• Aucun résultat trouvé

Applied Mathematics and Computation

N/A
N/A
Protected

Academic year: 2022

Partager "Applied Mathematics and Computation"

Copied!
18
0
0

Texte intégral

(1)

A continuation approach for solving binary quadratic program based on a class of NCP-functions

Jein-Shan Chen

a,,1

, Jing-Fan Li

a

, Jia Wu

b

aDepartment of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan, ROC

bSchool of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

a r t i c l e i n f o

Keywords:

Nonlinear complementarity problem Generalized Fischer–Burmeister function Binary quadratic program

a b s t r a c t

In the paper, we consider a continuation approach for the binary quadratic program (BQP) based on a class of NCP-functions. More specifically, we recast the BQP as an equivalent minimization and then seeks its global minimizer via a global continuation method. Such approach had been considered in[11]which is based on the Fischer–Burmeister function.

We investigate this continuation approach again by using a more general function, called the generalized Fischer–Burmeister function. However, the theoretical background for such extension can not be easily carried over. Indeed, it needs some subtle analysis.

Ó2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following binary quadratic program (BQP)

minxTQxþcTx over x2S; ð1Þ

whereQis annnsymmetric matrix,cis a vector inRnandSis the binary discrete setf0;1gn. It is known that BQP is NP-hard and has a variety of applications in computer science, operations research and engineering, see[1,3,8,13,14]and references therein. There have been proposed several continuous approaches for solving BQP[9,12,15]which often need to cooperate with branch and bound algorithms or some heuristic strategies to generate an exact or approximate solution.

In[10], another type of continuous approach was proposed which is to reformulate BQP as an equivalent mathematical pro- gramming problem with equilibrium constraints (MPEC) and then consider an effective algorithm to find its global solution.

In this approach, many NCP-functions are employed to convert equilibrium constraints into a collection of quasi-linear equality constraints. Among others, the Fischer–Burmeister function/FB:R2!Rdefined as

/FBða;bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a2þb2 q

ðaþbