• Aucun résultat trouvé

nonlinear diffusions and applications

N/A
N/A
Protected

Academic year: 2022

Partager "nonlinear diffusions and applications"

Copied!
20
0
0

Texte intégral

(1)

Relative entropy methods for

nonlinear diffusions and applications

Jean DOLBEAULT

Ceremade, Universit´e Paris IX-Dauphine, Place de Lattre de Tassigny,

75775 Paris C´edex 16, France

E-mail: dolbeaul@ceremade.dauphine.fr

http://www.ceremade.dauphine.fr/edolbeaul/

Results in collaboration with:

N. Ben Abdallah, P. Biler, L. Caffarelli, M. Del Pino, L. Desvillettes, M. Esteban, G. Karch, P. Markowich, T. Nadzieja, C. Schmeiser, A.

Unterreiter

(2)

LOGARITHMIC SOBOLEV INEQUALITY AND HEAT EQUATION

Heat equation:

ut = ∆u in IRd u|t=0 = u0 ≥ 0 u0(1 + |x|2) ∈ L1 u0 log u0 ∈ L1

R u0 dx = 1

Time-dependent rescaling:

u(t, x) = 1

Rd(t) v τ(t), x R(t)

!

R(t) = p1 + 2t , τ(t) = logR(t) vτ = ∆v + ∇ · (x v) , v|τ=0 = u0 Stationary solution:

v(x) = (2π)d/2 e−|x|2/2

(3)

A Lyapunov functional: the free energy L[v] =

Z

v log

v v

dx i.e. L[v] =

Z

v log v + 1

2|x|2v

dx + C d

dτL[v] = −I[v] , I[v] =

Z

v

∇v

v + x

2

dx

Logarithmic Sobolev inequality [Gross, 1975]

R |g|2 log |g| dµ ≤ R |∇g|2

dµ(x) = v(x) dx and R |g|2 dµ = 1.

Take |g|2 = vv

:

I[v] ≥ 2L[v]

L[v] ≤ L[u0] e

(4)

Csisz´ar-Kullback inequality [1967]

kv − vk2L1 ≤ 4L[v]

Intermediate asymptotics u(t, x) = 1

Rd(t) v x R(t)

!

ku − ukL1 = kv − vkL1

q2L[u0] R(t)

ku − ukL1 = O

1 t

as t → +∞

Probability theory: [Bakry, Emery, Ledoux] Op- timality: [Carlen, 1991] A new proof of Log Sobolev: [Toscani, 1997], [AMTU, 1999]

d (I[v] − 2L[v])

= −4R Pdi,j=1

2w

∂xi∂xjw1 ∂x∂wi∂x∂wj + w2 δij

2

dx

(5)

POROUS MEDIUM / FAST DIFFUSION ut = ∆um in IRd

u|t=0 = u0 ≥ 0

u0(1 + |x|2) ∈ L1 , um0 ∈ L1

Intermediate asymptotics: u0 ∈ L, R u0 dx = 1, the Green function: G(t) = O(td/(2d(1m))) as t → +∞, [Friedmann, Kamin, 1980]

ku(t,·) − G(t,·)kL = o(td/(2d(1m)))

Rescaling: Take u(t, x) = Rd(t) v (τ(t), x/R(t)) where

R˙ = Rd(1m)1 , R(0) = 1 , τ = log R

vτ = ∆vm + ∇ · (x v) , v|τ=0 = u0

[Ralston, Newman, 1984] Lyapunov functional:

Entropy

L[v] = R mvm

1 + 12|x|2v dx + C

(6)

d

dτL[v] = −I[v] , I[v] =

Z

v

∇vm1

v + x

2

dx Stationary solution: C s.t. kvkL1 = kukL1 = 1

v(x) =

C + 1 − m

2m |x|2

1/(1m) +

L[v] = R σ vvmm

vm1 dx

with σ(t) = mt11/mm1 + 1 Theorem 1 m ∈ [dd1,+∞), m > 12, m 6= 1

I[v] ≥ 2L[v]

p = 2m11, v = w2p

K < 0 if m < 1, K > 0 if m > 1

1

2(2m2m1)2 R |∇w|2dx + (11md) R |w|1+pdx + K ≥ 0 m = dd1: Sobolev, m → 1: logarithmic Sobolev

[Del Pino, J.D.], [Carrillo, Toscani], [Otto]

(7)

L[v] ≤ L[u0] e2τ+ Cisz´ar-Kullback inequalities

Intermediate asymptotics [Del Pino, J.D.]

(i) dd1 < m < 1 if d ≥ 3, and 12 < m < 1 if d = 2 lim supt+ t

1d(1m)

2d(1m)kum − umkL1 < +∞ (ii) 1 < m < 2

lim supt+ t

1+d(m1)

2+d(m1)k [u − u] um1 kL1 < +∞

Optimal constants for Gagliardo-Nirenberg in- equalities [Del Pino, J.D.]

d ≥ 2, p > 1, p ≤ dd2 for d ≥ 3 kwk2p ≤ Ak∇wkθ2 kwk1p+1θ A =

y(p1)2 2πd

θ

2 2yd 2y

1

2p Γ(y)

Γ(y2d)

!θ

d

θ = d(p1)

p(d+2(d2)p), y = p+1p

1

Similar results for 0< p < 1. Uses [Serrin-Pucci], [Serrin-Tang].

(8)

GENERAL NONLINEAR DIFFUSIONS [Carrillo, Juengel, Markowich, Toscani, Unter- reiter, 2000]

ut = ∆f(u) + ∇ · (u∇V ) with V (x) ∼ α|x|2

Generalized entropy

L[u] = R [H(u) + V u] dx − C

= R [u h(u) − f(u) + V u] dx − C with H0(u) = h(u) = f0(u)u

Minimizer with given mass

h(u) = C − V (x) u(x) = g(C − V (x))

where g is the generalized inverse of h. Examples:

f(u) = u h(u) = log u , g(t) = et f(u) = um , h(u) = mm1 um1

g(t) = mm1 t1/(m1)

+

(9)

L[u] = R [u h(u) − f(u) + V u] dx + C such that L[u] = 0

d L[u] = −I[u] ,

with I[u] = R uh0(u)∇u + ∇V u2 dx

Generalized Sobolev inequality:

assume that f0 > 0 + technical conditions

∃K > 0 L[u] ≤ K I[u]

Rate and intermediate asymptotics:

[Biler, J.D., Esteban]

ut = ∆f(u) , u|t=0 = u0 ≥ 0

Take u(t, x) = Rd(t)v (τ(t), x/R(t)) where R˙ = Rd(1m)1 if f(u) ∼ um as m → 0

vτ = emdτ∆f(ev) + ∇ · (x v)

(10)

Assumptions:

f(s) = smF(s)

F ∈ C0(IR+) ∩ C1(0,+∞) F > 0 , F(0) = 1

F0(s) = O(sk) with k > −1 as s → 0+ (m − 1)s h(s) − m f(s) ≤ 0

Example: f(s) = sm + sq, q > m Entropy

L[τ, v] = emdτ R [H(ev) − H(evτ )] dx +12 R |x|2 (v − vτ ) dx Theorem 2 Decay rate of the entropy

0 ≤ L[τ, v] ≤ Keβ τ, β = min (d(k + 1),2)

Corollary 3 Intermediate asymptotics

kH(u) − H(u)kL1 ≤ C Rd(m1)β/2

(11)

A DRIFT-DIFFUSION-POISSON MODEL [Gajewski], [Arnold, Markowich, Toscani], [Arnold, Markowich, Toscani, Unterreiter] – use Holley-

Stroock’s perturbation lemma m = 1: [Biler, J.D.]

m 6= 1: [Biler, J.D., Markowich]

Debye-H¨uckel model for electrolytes, Drift-diffusion model for semi-conductors.

ut = ∇ · (∇um + u∇V + u∇φ) vt = ∇ · (∇vm + v∇V − v∇φ)

∆φ = v − u

After a time-dependent rescaling (use abusively same notations):

uτ = ∇ · (∇um + u∇V + β(τ)u∇φ) vτ = ∇ · (∇vm + v∇V − β(τ)v∇φ)

∆φ = v − u , β(τ) = e(2d)τ Entropy

W[u] =

Z

(u h(u) − f(u) + 1

2|x|2u) dx

(12)

L[u, v] = W[u] − W[u] + W[v] − W[v] +β(2τ) R(u − v)φ dx

Proposition 4 Entropy decay

dL = −2I[u] − 2I[v] − β2 R(u + v)|∇φ|2 dx

Theorem 5 Rates, d = 3

1) L has an exponential decay 2) m = 1: L(τ) ≤ C eτ

If R u0 dx = R v0 dx, L(τ) ≤ C e2τ

More general nonlinearities – Example:

F(σ) := RIR3 v

dv

+exp(|v|2/2σ)

f(s) = sF1(s) − R0s F1(x) dx

(13)

Stationary solutions, singular limit (dielectric constant → 0)

[Caffarelli, J.D., Markowich, Schmeiser]

[J.D., Markowich, Unterreiter]

∆f(u) + ∇ · (u∇V + u∇φ) = 0

∆f(v) + ∇ · (v∇V − v∇φ) = 0

∆φ = v − u − C(x)

Ω bounded domain, zero flux + insulator bound- ary conditions

R v dx = N, R u dx = P given

Global electroneutrality: N−P −R C(x) dx = 0 Entropy: L = R H(u)dx+R H(v) dx+12 R |∇φ|2 dx H0(u) = h(u) = f0(u)u , g = h1,

u = g(α[φ] + φ) , v = g(β[φ] − φ)

∆φ = g(α[φ] + φ) − g(β[φ] − φ) − C(x) A convex functional

J[φ] = 12 R |∇φ|2 dx + R G(α[φ] + φ) dx

+ R G(β[φ] − φ) dx − N β[φ] − P α[φ]

which plays a crucial role in the study of sin- gular limits.

(14)

ENERGY-TRANSPORT:

STREATER’S MODELS

ut = ∇ · hκ(∇u + uθ(∇φ + ζ∇φ0))i (uθ)t = ∇ · (λ∇θ)

+∇ · [κ(θ∇u + u∇φ + ζu∇φ0)]

+(∇φ + ζ∇φ0)

·hκ(∇u + uθ(∇φ + ζ∇φ0))i

±∆φ = u

with the boundary conditions

(nu + uθ(∂nφ + ζ∂nφ0) = 0 (no mass flux)

nθ = 0 (no heat flux)

Mass: M = R u dx

Energy: R(u θ + φ0 + 12φ) dx Entropy: R u log(uθ) dx

dL

dt = −

Z |∇θ|2

θ2 dx−

Z

u|∇u

u +1

θ(∇φ+∇φ0)|2 dx

(15)

Electrostatic case: [Biler, Esteban, J.D., Karch]

Stationary solutions: existence, uniqueness in some cases

L[u, θ] − L[u, θ]

= R s1(uu

) u dx + R s2(θθ

) u dx s1(t) = t logt + 1 − t

s2(t) = t − 1 − log t

For uniqueness, use [Desvillettes, J.D.]:

Theorem 6 Ω of class C1, bounded, ψ ∈ H01(Ω) σ(t) = (−1 + q1 + χt2)/t2, χ = 2E/M2

−σ(k∇ψkL2) ∆ψ = eψ

R

eψ dx , ψ| = 0 has a unique solution for any M > 0 and E > 0.

Lemma 7 Ω of class C1, bounded, ψ ∈ H01(Ω) log

Z

eψ dx

≥ C−2 logk∇ψkL2 (1+o(1)) as k∇ψkL2 → ∞.

(16)

Gravitational case: [Biler, Esteban, J.D., Markowich, Nadzieja]

Theorem 8 Ω bounded star-shaped in IRd d ≥ 3, of class C1

E/M2 > `1: existence of bounded solutions E/M2 < `0, no nontrivial bounded solution If d ≥ 15, E/M2 < ˜`0: no solution in H01(Ω)

1 2 3 4

2 4 6 8

2.5 3 3.5 4 4.5

2 4 6 8 10

Solutions of −∆ψ = m R eψ

eψ dx in the ball with zero Dirichlet boundary conditions:

left: (m,kψkH1), right: (m,kψkL)

(17)

FURTHER RESULTS

ON NONLINEAR DIFFUSIONS ut = ∆pum

Optimal constants for Gagliardo-Nirenberg ineq.

[Del Pino, J.D.]

