• Aucun résultat trouvé

Influence of vegetation on permafrost

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of vegetation on permafrost"

Copied!
9
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings: Permafrost International Conference, pp. 20-25, 1966-10-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=4c989143-5d15-4404-9363-db1742108798

https://publications-cnrc.canada.ca/fra/voir/objet/?id=4c989143-5d15-4404-9363-db1742108798

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Influence of vegetation on permafrost

(2)
(3)
(4)

Repr~nted from the PROCEEDINGS: PERMAFROST INTERNATIONAL CONFERENCE, NAS-NRC, Publlcat~on 1 2 8 7

INFLUENCE OF VEGETATION O N PERMAFROST

R . J. E. BROWN, National Research C o u n c i l , C a n a d a

In permafrost regions numerous climatic and terrain features op- e r a t e singly and in combination, determining the e x t e n t , thick- n e s s , and thermal regime of the perennially frozen ground. One of the terrain f e a t u r e s i s vegetation which forms a continuous or d i s c o n t i n u o u s mantle on the ground (soil) s u r f a c e and e x e r t s d i r e c t and indirect influences on the underlying permafrost.

Vegetation h a s a d i r e c t influence on the permafrost by i t s thermal properties which determine the quantity of h e a t t h a t e n t e r s and l e a v e s the underlying ground in which the perma- f r o s t e x i s t s . Components of the energy exchange regime a t the ground s u r f a c e and thermal contribution of e a c h of them to permafrost a r e modified b y s u r f a c e v e g e t a t i v e c o v e r . Vegeta- tion a l s o e x e r t s a n indirect influence o n permafrost b y affecting climatic and other terrain f e a t u r e s , which i n turn have a d i r e c t influence on the permafrost.

These direct and indirect influences vary with time and s p a c e . The environment in which permafrost e x i s t s i s dynamic a s a r e the individual components of t h i s environment. Vegeta- tion i s one of t h e s e dynamic f a c t o r s and v a r i e s with time. As one type of vegetatioll i s s u c c e e d e d b y a n o t h e r , so the under- lying permafrost i s changed with time. As a r e s u l t , permafrost e x i s t i n g today r e f l e c t s d i r e c t and indirect influences of the p a s t a s w e l l a s the p r e s e n t . The e f f e c t s of vegetation a l s o vary in s p a c e , being g r e a t e r , for example, In the taiga zone than in the tundra.

The sum of t h e s e influences with their variation in time and s p a c e i s manifested in the variations which e x i s t in the perma- f r o s t . The depth from ground s u r f a c e to permafrost t a b l e , the temperature regime of the ground above the permafrost and of the permafrost, and the e x t e n t and t h i c k n e s s of permafrost a r e a l l conditioned b y vegetation o n the ground s u r f a c e . B e c a u s e vegetation i s s o c l o s e l y interwoven with climatic and o t h e r terrain f a c t o r s affecting permafrost, i t i s frequently difficult or impossible to s i n g l e o u t the role of vegetation a l o n e .

Even within the vegetation complex i t s e l f , some components have more influence than o t h e r s . I t i s frequently difficult to delineate the boundary between living vegetation and under- lying organic matter, l i t t e r , humus, p e a t , muck, and to s e p a - r a t e the influence of t h e s e two l a y e r s . I t i s most c o n v e n i e n t , therefore, to consider the combined living and dead material lying o n the mineral s o i l a s v e g e t a t i o n , although e a c h may have a different e f f e c t .

Further complications a r e c a u s e d b y the f a c t t h a t the influ- e n c e s of vegetation may vary depending on conditions under which they o c c u r . As a r e s u l t , i t i s p o s s i b l e for a certain combination of vegetation and other f a c t o r s to produce o n e s e t of permafrost conditions a t o n e time o r p l a c e , and a different s e t of conditions a t another time or p l a c e .

Because vegetation i s s a c h a widespread factor of the per- mafrost environment, a large body of literature i s devoted to t h i s topic in North America and the USSR. Russian literature i s particularly voluminous, the most prominent authors being B. A. Tikhomirov and A. P. Tyrtikov. (The latter h a s compiled

two lengthy and comprehensive review papers on the influence of vegetation o n permafrost [ l , 21 .) Work h a s a l s o b e e n car- ried o u t in Scandinavia o n variations in near-surface ground temperatures under different types of plants and on u s e of plant t y p e s a s snow depth indicators [ 3 , 41

.

Both h a v e important implications in the relationship between vegetation and permafrost.

frost a r e reviewed. The cornplex nature of the problem makes i t impossible to cover a l l f a c e t s . Canadiail experience i s cited when a v a i l a b l e with supplementary lnformation derived mostly from Russian o b s e r v a t i o n s .

SURFACE ENERGY EXCHANGE

The a n n u a l h e a t exchange equation [ S , 61 a t the e a r t h ' s s u r f a c e can b e written a s

where (R) i s the a n n u a l radiation b a l a n c e ( n e t radiation), (LE)

i s h e a t involved in evaporation (including evapotranspiration)- c o n d e n s a t ~ o n , (P) i s h e a t involved i n conduction-convection (turbulent h e a t e x c h a n q e ) , and (8) i s thermal exchange i n the ground.

The contribution of e a c h of t h e s e colnponents to the h e a t transfer mechanism operating between s u i l and q t ~ ~ o s p h e r e i s modified b y vegetation properties a r he i~.terface of these two media which comprise the permafrost anvlronmant. Russian s t u d i e s show t h a t the h e a t exchange a q J a t i o n can b e used in permafrost regions to r e l a t e the groaxd charma1 regime to the surface energy exchange regime [ 7

$1.

Net Radiation and Albedo

Studies undertaken in Labrador-Ungava

i

9

1

, using a Kipp and Zonen solarimeter, confirm the higher albedo--solar radiation mostly 0.3-2.0 y-of t r e e l e s s lichen-zovered s u r f a c e s , being

13.55% in c o n t r a s t to 11 .67% for lichen-spruce woodland, 6.52% for s p r u c e b o g , 9 . 7 8 % for muskeg. illid 11.13% for a c l o s e d f o r e s t .

At Norman W e l l s , NWT, where permafrost i s w i d e s p r e a d , observations b y the Division o f BuiLding Research, National Research C o u n c i l , C a n a d a , showed that licheri p o s e s s e d higher reflectivity v a l u e s than true m o s s e s and Sphaqnum. Neverthe- l e s s , t h e s e two plant t y p e s maintain the permafrost table a t about the s a m e l e v e l in a given a r e a , and ground temperatures under both plant t y p e s a r e similar. Therefore, if lichen r e j e c t s a higher proportion of the n e t radiative flux than m o s s , t h i s may be compensated b y the moss rejecting a higher proportion than lichen of some other component of the energy e x c h a n g e .

