases Pho80/Pho85 and the transcription factors Pho2 and Pho4. The glycerophosphodiesterase Gde1 liberates Pifrom glycerophosphocholine.TheVacuolar TransporterChaperone (VTC) complex generates polyP for Pistorage in vacuoles. TTM (TriphosphateTunnelMetalloenzyme). (B) Plants harbor SPX domains in Pi transporters such as PHO1 (Arabidopsis PHOSPHATE 1) and SPX-MFS (Major Facility Superfamily, http://www.ebi.ac.uk/interpro/entry/IPR011701), and E3 ubiquitin ligases (NLA, NITROGEN LIMITATION ADAPTATION), which themselves controlPHosphateTransporter (PHTs) protein levels. Plants also contain small, stand-alone SPX proteins, which interact with Pi-responsive PHOSPHATE STARVATION RESPONSE (PHR) transcription factors. Pho2: E2 conjugase. PSI:Phosphate-starvation induced genes. (C) The only SPX domain-containing protein in mammals is the phosphate exporterXenotropic andPolytropic retrovirusReceptor 1 (XPR1). PM (plasma membrane), EM (endomembrane).

15

(31)

α6

α5

α3

α2

α4

ScVtc2 1-182 M-LFGVKLANE---VYPPWKGSYINYEGLKKFLKEDSVKDGS---NDKKARWDDSDE-SKFVEELDKELEKVYGFQLKKYNNLMERLSHLEKQTDTEAAI- ScVtc3 1-182 M-LFGIKLAND---VYPPWKDSYIDYERLKKLLKESVIHDGR---S-SVDSWSERNE-SDFVEALDKELEKVYTFQISKYNAVLRKLDDLEENTKSAEKI- ScVtc4 1-178 M-KFGEHLSKS---LIRQYSYYYISYDDLKTELEDNLSKNNG---QWTQELE-TDFLESLEIELDKVYTFCKVKHSEVFRRVKEVQEQVQHTVRLL ScPho90 1-322 M-RFSHFLKYN---AVPEWQNHYMDYSELKNLIYTLQTDELQ---- ---DTY-DTFVGDLTAEKQKVDDFYKRTEAKFYDKFDALVKDLKKI-GVI CtVtc4 1-197 M-KFGQQLRSS---IIREYQWHYIDYDGLKADLKRASG--- PPRREWTEDDE-SRFVSKLEAELDKVHAKQQVKAMEISRRIAVSEREVQDVVGRL CtGde1 1-184 M-KFGKNLPRN---QVPEWAGSYINYKGLKKLVKAAAESAKD----GQP---VDL-AEFFFALDRNLEDVDSFYNKKFADACRRLKVLQDRYGTTPEVV OsSPX4 1-206 M-KFGKDFRSHLEETLPAWRDKYLAYKSLKKLIKNLPPDGDP-PPV ---ALG-NWFARVLDMELQKLNDFYIEREEWYVIRLQVLKERIERVKAK- AtSPX1 1-191 M-KFGKSLSNQIEQTLPEWQDKFLSYKELKKRLKLIGSKTAD-RPV SVGISKEE-INFIQLLEDELEKFNNFFVEKEEEYIIRLKEFRDRIAKAK--- AtPho1 1-366 MVKFSKELEAQ---LIPEWKEAFVNYCLLKKQIKKIKTSRKP-KPA QLFSEEDEVKVFFARLDEELNKVNQFHKPKETEFLERGEILKKQLETLAELK HsXPR1 1-207 M-KFAEHLSAH---ITPEWRKQYIQYEAFKDMLYSAQDQAPSV--- ----AKFE-EKFFQTCEKELAKINTFYSEKLAEAQRRFATLQNELQSSLDAQ