Theorem 9 1< p < d, 1< a ≤ p(ddp1), b=p ap11

kwkb ≤ S k∇wkθp kwk1aθ if a > p kwka ≤ S k∇wkθp kwk1bθ if a < p Equality if w(x) = A(1 + B |x|

p

p1)

p1 ap

+

a > p: θ = (q (qp)d

1) (d p(dp)q)

a < p: θ = q(d(p (pq)d

q)+p(q1))

Proof based on [Serrin, Tang]

(18)

A new logarithmic Sobolev inequality, with op- timal constant [Del Pino, J.D.]

Theorem 10 If kukLp = 1, then

R |u|p log |u| dx ≤ pd2 log [Lp R

|∇u|p dx]

Lp = pd pe1p1 π2p

"

Γ(2d+1) Γ(d pp1+1)

#p

d

Equality: u = π2dσd

p1

p Γ(d2+1)

Γ(d pp1+1) eσ1|xx¯|

p p1

p = 2: Gross’ logaritmic Sobolev inequality p = 1: [Beckner]

(19)

[Del Pino, J.D.] Intermediate asymptotics of ut = ∆pum

Theorem 11 d ≥ 2, 1 < p < d

d(p1)

d(p1) ≤ m ≤ pp1 and q = 1 + m − p11

(i) ku(t, ·) − u(t, ·)kq ≤ K R(α2+d(11q)) (ii) kuq(t,·) − uq(t,·)k1/q ≤ K Rα2

(i): p1

1 ≤ m ≤ pp1, (ii): dd(p(p1)

1) ≤ m ≤ p11 α = (1 − 1p (p − 1)

p1

p ) pp1, R = (1 + γ t)1 γ = (md + 1)(p − 1) − (d − 1)

u(t, x) = 1

Rd v(logR, x R) v(x) = (C − pmp1 (q−1)|x|

p

p1)1/(q+ 1) m 6= p1

1

v(x) = C e(p1)2|x|p/(p1)/p if m = (p − 1)1.

(20)

References

[Manuel DEL PINO, J.D.] The Optimal Euclidean Lp-Sobolev log- arithmic inequality

[Manuel DEL PINO, J.D.] Best constants for Gagliardo-Nirenberg inequalities and application to nonlinear diffusions

[Piotr BILER, Maria ESTEBAN, J.D., Peter MARKOWICH, Tade- usz NADZIEJA] Steady states for Streater’s energy-transport mod- els of self-gravitating particles,

[J.D., Peter MARKOWICH, Andreas UNTERREITER] On Singular Limits of Mean-Field Equations

[Piotr BILER, J.D., Maria J. ESTEBAN] Intermediate asymptotics in L1 for general nonlinear diffusion equations

[Piotr BILER, J.D., Maria J. ESTEBAN, Grzegorz KARCH] Sta- tionary solutions, intermediate asymptotics and large time behaviour of type II Streater’s models

[Luis CAFFARELLI, J.D., Peter MARKOWICH, Christian SCH- MEISER] On Maxwellian Equilibria of Insulated Semiconductors [Piotr BILER, J.D., Peter MARKOWICH] Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling

[Naoufel BEN ABDALLAH, J.D.] Entropies relatives pour le syst`eme de Vlasov-Poisson dans des domaines born´es (Relative entropies for the Vlasov-Poisson system in bounded domains)

[Piotr BILER, J.D.] Long time behavior of solutions to Nernst- Planck and Debye-H¨uckel drift-diffusion systems

[Manuel DEL PINO, J.D.] Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous medium prob- lems

Références

Documents relatifs

Nous avons travaillé pour affirmer qu’une pièce comme Hamlet -qui est un mythe et qui touche depuis sa création le monde entier- est plus riche si, dans sa représentation, son

[Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban], [Markowich,

[Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban], [Markowich,

[Carrillo, Toscani], [Del Pino, J.D.], [Otto], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban], [Markowich,

• nonlinear diffusions: [Carrillo, Toscani], [Del Pino, J.D.], [Otto], [Juen- gel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unter- reiter], [Biler, J.D.,

• nonlinear diffusions: [Carrillo, Toscani], [Del Pino, J.D.], [Otto], [Juen- gel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unter- reiter], [Biler, J.D.,

• nonlinear diffusions: [Carrillo, Toscani], [Del Pino, J.D.], [Otto], [Juen- gel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterre- iter], [Biler, J.D.,

El que ha rebut nY.s critiques 56n les actituds referents al rol de la do na i a rús que (an de la seva feminitat que , més que alliberar-Ies. el que fa és crcar una