Another a s p e c t of the radiation component of h e a t exchange i s the influence of forest growth in reducing the i n t e n s i t y of s o l a r radiation a t t h e ground s u r f a c e which d e c r e a s e s the heat- ing of the ground. I f , for e x a m p l e , radiation in a n open a r e a i s 1 . 5 c a l / s q cm/min i t may b e reduced to 0.01 c a l / s q cm/min under a d e n s e f o r e s t canopy. In winter the f o r e s t hinders t h e r a t e of radiation from the ground but the e f f e c t i s n o t a s pronounced b e c a u s e of reduced foliage [ l , 21.

Conduction-Convection

Direct measurement o f the convective component i s extremely difficult. In energy e x c h a n g e s t u d i e s , quantitative v a l u e s c a n b e obtained b y two methods; (1) All of the other components of the h e a t e x c h a n g e equation a r e measured and i t i s a s s u m e d that the remainder e q u a l s the convective component: (2) Bowen's r a t i c c a n b e used which r e l a t e s t h i s c ~ m p o n e n t to t h e evapo- rative flux. Since the a n n u a l h e a t e x c h a n g e equation a t t h e e a r t h ' s s u r f a c e c a n b e written a s

(5)

i t follows that a n i n c r e a s e in h e a t transfer by evaporation d e - c r e a s e s the amount of turbulent exchange a n d v i c e v e r s a . In- v e s t i g a t o r s in the USSR s t a t e d that the ratio of (P) to (LEI a t the treeline i s about 1 to 6 or 1 to 7 , increasing to about 1 to 3 with i n c r e a s e d s u r f a c e roughness in the south-central part of the taiga where the permafrost boundary o c c u r s [ 5 ] . The (P) to (JX) ratio a t Point Barrow, A l a s k a , w a s 1 to 0 . 7 [ 1 0 , 111. Bowen's ratio for s a t u r a t e d Sphagnum in O t t a w a , C a n a d a , a t the Division of Building R e s e a r c h , w a s about 1 to 8 .

Variations in turbulent h e a t exchange with different plant s p e c i e s have not b e e n examined in permafrost regions. On a m i c r o s c a l e , the roughness factor provided by the vegetation i s greatly reduced north of the t r e e l i n e . On a m i c r o s c a l e , Sphag-

num tends to produce a n uneven microrelief in the form of hum-

-

mocks, mounds, and p e a t p l a t e a u s in c o n t r a s t to a r e a s covered with true m o s s e s and lichen which have l e s s microrelief. This could r e s u l t in ground surface air turbulence being significantly greater over a Sphagnum-covered a r e a .

Evaporation

Evaporation (including evapotranspiration) withdraws h e a t from the surrounding atmosphere and from i n c i d e n t s o l a r radiation [ 1 2 1 . Vegetation draws water from the s o i l b y transpiration, t h u s depleting the s o i l of the h e a t h e l d by that water. There appear to b e variations in t h e s e mechanisms from o n e plant s p e c i e s to another in permafrost r e g i o n s , b u t the magnitude of variations and the contribution of t h i s component to ground thermal regime a r e not c l e a r .

The mechanism of moisture transfer in moss and lichen i s not clearly understood, but both a r e nonvascular plants and cannot transpire in the s e n s e that v a s c u l a r plants d o . Sphag- num e s p e c i a l l y , and to a l e s s e r degree true m o s s e s , tend to

-

absorb and r a i s e water in the manner of a lamp w i c k . M o s s e s and l i c h e n s have a large water-holding c a p a c i t y and a r e s b o n g l y hygroscopic [ 1 3 , 1 4 , 151

.

They absorb water not only from precipitation b u t a l s o from atmospheric v a p o r , the l a t t e r being absorbed in d i r e c t proportion to the r e l a t i v e humidity of the a i r . Yet during a dry period they tend to l o s e moisture rap- idly. Probably a t some point in the humidity s c a l e for the a t - mosphere, l o s s e s exceed the g a i n s of moisture by the l i c h e n s .

Tyrtikov [ 2 ] p o s t u l a t e s that a s vegetation a b s o r b s moisture from the s o i l there i s a commensurate i n c r e a s e in the s o i l ther- mal conductivity. This o c c u r s a t the same time a s the evapo- ration of the water lowers the a i r temperature, e s p e c i a l l y near the ground s u r f a c e , a n d s o r e d u c e s the warming of the s o i l . Immediately after a r a i n f a l l , the s u n rapidly d r i e s the t i p s of the moss but t h i s drying e x t e n d s only to a depth of about 5 c m , thus protecting the lower layer of moss from e x c e s s i v e l o s s of moisture.

When d r y , l i c h e n s absorb water slowly from water vapor. This p r o c e s s i s n e g l i g i b l e , however, compared with the absorp- tion of liquid water b e c a u s e , during a r a i n f a l l , the water con- tent of the a e r i a l parts may r i s e from 50 to 250% within a f e w hours [ 141

.

The l o s s of water vapor to the a i r may occur rap- idly if the difference in vapor p r e s s u r e between the a i r and the lichen is g r e a t , s o that on a drying d a y , the surface of the lichen becomes dry rapidly. Observations b y the Division of Building Research a t Norman W e l l s , NWT, of the moisture con-

tent in a lichen cover during a dry period showed 8% moisture content in the top 1 i n . of the lichen in c o n t r a s t to nearly 200% a t the bottom of the 2-in. lichen cover. Unlike Sphagnum and true m o s s e s , lichen may not b e acting a s a wick in drawing moisture from b e n e a t h , but i t a p p e a r s to b e protecting under- lying moisture from evaporating influences of the a i r a b o v e . Rapid evaporation or diffusion exchange of water vapor from the wet b a s a l layer to the atmosphere above the lichen may contribute, however, to low s o i l temperatures and a high per- mafrost t a b l e .

D e s p i t e speculation that the high permafrost table under true m o s s , Sphagnum, and lichen may b e c a u s e d in part by high evaporation r a t e s t h a t prevent large q u a n t i t i e s of h e a t from e n - tering the ground, o b s e r v a t i o n s a t Norman W e l l s in the summer of 1959 showed that r a t e s of water l o s s from m o s s and lichen were a b o u t e q u a l to e a c h other b u t lower than from a g r a s s - l i k e

s e d g e , s p e c i e s unknown, or g r a s s [ 161

.

Observations in the summer of 1960 showed that r a t e s for m o s s , l i c h e n , a n d the s e d g e were a b o u t e q u a l to or lower than for g r a s s .

Meteorological factors play a prominent role in evaporation and transpiration r a t e s where s o i l moisture i s not a limiting factor. Physiological c h a r a c t e r i s t i c s and radiation and thermal properties of p l a n t s s u c h a s moss a n d l i c h e n , which maintain high permafrost t a b l e s , probably contribute significantly b y evaporation and transpiration t o the energy exchange regime of permafrost. A d i s c r e p a n c y a r o s e a t Norman W e l l s where the s e d g e did not maintain a high permafrost table b u t d i s p l a y e d evapotranspiration r a t e s comparable to r a t e s of m o s s and l i c h e n . This may have b e e n c a u s e d b y the lower insulating v a l u e s of the s e d g e which permitted a g r e a t e r d e p t h of thaw during the summer.