ScVtc2 1-182 KALD--A-DAFQRVLEELLSESTELDNFKRLNFTGFAKIVKKHDKLYPKYPSVKSL-LEVRLKELPSHS-E---EYSPLLYRISFLYNILRS--N-FNTAS ScVtc3 1-182 QKIN--S-EQFKNTLEECLDEAQRLDNFDRLNFTGFIKIVKKHDKLHPNYPSVKSL-LQVRLKELPFNNSE---EYSPLLYRISYLYEFLRS--N-YDHPN ScVtc4 1-178 D--F-EILEEELSDIIADVHDLAKFSRLNYTGFQKIIKKHDKKTGFIL--KPV-FQVRLDSKPFFKEN---Y-DELVVKISQLYDI---ARTSG ScPho90 1-322 EY KK-SLLKKSIVNLYIDLCQLKSFIELNRIGFAKITKKSDKVLHLNTRT--EL----IESEQFFKDTYAFQAETIELLNSKI----SQLV---TFYARIT CtVtc4 1-197 -Q ---MLLEEDLSDIIADVHDLAKFVQVNYTGFYKIIKKHDKMTGWRL--KPV-FDTRLKAKPFYKEN---Y-DASVVRLSKLYDLVRT--RGNPAKG CtGde1 1-184 ---A-EELMGALLELRSQLRKLQWFGEINRRGFIKITKKLDKKVPNTTTQ-HRYISTKVDPKPFAKDT---TVARILTEINRWISVLGDARNVEDNRS OsSPX4 1-206 KNGA -LEIRKAFVIIHGEMILLQTYSSLNFAGLVKILKKYDKRTGGLLS--LP-FTQRARHQPFFTTE---PLTRLVRECEANLELLFP--IEAEVLE AtSPX1 1-191 DSMEK-M-IKIRKEIVDFHGEMVLLENYSALNYTGLVKILKKYDKRTGDLMR--LP-FIQKVLQQPFYTTD---LLFKLVKESEAMLDQIFP--ANETESE AtPho1 1-366 QIL AEKKIRSAFVELYRGLGLLKTYSSLNMIAFTKIMKKFDKVAGQNAS--ST-YLKVVKRSQFISSD---KVVRLMDEVES----IFT--KHFANND HsXPR1 1-207 K --I-KDLKLAFSEFYLSLILLQNYQNLNFTGFRKILKKHDKILETSR--GADWRVAHVEVAPFYTCK---KINQLISETEAVV---TNELE

Y22K26 K71

K130 K127 K131

K134

α1

K30

A

protein/ residues/ mutation tag organism

ScPho81 1-199 His [N] S accharomyces cerevisiae P17442 -

ScPho81 1-199 Strep [C] Saccharomyces cerevisiae P17442 -

ScVtc2 1-157 His [C] Saccharomyces cerevisiae P43585 +/-

ScVtc2 1-177 His [N] Saccharomyces cerevisiae P43585 -

ScVtc2 1-182 His [C] Saccharomyces cerevisiae P43585 +

ScVtc2 15-182 His [C] Saccharomyces cerevisiae P43585 +

ScVtc2 1-182 Strep [C] Saccharomyces cerevisiae P43585 +/-

ScVtc2 1-553 E475N (catalytic dead) His [C] Saccharomyces cerevisiae P43585 +

ScVtc2 1-176 Macro-His [C] Saccharomyces cerevisiae P43585 -

ScVtc4 1-156 His [C] Saccharomyces cerevisiae P47075 -

ScVtc4 1-178 His [C] Saccharomyces cerevisiae P47075 +

ScVtc4 1-178 His-Strep-Thioredoxin [N] Saccharomyces cerevisiae P47075 +

ScVtc4 1-178 Macro-His [C] Saccharomyces cerevisiae P47075 +

ScVtc4 1-480 E426N (catalytic dead) His [C] Saccharomyces cerevisiae P47075 + ScVtc4 1-480 E426N (catalytic dead) Strep [C] Saccharomyces cerevisiae P47075 - ScVtc4 1-480 E426N (catalytic dead) His [N] Saccharomyces cerevisiae P47075 +