Conductivity

Vegetation h a s a marked insulating effect on underlying perma- frost. This i s true of m o s s e s , l i c h e n s , and particularly, of p e a t . I n c r e a s e in d e p t h of thaw in permafrost a r e a s where vegetation h a s b e e n removed h a s been widely o b s e r v e d .

Variations in the thermal conductivity of peat with moisture c o n t e n t contribute to conditions conducive to formation of per- mafrost [ 21. When d r y , p e a t h a s a low thermal conductivity, equivalent to that of snow (about 0.00017 g c a l / s e c s q cm OC cm)

.

When w e t , i t s thermal conductivity i s g r e a t l y i n c r e a s e d (unsaturated p e a t i s about 0.0007 g c a l / s e c s q cm OC cm; saturated p e a t - e . g . , about 0.0011 g c a l / s e c s q cm " C cm); when frozen, i t s thermal conductivity i s i n c r e a s e d many times over that of dried p e a t and a p p r o a c h e s the value for i c e ( e . g . , s a t u r a t e d frozen p e a t about 0.0056 g c a l / s e c s q cm " C cm)

.

During the summer a thin surface layer of dried p e a t , which h a s a low thermal conductivity, hinders h e a t transfer to under- lying s o i l . During the cold part of the y e a r , p e a t i s s a t u r a t e d from the s u r f a c e , and when i t f r e e z e s i t s thermal conductivity greatly i n c r e a s e s . Because of t h i s , the amount of h e a t t r a n s - ferred in winter from ground to atmosphere through the frozen ice-saturated p e a t i s greater than the amount transmitted i n the opposite direction through the s u r f a c e layer of dry p e a t and un- derlying w e t p e a t in summer. A considerable portion of h e a t i s a l s o required during t h e warm period to melt the i c e and to warm and evaporate the water. The n e t r e s u l t i s favorable to a permafrost condition.

The r a t e of organic a n d p e a t accumulation v a r i e s with the type of vegetation and influences thermal conductivity of t h e surface s o i l layer a n d thermal regime of the underlying perma- f r o s t . In a given c l i m a t i c z o n e , l e s s o r g a n i c material accumu- l a t e s from meadow and s t e p p e vegetation than from f o r e s t and bog v e g e t a t i o n . Organic material accumulates more quickly in a coniferous f o r e s t than in a deciduous f o r e s t . Coniferous f o r e s t s with their d e n s e tree crowns and a c i d i c litter tend to create conditions s u i t a b l e for the development of m o s s e s , par- ticularly where a c o o l c l i m a t e h a s reduced evaporation to a point where the forest floor w i l l b e moist d e s p i t e a low rain f a l l . The r a t e of accumulation in a forest i s related to many f a c t o r s , including the p r e s e n c e or a b s e n c e of m o s s and lichen c o v e r , i t s s p e c i e s composition, and the degree of s w a m p i n e s s . I n a f o r e s t with a s u r f a c e cover o f Sphagnum, a p e a t horizon forms more quickly than in a f o r e s t with true m o s s .

CLIMATIC AND TERRAIN FEATURES

Vegetation e x e r t s both a n indirect influence on permafrost by modifying climatic and other terrain f e a t u r e s , which themselves influence permafrost, and .a d i r e c t influence by i t s role in the h e a t transfer mechanism between ground and atmosphere. The influence of vegetation o n various microclimatic f e a t u r e s , drainage and the water regime, snow c o v e r , and the influence of one type of vegetation on a n o t h e r , a r e important a s p e c t s . These f e a t u r e s a r e s o c l o s e l y interrelated that i t i s difficult to a s s e s s their individual contributions without including some a s p e c t s of o t h e r f e a t u r e s .

(6)

M i c r o c l i m a t e

Vegetation d e c r e a s e s a i r c u r r e n t v e l o c i t i e s within i t s s t r a t a a n d therefore i m p e d e s h e a t r a d i a t i o n from t h e s o i l t o t h e a i r when the l a t t e r i s c o o l e r , a s a t night [ 151 , and during p e r i o d s of t h e y e a r when s o i l t e m p e r a t u r e s a r e warmer than t h e a i r [ 1 3 1 .

The d e n s i t y a n d h e i g h t of t r e e s i n f l u e n c e wind v e l o c i t i e s n e a r the ground s u r f a c e . Wind v e l o c i t i e s a r e lower in a r e a s of t a l l d e n s e t r e e growth than w h e r e t r e e s a r e s t u n t e d a n d s c a t - t e r e d , o r a b s e n t . Higher v e l o c i t i e s , r e s u l t i n g p o s s i b l y from fewer o b s t r u c t i o n s in a r e a s of s p a r s e t r e e growth c a u s e more h e a t to move a w a y from t h e s e a r e a s per unit time than from the a r e a s of d e n s e growth. I n the s o u t h e r n fringe of the permafrost r e g i o n , permafrost i s more commonly a s s o c i a t e d with a r e a s of s p a r s e o r no t r e e growth for a number of r e a s o n s . O t h e r f a c t o r s b e i n g e q u a l , t h e p o s s i b l i i t y of s l i g h t l y lower a i r temperatures b e c a u s e of h i g h e r wind v e l o c i t i e s in t h e s e a r e a s may contribute to a ground temperature c o n d i t i o n c o n d u c i v e t o t h e e x i s t e n c e of permafrost.

Air movement, s u c h a s the d r a i n a g e of c o l d a i r a t night from a n e l e v a t e d a r e a d o w n s l o p e to a d e p r e s s i o n , i s a microclimatic f e a t u r e a s s o c i a t e d with r e l i e f , which may a l s o b e s i g n i f i c a n t . Even microrelief f e a t u r e s , s u c h a s p e a t p l a t e a u s , may produce s u f f i c i e n t d i f f e r e n c e s in e l e v a t i o n to c a u s e d o w n s l o p e a i r d r a i n a g e a t night.

V e g e t a t i o n , e s p e c i a l l y t r e e g r o w t h , i n t e r c e p t s a s i g n i f i c a n t portion of a t m o s p h e r i c p r e c i p i t a t i o n , both r a i n a n d s n o w , b y a s much a s 10 to 40% C21. Any r a i n t h a t r e a c h e s and pene- t r a t e s t h e ground c a r r i e s h e a t with i t toward permafrost s o t h a t i n t e r c e p t i o n of rain r e s u l t s i n a reduction of h e a t e n t e r i n g t h e ground. On the o t h e r h a n d , i n t e r c e p t i o n of s n o w b y t r e e s r e - s u l t s i n a lower a c c u m u l a t i o n o n the ground a n d the p o s s i b i l i t y of d e e p e r s e a s o n a l f r o s t p e n e t r a t i o n . I n c r e a s e d s h a d i n g c a u s e d b y snow on t r e e b r a n c h e s r e d u c e s t h e amount of s o l a r r a d i a t i o n r e c e i v e d a t the ground s u r f a c e , b u t t h i s i s c o u n t e r a c t e d p a r t l y , a t l e a s t , b y t h e r e d u c t i o n of r a d i a t i o n from ground s u r f a c e into a t m o s p h e r e .

D r a i n a g e

Ground t h a t permits the g r e a t e s t d e g r e e of w a t e r p e n e t r a t i o n u s u a l l y t h a w s t o the g r e a t e s t d e p t h [ 1 3 1 . There i s e v i d e n c e t h a t e x t e n s i v e r o o t s y s t e m s impede downward p e r c o l a t i o n of w a t e r a n d therefore r e s t r i c t s o i l thawing [ 131

.

On the o t h e r h a n d , r o o t s , e s p e c i a l l y d e a d a n d d e c a y i n g o n e s , may provide c h a n n e l s for w a t e r p e n e t r a t i o n a n d s o m e t i m e s l o c i for t h e growth of g r a n u l e s and s m a l l s t r i n g e r s of i c e [ 131.

Vegetation i m p e d e s s u r f a c e runoff. I n f o r e s t s , p a r t i c u l a r l y where v e g e t a t i o n i s n o t d i s t u r b e d , runoff amounts to l e s s than 3% of the t o t a l r a i n f a l l , w h e r e a s in o p e n a r e a s and o n t h e p l a i n s , i t e x c e e d s 60%

C

1 1

.

The r a t e of runoff to p r e c i p i t a t i o n i s probably a l s o s i g n i f i c a n t to permafrost. S u b s u r f a c e d r a i n a g e i s s l o w in p e a t b e c a u s e of i t s f i l t r a t i o n p r o p e r t i e s .

Snow C o v e r

The low thermal c o n d u c t i v i t y of s n o w and i t s d o u b l e role a s inhibitor of f r o s t penetration during w i n t e r a n d s o i l thawing i n spring h a s b e e n n o t e d b y many a u t h o r s [ 1 3 1 . The r e t e n t i o n of snow i n t h e crowns of t r e e s h a s a l r e a d y b e e n mentioned. I n s p r i n g , t h e s n o w c o v e r remains o n the ground longer i n f o r e s t e d a r e a s than i n t h e o p e n . W h e r e strong w i n d s p r e v a i l , more snow a c c u m u l a t e s under a v e g e t a t i o n c o v e r than i n o p e n a r e a s . Snow p r o t e c t s t h e ground from f r e e z i n g in winter b u t i t a l s o i n c r e a s e s t h e moisture c o n t e n t of the s o i l i n summer, t h u s contributing to lower summer ground t e m p e r a t u r e s [ 11

.

I n Labrador-Ungava a good c o r r e l a t i o n w a s n o t e d by I v e s [ 171 a n d Annersten [: 181 b e t w e e n t h e v e g e t a t i o n and s n o w a c - cumulation a n d the d i s t r i b u t i o n of permafrost. O n e x p o s e d r i d g e s u m m i t s , where v e g e t a t i o n w a s v i r t u a l l y a b s e n t , snow a c c u m u l a t i o n w a s k e p t to a minimum b y t h e w i n d , and perma- f r o s t 200 f t t h i c k e x i s t e d . I n s h e l t e r e d g u l l i e s , v e g e t a t i o n w a s b e t t e r d e v e l o p e d , s n o w a c c u m u l a t e d i n t h e w i n t e r , and permafrost w a s o n l y a f e w f e e t t h i c k or a b s e n t .

Vegetation P r o p e r t i e s

Within t h e framework of the complex i n t e r r e l a t i o n e x i s t i n g

among v a r i o u s t'errain f e a t u r e s t h a t a f f e c t t h e ground thermal r e g i m e , s u c h a s r e l i e f , d r a i n a g e , s o i l s , s n o w c o v e r , a n d v e g e - t a t i o n , s p e c i a l c h a r a c t e r i s t i c s of s o m e p l a n t t y p e s may s i g n i f - i c a n t l y i n f l u e n c e permafrost a n d a l s o i n d i c a t e the e x i s t e n c e of permafrost

.

Tikhomirov [ 191 m e n t i o n s s e v e r a l c h a r a c t e r i s t i c s t h a t influ- e n c e t h e ground thermal regime of true m o s s e s a n d Sphagnum: i t p o s s e s s e s low thermal c o n d u c t i v i t y , high m o i s t u r e holding c a p a c i t y , a n d may s h i e l d r o o t s of v a s c u l a r p l a n t s from low a i r t e m p e r a t u r e s ; i t promotes uniform thawing and p r o t e c t s s o i l from r u n o f f , s o l i f l u c t i o n , e r o s i o n , a n d t h e r m o k a r s t . M o s s re- d u c e s t h e temperature a m p l i t u d e of underlying s o i l . Tikhomirov p o s t u l a t e s t h a t h e a t from m o s s in l a t e winter r e c r y s t a l l i z e s snow a t the m o s s c o n t a c t , t h a t p h o t o s y n t h e s i s i s p o s s i b l e un- d e r a thin snow c o v e r , a n d t h a t h o l l o w s form i n the s n o w i n which the a i r temperature i s higher than t h e o u t s i d e a i r temper- a t u r e , producing f a v o r a b l e c o n d i t i o n s for p l a n t growth under t h e s n o w . P o r s i l d s t a t e s t h a t s o l a r r a d i a t i o n i s t h e more l i k e l y s o u r c e of h e a t [ 201. He a l s o q u e s t i o n s p h o t o s y n t h e t i c a c t i v i t y b e n e a t h e v e n a thin s n o w c o v e r a n d t h e provision of f a v o r a b l e c o n d i t i o n s for p l a n t growth under t h e s n o w .

Robinson n o t e d t h a t in f a l l t h e melting of e a r l y s n o w f i l l s the m o s s w i t h m o i s t u r e e n a b l i n g i t to c o n d u c t h e a t a t a more rapid r a t e ; t h i s p e r m i t s g r e a t e r h e a t l o s s from the ground a n d d e e p p e n e t r a t i o n of s e a s o n a l f r o s t [ 21

1

.

I n summer t h e top few i n c h e s d r y to a point w h e r e t h e y a c t a s a n e f f e c t i v e i n s u - lating b l a n k e t . Therefore the p r e s e n c e of a d e e p l a y e r of m o s s k e e p s the s o i l a t a low temperature c o n t i n u o u s l y and f a v o r s development of permafrost. M o s s is v e r y w a t e r a b s o r b e n t . The lower portion o f a m o s s l a y e r i s u s u a l l y m o i s t a n d t h i s m a i n t a i n s t h e ground in a damp o r w e t c o n d i t i o n .