ScVtc4 1-480 His [N] Saccharomyces cerevisiae P47075 +

ScVtc4 1-480 His [C] Saccharomyces cerevisiae P47075 +

ScVtc4 189-480 His [N] Saccharomyces cerevisiae P47075 +

ScPho87 1-383 His [C] Saccharomyces cerevisiae P25360 +

ScPho90 1-335 His [C] Saccharomyces cerevisiae P39535 +

CtGde1 1-193 His [C] Chaetomium thermophilum G0RY29 +

CtVtc4 1-188 His [C] Chaetomium thermophilum G0SCH1 +

CaSPX1 1-189 His [C] Cicer arietinum XP_004494019.1* +/-

CaSPX1 1-189 His [N] Cicer arietinum XP_004494019.1* +/-

CaSPX1 1-189 His-Strep-Sumo [N] Cicer arietinum XP_004494019.1* +/-

TcSPX 1-188 His [C] Theobroma cacao gb|EOY25792.1** -

TcSPX 1-188 His-Strep-Sumo [N] Theobroma cacao gb|EOY25792.1** +/-

HsXRP1 1-207 His [C] Homo sapiens Q9UBH6 +

AtPho1 1-344 His [C] Arabidopsis thaliana Q8S403 -

AtPho1 1-344 His-Strep-Sumo [N] Arabidopsis thaliana Q8S403 -

AtPho1 1-364 His-Strep-Sumo [N] Arabidopsis thaliana Q8S403 -

AtPho1 1-386 His [C] Arabidopsis thaliana Q8S403 +

AtSPX1 1-159 His [C] Arabidopsis thaliana Q8LBH4 -

AtSPX1 1-170 His [C] Arabidopsis thaliana Q8LBH4 -

AtSPX1 1-256 His [C] Arabidopsis thaliana Q8LBH4 +/-

AtSPX1 1-256 His-Strep-Thioredoxin [N] Arabidopsis thaliana Q8LBH4 -

AtSPX1 1-256 His-Strep-GB1 [N] Arabidopsis thaliana Q8LBH4 -

AtSPX1 1-256 Macro-His [C] Arabidopsis thaliana Q8LBH4 +/-

AtSPX1 1-256 His-Strep-Sumo [N] Arabidopsis thaliana Q8LBH4 +/-

AtSPX3 1-248 Strep [C] Arabidopsis thaliana Q5PP62 -

His [C] Arabidopsis thaliana Q5PP62 -

His [C] Arabidopsis thaliana Q5PP62 -

Macro-His [C] Arabidopsis thaliana Q5PP62 -

OsSPX4 1-320 His-Strep-Sumo [N] Oryza sativa Q10B79 +/-

OsSPX4 1-320 His-Strep-Sumo [N] + HA [C] Oryza sativa Q10B79 +/-

N: N-terminal

C: C-terminal * NCBI identifier

Macro: histone macro H2A1.1 domain ** GenBank identifiers

GB1: protein G B1 domain

Uniprot

identifier express- able

AtSPX3 1-237 codon optE.coli AtSPX3 1-179 codon optE. coli AtSPX3 1-171 codon optE. coli

B

Fig. S2. A conserved set of lysine residues forms a basic surface ligand binding cluster in SPX domains.(A) Sequence alignment of different SPX domains including a secondary structure assignment for SPXScVtc4calculated with the program DSSP (51). Conserved amino acid residues are highlighted in green (phosphate binding cluster, PBC), blue (lysine surface cluster, KSC), orange (semi- conserved surface lysine), gray (structural control mutant, SC). (B) Overview of the different SPX domain expression constructs and their biochemical properties.

16

(32)

N

C C

N N

N

CSPX-ScVtc4

CSPX-ScVtc4-red. met.