C e r t a i n p l a n t t y p e s provide r a t h e r r e l i a b l e i n d i c a t o r s of t h e e x i s t e n c e of permafrost. At Thompson, M a n . , C a n a d a , the p r e s e n c e of Sphagnum, and/or s t a n d s of s p r u c e v a r y i n g from s m a l l t r e e s i n o p e n s t a n d s t o moderately l a r g e t r e e s i n n e a r l y c l o s e d s t a n d s , w a s found u s u a l l y to b e a s s o c i a t e d with perma- f r o s t , i f t h e d r a i n a g e w a s f a i r l y good [ 221. I n northern Alberta, a l l b u t a few of the permafrost o c c u r r e n c e s w e r e found i n low f l a t d e p r e s s i o n s [ 231.

I n t h e s e a r e a s two a s s o c i a t i o n s of v e g e t a t i o n predominated. O n e w a s g r a s s - l i k e s e d g e with l i t t l e o r no t r e e growth a n d thin m o s s c o v e r . T h e s e a r e a s were a l m o s t a l w a y s w e t a n d no per- mafrost e x i s t e d . The o t h e r c o n s i s t e d of Sphagnum, l i c h e n p a t c h e s , and s c a t t e r e d s t u n t e d b l a c k s p r u c e . Some of t h e s e a r e a s w e r e w e t a n d c o n t a i n e d no p e r m a f r o s t . The remainder were d r i e r , a n d permafrost o c c u r r e d a t d e p t h s ranging from a b o u t 2 to 4 f t . At the e d g e s of t h e s e a r e a s , the permafrost dropped o f f a b r u p t l y .

Three v a r i e t i e s of v e g e t a t i o n a r e s h o w n in F i g . 1 , t a k e n S e p t . 2 0 , 1962 ( 5 7 O 4 7 ' ~ . 1 1 7 " 5 0 ' ~ ) , 3 . 2 m i l e s w e s t of M a c - k e n z i e H i g h w a y , A l b e r t a , C a n a d a , i n the s o u t h e r n fringe of the d i s c o n t i n u o u s z o n e of t h e permafrost r e g i o n .

Fig. 1 . Variety of v e g e t a t i o n a s s o c i a t i o n s with r e l a t e d v a r i a - t i o n s i n permafrost o c c u r r e n c e

(7)

Thc light-toned vegetation in the foreground and middle ground c o n s i s t s of s e d g e (Corex s p . ) and g r a s s with a thin d i s c a n t i n u o u s c,,vcr of feather and other non-Sphagnum m o s s e s in standing w a t e r . No permafrost w a s e n c o u n t e r e d .

The dark toned island in fcrcground (man kneeling) i s d

s l i g h t l y e l e v a t e d p e a t platcau with ground cover of hummocky Sphagnum and Labrador t e a . Depth of moss and p e a t i s 4 ft

2 i n . ; black o r g a n i c s i l t 4 ft 2 i n . to 6 f t 0 i n . ; d e n s c b l u i s h s i l t c l a y 6 ft 0 i n . to below 7 f t . Permafrost tablc c x t c n d s from from 2 ft 9 i n . to 7 ft below ground s u r f a c e . Pcrmafrost o c c u r s a l s o in the dark almost t r e e l e s s patch ( s a m c ground vegetation) a t r i g h t , between s e d g e a r e a in middle ground and f o r c s t i n background. Thc forested a r e a c o n s i s t s of s p r u c e , poplar, jackpine, and b k c h ; no permafrost w a s encountered h e r e .

VEGETATION ZONES AS A PERMAFROST INDICATOR

In C a n a d a , A l a s k a , and the USSR, the i n f l u e n c e of vegetation v a r i e s from one g e u b o t a n i c a l zone to a n o t h e r . In C a n a d a and A l a s k a , permafrost o c c u r s in tundra and taiga z o n e s . In the USSR, i t o c c u r s in these two z o n e s and a l s o e x t e n d s southward into the s t e p p e . The variety of vegetation a s s o c i a t i o n s , the quantity of vegetable m a t t e r , s t a n d h e i g h t , and d e n s i t y , and rate of p e a t accumulation a r e a l l g r e a t e s t in the t a i g a , grad- ually diminishing northward i n t o the tundra and southward into the s t e p p e . The d e g r e e and variety of the influence of the vegetation on the permafrost c h a n g e s in a p a r a l l e l manner [ 21.

In the northern part of t h e tundra the vegetation h a s l i t t l e influence on permafrost b e c a u s e i t i s s p a r s e and the v e g e t a t i v e period l a s t s l e s s than two months. I t c a u s e s l o c a l variations in depth of thaw and h e l p s impede e r o s i o n . The destruction of the vegetation a c c e l e r a t e s thawing only s l i g h t l y .

In the southern part of the tundra, the vegetation becomes more a b u n d a n t , p e a t mantles part of the s u r f a c e and a t t a i n s t h i c k n e s s c s of s e v e r a l f e e t in some b a s i n s . The main influ- e n c e of the vegetation i s on the depth of thaw. If vegetation i s removed, the depth of thaw will i n c r e a s e ; erosion will in- c r e a s e and thermokarst will develop if thawing proceeds a t different r a t e s over an a r e a or if there a r e l o c a l differences in the i c e content of the frozen ground.

In f o r e s t tundra, vegetation m s s s i s greater than in th.e tundra, and the r a t e of accumulation of organic material i s higher. Extensive p e a t b o g s form and water b a s i n s a r e en- croached b y vegetation and permafrost forms. Woody and brush vegetation grow which accumulate snow leading to higher permafrgst temperatures than in the tundra. If the vege- tation i s removed, the depth of thaw i n c r e a s e s but t h i s i s counteracted to some e x t e n t b y lower snow accumulation and a d e c r e a s e in permafrost temperatures [ 11.

The maximum development of vegetation o c c u r s in the t a i g a . Here vegetation h a s i t s g r e a t e s t influence on permafrost even in very s m a l l l o c a l i z e d a r e a s causing variations in i t s e x t e n t , depth o f t h a w , and ground temperatures. Frequent forest f i r e s c a u s e variations in the occurrence and t h i c k n e s s of permafrost over short d i s t a n c e s i n the t a i g a .

M a s s , d e n s i t y , height and influence of v e g e t a t i o n , and r a t e of accumulation of organic matter a r e l e s s i n the steppe than in the t a i g a , b u t depth to permafrost i s g r e a t e r .

ALTERATION OF PERMAFROST CONDITIONS

C h a n g e s take p l a c e in the permafrost a s a r e s u l t of the vegeta- tion. The influences include the e f f e c t of vegetation on depth of thaw and depth to permafrost, the temperature regime in per- mafrost a n d the ground a b o v e , and e x t e n t and t h i c k n e s s of permafrost.

Depth of Thaw

The most e a s i l y observed and measured c h a r a c t e r i s t i c of per- mafrost i s depth of thaw and v a r i a t i o n s in t y p e s of vegetation a r e often readily n o t i c e a b l e . B e c a u s e t h i s i s s o , more o b s e r - vations have b e e n made on t h i s a s p e c t of the relation of vege- tation to permafrost than a n y o t h e r . D e s p i t e the large number of o b s e r v a t i o n s reported in the l i t e r a t u r e , mechanisms opera-

tive in thawing'of the a c t i v e layer and permafrost and c a u s e s of variations from one type of vegctation to another a r c not clcarly understood. One difficulty in comparing depth of thaw o b s e r v a t i o n s in various l o c a l i t i e s i s c a u s e d by v a r i a t i o n s in c l i m a t e , variations in other terrain factors c l o s e l y a s s o c i a t e d with the v c g e t a t i o n . and by minute, but possibly s i g n i f i c a n t , variations within a particular typc of vegetation.

Rcmoval of vegetation cover in a permafrost a r e a c a u s e s a n i n c r e a s e in the depth of thaw. At Inuvik, NWT, in the con- tinuous permafrost z o n e , the maximum depth of thaw in a n un- disturbed moss-covered a r e a w a s 2 f t in c o n t r a s t to d e p t h s of 5 to 8 ft in a r e a s stripped three y e a r s prcviously [ 2 4 1 . On land stripped for cultivation a t I n u v i k , the original maximum depth of thaw w a s about 2 f t prior to d i s t u r b a n c e (1956). By 1959 the ground thawed to a depth of 70 i n . ( 2 5 1 .

The s u r f a c e cover and p e a t appear to have much greater in- fluence on depth of thaw than the underbrush and t r e e s . At Inuvik, in undisturbed a r e a s and in a r e a s whcre t h e underbrush and t r e e s had been removed three y e a r s previously b u t with the m o s s cover left i n t a c t , the depth of thaw w a s 2 ft-similar to the depth prior to a n y d i s t u r b a n c e [ 241. At Norman W e l l s , depth of thaw measurements were recorded by the Division of Building Rese'arch in different types of vegetation from 1957 to 1959. The g r e a t e s t depth of thaw occurred in the g r a s s - l i k e s e d g e a r e a with no moss cover reaching a depth of 5 ft 6 i n . after a b o u t 3350 d e g r e e d a y s of thawing. The next g r e a t e s t depth of thaw w a s observed in a wooded a r e a having a ground cover of 4 i n . of moss overlying 3 i n . of p e a t , reaching 4 f t 6 i n . a f t e r 3350 degree d a y s of thawing. The next g r e a t e s t t h a w , 3 f t 3 i n . , occurred i n a t r e e l e s s g r a s s - l i k e s e d g e and moss a r e a with a 3-in. m o s s cover overlying 6 i n . of p e a t . The s h a l l o w e s t depth of t h a w , 2 i t , w a s observed in a s p a r s e l y treed a r e a having 5 i n . of m o s s overlying 18 i n . of p e a t . Evi- d e n t l y , the depth of thaw d e c r e a s e d with an i n c r e a s e in t h e combined t h i c k n e s s of living moss and p e a t ; the d e n s i t y and s i z e of tree growth did not appear to make much difference.

Russian i n v e s t i g a t o r s found that of a l l the types of ground c o v e r , Sphagnum a p p e a r s to retard thawing most. I n the Igarka region of the USSR, the d e p t h of thaw in 1950 under t h i s cover w a s 18 cm ( 7 . 1 in.) o n 13 J u l y , 22 cm (8.7 in.) on 3 August, and 26 cm ( 1 0 . 2 in.) on 2 September in c o n t r a s t to 2 5 , 3 1 , and 35 cm ( 9 . 8 , 1 2 . 2 , 13.8 in.) on the s a m e d a t e s under true m o s s e s c o n s i s t i n g of Hypnum and other s p e c i e s [ 1 , 21.

The r c l a t i v e influence of living ground cover and underlying p e a t h a s b e e n i n v e s t i g a t e d . I t h a s been postulated that p e a t r e t a r d s thawing e v e n more than living m o s s e s and l i c h e n s . I n the a r c t i c region of the Yenisey River in Siberia, removing the moss and lichen b u t leaving the p e a t layer resulted in a n in- c r e a s e in the depth of thaw b y 20 to 50%. After both living cover and p e a t were removed, depth of thaw i n c r e a s e d by I.. 5 to 2.5 times E l , 21.

Temperature Regime

J u s t a s the v e g e t a t i o n e x e r t s a marked influence on the depth of thaw and the d e p t h to permafrost, i t a l s o modified ground temperatures both in permafrost and the ground a b o v e . An in- c r e a s e in depth of thaw l e a d s to a n i n c r e a s e in ground tempera- ture and degradation of permafrost. A d e c r e a s e in depth of thaw l e a d s e v e n t u a l l y to a n aggradation of the permafrost.

At Norman W e l l s , ground temperatures were measured i n the thawed layer by the Division of Building Research in 1959 and 1960 to a s s e s s the e f f e c t of different t y p e s of vegetation o n underlying s o i l temperatures during the summer. In September 1959 the mean a i r temperature w a s 41 .Z°F and t h e mean ground temperature a t the l - f t depth for t h i s period i'n v a r i o u s vegeta- tion a r e a s were: g r a s s (no m o s s o r peat) 40.0°F, s e d g e (no m o s s o r peat) 3 6 . 5 ' ~ , g r a s s - l i k e s e d g e ( 3 i n . true moss o v e r 6 i n . peat) 3 5 . 0 ° F , m o s s (5 i n . Sphagnum over 18 i n . peat) 32.5'F, l i c h e n (2 i n . lichen over 24 i n . peat) 32. b°F.

There appeared to b e a g e n e r a l d e c r e a s e in temperature with i n c r e a s e d combined m o s s a n d p e a t t h i c k n e s s . Temperatures were similar under m o s s and lichen although living m o s s w a s much thicker than l i c h e n . The combined t h i c k n e s s of living cover and p e a t w a s , however, approximately e q u a l . Ground

(8)

tcrnporaturcs'taken in 1960 in thcr thawcd laycr showed that thoy were h i g h e s t uridor thc gras:; i ~ r c a , lower under [ h e s e d g e , and l o w e s t under thc m o s s a n d l i c h e n . Temperature nmplitudas a l s o d e c r e a s e d in the s a m e ordtlr. Thermal r a s i s t a n c c and damping e f f e c t of m o s s and lichen wcrc shown b y the f a c t t h a t monthly mean a i r tcrnpcratures were a b o u t 10°F higher in 1960 than i n 1 9 5 9 , b u t the difference in mean ground tcmperaturc a t the 1-ft d e p t h w a s l e s s than l o r .