CSPX-CtGde1 CSPX-HsXPR1

A B

Fig. S3. The C-terminal 6 helix adopts various conformations in different SPX domain structures and crystal forms. (A) Structural superposition of crystal forms A and B of SPXScVtc4crystallized in fusion with the catalytic TTM domain (r.m.s.d. is 1.6 Å comparing 170 corresponding Catoms). Shown are Ctraces colored according to Figure 1A. (B) Structural superpositions of SPXScVtc4form A (in light-blue) with ScVtc4 form C obtained by carrier driven crystallization (in orange, r.m.s.d. is 2.2 Å comparing 135 corresponding Catoms), with SPXCtGde1(in dark-blue; r.m.s.d. is 2.3 Å comparing 141 corresponding Catoms), and SPXHsXPR1(in red; r.m.s.d. is 1.6 Å comparing 147 corresponding Catoms), indicates that the C-terminal 6 helix can adopt different orientations.

17

(33)

Titration on SPXHsXPR1

0 20 40 60 80 100

0.0 0.2 0.4 0.6 0.8 1.0

Ligand concentration [mM]

Chemical Shift

InsP6 Pi

Titration on SPXScVtc2

0 5 10 15 20 25 30

0.0 0.2 0.4 0.6 0.8 1.0

Ligand concentration [mM]

Chemical Shift

Pi PPi InsP6 SO4

2-

Titration on SPXScVtc2

Chemical Shift

Pi concentration [mM]

0 20 40 60 80 100

0.0 0.2 0.4 0.6 0.8 1.0

wt meth Y22FK26A K131A

A

Pi concentration [mM]

Chemical Shift

0 20 40 60 80 100

0.0 0.2 0.4 0.6 0.8 1.0

wt PBCKSC SC N14

Titration on SPXScVtc2

-1

1-15 N [ppm]

H [ppm]

105

110

115

120

125

130

10 9 8 7

0 mM 0.5 mM 1.5 mM 5 mM 10 mM 20 mM 40 mM 100 mM

C

1-15 N [ppm]

105

110

115

120

125

130

10 9 8 7

0 mM 0.025 mM 0.075 mM 0.2 mM 0.4 mM 1 mM

-1

B

(34)

&''4(2)&&' @' 2$: !-.1!V1 4+5 4/5&; ! ##4&;!

5 4 &;5 =4.51 3 = # ##

# -)-#E =' 3=# 45

-8

(35)

Ipk1 Kcs1

5-InsP7 1-InsP7

1,5-InsP8

5PP-InsP 1,3,4,5,6-InsP5 4

InsP6 Arg82 1,4,5-InsP3

1,4,5,6-InsP4 Arg82 2 1 3 4

5 6

Kcs1

Kcs1 Vip1

Vip1

Fig. S5. Schematic representation of known inositol polyphosphate and -pyrophosphate synthesis pathways in yeast. (modified from (53).)

19

Références

Documents relatifs

However, only 4 of the 2954 down-regulated genes in mips1 mutant compared to the wild-type were up- regulated when compared within the somi2 background (Fig. 3e) indicating that

Morame : Magnetic bottles for the Neumann problem : curvature effect in the case of dimension 3 (General case). Helffer and X-B. Pan : Upper critical field and location of

J., Weighted norm inequalities for the Lusin area integral and the non-tangential maximal function for harmonic functions in a Lipschitz domain, Studia Math.. W.,

In this work, we provide rather complete answers to these questions in the case of a simple geometry, namely when we only consider two different domains which are half spaces:

Such normal forms are used to construct counterexamples and to determine intrinsic conditions under which the stationary disks are extremal disks for the Kobayashi metric or

K., Some achievements of Nevanlinna theory Pfluger, Albert, Uber konforme Abbildungen des Einheitskreises Rickman, Seppo, Value distribution of quasimeromorphic

Furthermore, we assessed the functional impact of the corresponding mutations on cell surface expression, retroviral receptor function and phosphate export, unveiling for the

In the present study, we characterized two new solid phases of atropisomeric naphthamide 1, shown in Figure 1, using SC-XRD, DSC, and XRPD measurements and constructed the