Ground temperature r e a d i n g s were a l s o takdn a t Norman W e l l s down to the LO-ft d e p t h in permdfrost under the s e d g e , m o s s , a n d l i c h e n . Even b e l o w the 1 0-ft d e p t h , the mean tem- perature under the s e d g e for August a n d September 1960 w a s about 3 ' ~ higher than under the m o s s and l i c h e n , which were a b o u t e q u a l . Above t h i s d e p t h the d i f f e r e n c e w a s e v e n g r e a t e r . Similarly, the temperature a m p i i t u d e s in the top 10 ft were twice a s much under the s e d g e .

There i s no d o u b t that v c g s t a t i o n modifies the temperatures of the s e a s o n a l l y thawed layer and permafrost. I n a l l c a s e s , ground temperatures i n summer w i l l r i s e when the v e g e t a t i o n c o v e r i s removed. On the o t h e r h a n d , the e f f e c t s of winter a i r temperatures w i l l p e n e t r a t e to g r e a t e r d e p t h s than in undis- turbed a r e a s . The n e t e f f e c t o n mean a n n u a l temperature w i l l depend on o t h e r f a c t o r s , s u c h a s s n o w c o v e r .

I t i s d i f f i c u l t to compare the e f f e c t s of different t y p e s of v e g e t a t i o n o n permafrost b e c a u s e different t y p e s frequently grow i n c l o s e a s s o c i a t i o n o r in a m o s a i c , and the i n d i v i d u a l e f f e c t of e a c h may not b e r e a d i l y a p p a r e n t .

Extent and T h i c k n e s s

A c h a n g e i n d e p t h of thaw and a c h a n g e in temperature of the a c t i v e l a y e r and the permafrost produced b y a c h a n g e i n vege- tation e s t a b l i s h e s a c h a n g e in temperature g r a d i e n t . This re- s u l t s i n e i t h e r aggradation or d e g r a d a t i o n of the permafrost. I n t h e southern fringe of the p e r m a f r o s t , the removal of the v e g e t a t i o n may r e s u l t in d i s a p p e a r a n c e of the permofrost. The e s t a b l i s h m e n t of a m o s s c o v e r may l e a d , p e r h a p s , to the formation a n d a c c u m u l a t i o n of permafrost.

CONCLUSION

T h i s p a p e r r e v i e w s v a r i o u s w a y s in which v e g e t a t i o n a f f d c t s permafrost. Some m e c h a n i s m s add h e a t to thc. g r o u n d , o t h e r s f a c i l i t a t e h e a t l o s s from the ground. Some add h e a t a t o n e time and c o n t r i b u t e to h e a t l o s s a n o t h e r t i m e . Influences of v e g e - tation a r e a l m o s t a l l r e v e r s i b l e depending o n the c o n d i t i o n s under which they o c c u r . The complexity and multifaceted e f - f e c t s of v e g e t a t i o n o n permafrost o f t e n l e a d to a s i t u a t i o n where under o n e s e t of c o n d i t i o n s a p l a n t community d e c r e a s e s the s o i l temperature and i n c r e a s e s i t undzr o t h e r c o n d i t i o n s .

I t i s very d i f f i c u l t to a t t a c h a b s o l u t e q u a n t i t i s s to e a c h f a c e t of the v e g e t a t i o n influencc-total them, and a r r i v e a t the r e s u l t a n t d i r e c t i o n and magnitude of h e a t flow a t a p a r t i c u l a r t i m e , much l e s s periorm this o p e r a t i o n for a l l thc p a s t influ- e n c e s and a s s e s s their e f f e c t on t h e p r e s e n t permafrost s i t u a - tion. Even if e a c h f a c t o r could b e m e z s u r e d q u a n t i t a t i v e l y , the contribution of some i s s o minute that the cumulative er- ror would b e u n r e a l i s t i c . I n a d d i t i o n , t h e r e a r e f a c t o r s which a r e probably n o t e v e n known o r p o s s i b l e to m e a s u r e .

The b e s t s o l u t i o n a p p e a r s to b e to measure o b v i o u s e f f e c t s of v e g e t a t i o n , s u c h a s d e p t h of t h a w , t e m p e r a t u r e s , e x t e n t and t h i c k n e s s of permafrost which a r e m a n i f e s t a t i o n s of the n e t h e a t g a i n s and h e a t l o s s e s to the g r o u n d , and r e l a t e t h e s e to v a r i a t i o n s in environmental c o m p o n e n t s . The s a m e perma- f r o s t c o n d i t i o n s may o c c u r in two a d j a c e n t a r e a s , b u t t h e com- b i n a t i o n of v e g e t a t i o n and o t h e r f a c t o r s producing two s i m i l a r s e t s of permafrost c o n d i t i o n s may b e q u i t e d i f f e r e n t .

ACKNOWLEDGMENTS

The author w i s h e s to a c k n o w l e d g e the h e l p f u l comments of A. E. Porsild and W . K. W . Baldwin, N a t i o n a l Herbarium, Department of Northern Affairs and N a t i o n a l R e s o u r c e s , Ottawa: the l a t e J . A. P i h l a i n e n , O t t a w a , and W . S . Benninghoff, De- partment of B o t a n y , U n i v e r s i t y of M i c h i g a n . This i s a contri-

bution from tho Division of Building R o s a a r c h , N a t i o n a l Re-

s e a r c h C o u n c r l , C a n a d a , a n d i s p r e s e n t e d with permicision af the director of tnc: d i v i s i o n .

REFERENCES

[ l ] A. P. Tyrtikov. "The Effect of Vegetation on P e r e n n i a l l y Frozen S o i l , " M a t e r i a l y K Osnovam U c h e n i y a 0 Merzlykh Zo- n a k h Zemnoy Kory ( M a t e r i a l s for the B a s i s of Study of the Fro- z e n Z o n e s of the E a r t h ' s C r u s t ) , I s s u e 111, 1 9 5 6 , p p . 85-108. [ 2 ] A. P . Tyrtikov. "Permafrost a n d V e g e t a t i o n , " Funda- m e n t a l s of G e o c r y l o g y , Vol. 1 , C h a p . 1 2 , Acad. S c i . USSR, M o s c o w , 1 9 5 9 , p p . 399-421, (Text in R u s s i a n ) .

[ 3 ] E . R. D a h l . " M o u n t a i n Vegetation in South Norway a n d I t s Relation to the Environment, " Skrift. u t g i t t a v Vidensk. -Ak. O s l o , I , M a t . Natur. Kl., No. 3 , 1956.

[ 4 1 R. N o r d h a g e n . " M o u n t a i n Vegetation a s a Record of Snow c o v e r T h i c k n e s s and D u r a t i o n , " ~ e d d . fra Vegdirektdren, N o s . 1 . 2 . 4 , 1 9 5 2 . . . DD. 1-31.

[ 5 ] A. A. Grigor ' e v . "Concerning C e r t a i n G e o g r a p h i c a l Re

-

l a t i o n s h i p s of Thermal and W a t e r Exchange o n the Surface of Dry Land and M e a n s of Further Study of M a t e r i a l s and Energy in the G e o g r a p h i c a l Environment, " I z v e s t . Acad. S c i . USSR, G e o g . S e r . , No. 3 , 1 9 5 8 , p p . 1 7 7 2 1 , (Text in R u s s i a n ) . [ 6 ] M. I . Budyko. The H e a t Balance of the E a r t h ' s S u r f a c e , U.S. D e p t . of C o m m e r c e , Office of C l i m a t o l o g y , 1 9 5 8 , ( T r a n s l . by N

.

A. S t e p a n o v a , from Gidrome t e o r o l o g i c h e s k o e i z d a t e l ' s t v o , Leningrad, 1 9 5 6 ) .

[ 7 1 K . A. S y c h e v . "Thermal Balance of the Active Layer of Permafrost in Summer, " Problemy Arktiki I A n t a r k t i k i , No. 1 , 1 9 5 9 , p p . 8 7 - 9 3 , (Text in R u s s i a n ) .

[ 8 ] N . A. S h p o l y a n s k a y a . "The I n f l u e n c e of the H e a t Ex- c h a n g e Between the S o i l a n d the Atmosphere o n Permafrost in T r a n s b a i k a l i a , " Vestnik M o s k o v s k o g o U n i v e r s i t e t a , No. 2 , 1 3 6 2 , p p . 3 7 - 4 2 , (Text in R u s s i a n ) .

[ 9 ] I . C

.

J a c k s o n . " I n s o l a t i o n and Albedo in Q u e b e c - Labrador, " McGill S u b a r c t i c Res

.

P a p e r s , No. 5 , J a n . 1 9 5 9 . [ 101 J . R . M a t h e r , C . W . Thornthwaite. " M i c r o c l i m a t i c I n v e s t i g a t i o n s a t Point Barrow, A l a s k a , 1 9 5 6 , " C l i m a t o l o g y , D r e x e l I n s t . T e c h . , Lab. of C l i m a t o l o g y , C e n t e r t o n , N . J . , Vol. 9 , N o . 1 , 1 9 5 6 . [ 11

1

J . R . M a t h e r , C

.

W . Thornthwaite. " M i c r o c l i m a t i c I n v e s t i g a t i o n s a t Point Barrow, A l a s k a , 1 9 5 7 - 1 9 5 8 , "

m.,

No. 2 . [ 1 2 1 R. F . L e g g e t , H . B. D i c k e n s , R . J . E. Brown. "Perma- f r o s t I n v e s t i g a t i o n s in C a n a d a , " P r o c . 1 s t I n t l . Symp. Arctic G e o l o g y , Vol. 2 , G e o l o g y of the A r c t i c , U n i v . Toronto P r e s s ,

1 9 6 1 , pp. 9 5 6 - 9 6 9 .

[ 131 W . S . Benninghoff. " I n t e r a c t i o n of Vegetation and S o i l F r o s t P h e n o m e n a , "

Arctic,

Vol. 5 , No. 1 , March 1 9 5 2 . [ 141 E. M

.

F r a s e r . "The Lichen W o o d l a n d s of the Knob Lake Area of Quebec-Labrador, " M c G i l l Subarctic Res. P a p e r s , No.

I , D e c . 1 9 5 6 .

-

[ 151 M . I . Sumbin, S. P . Kachurin, N . I . T o l s t i k h i n , V. F. T u m e l ' . " G e n e r a l Permafrost S t u d i e s , " A c a d . S c i . USSR, M o s c o w , 1 9 4 0 , p p . 160- 165 (Text in R u s s i a n ) .

[ 161 R

.

J

.

E

.

Brown. " P o t e n t i a l Evapotranspiration and Evap- oration O b s e r v a t i o n s a t Norman W e l l s , NWT. " Proc. Hydrol- ogy Symp. N o . 2

-

E v a p o r a t i o n , N a t l . R e s . C o u n . , March

1 9 6 1 , p p . 123-127.

[ 171

1.

D . I v e s . "A Pilot P r o j e c t for Permafrost I n v e s t i g a t i o n s i n C e n t r a l Labrador-Ungava, " D e p t . M i n e s and T e c h . S u r v . , G e o g . Paper No.

28,

O t t a w a , C a n a d a , 1961.

[ l 8 1 L. Annersten. "Ground Temperature M e a s u r e m e n t s i n the Schefferville A r e a , " P

.

Q. Proc

.

, 1 s t C a n a d i a n Conf

.

Perma-

frost,

N a t l . R e s . C o u n . , A s s n . Comm. S o i l and Snow M e c h . , T e c h . M e m o . No. 7 6 , J a n . 1 9 6 3 , p p . 215-217.

[ 191 B. A. Tikhomirov. "The Importance of M o s s C o v e r i n the Vegetation of the Far N o r t h , " B o t a n i c h e s k i y Z h u r . , S e p t . 1 9 5 2 , p p . 629-638 (Text i n R u s s i a n ) . [201 A. E. P o r s i l d . N a t l . Herbarium, O t t a w a , C a n a d a , priv. c o m m . , 1 9 6 3 . [ 2 1 1 J . M . Robinson. D e p t . of F o r e s t r y , C a n a d a , priv. c o m m . , 1959. [ 2 2 1 G . . H . J o h n s t o n , R . J . E. Brown, D . N . P i c k e r s g i l l . "Permafrost I n v e s t i g a t i o n s a t Thompson, M a n i t o b a , Terrain

(9)

S t u d i e s , " N a t l . R e s . C o u n . , T c c h . ? a p e r N o . 1 5 8 . O c t . [ 24

1

J . A . P l h l a ~ n e n . " I n u v i k , N W T , E n g i n e e r i n g S i t e I n f o r - 1 9 6 3 (NRC 7 5 6 8 ) . m a t i o n . " N a t l . H e s . C o u n . , T e c h . P a p e r N o . 1 3 5 , Aug

.

1 9 6 2 (NRC 6 7 5 7 ) . [ 231 R. J . E . Brown. " P e r m a f r o s t I n v e s t i g a t i o n s o n t h e M a c - [ 2 5 ] F . S . N o w o s a d , A . L e a h e y . " S o i l s of t h e A r c t i c a n d k e n z i e H i g h w a y i n A l b e r t a a n d M a c k e n z i e D i s t r i c t . " N a t l . R e s . S u b a r c t i c R e g i o n s of C a n a d a , " Agr. I n s t . R e v . , M a r c h 1 9 6 0 , C o u n . , T e c h . P a p e r N o . 1 7 5 , J u n e 1 9 6 4 (NRC 7 8 8 5 ) . p p . 4 8 - 5 0 .

Figure

Fig.  1 .   Variety  of  v e g e t a t i o n   a s s o c i a t i o n s  with  r e l a t e d   v a r i a -   t i o n s   i n   permafrost  o c c u r r e n c e

Références

Documents relatifs

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé "plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens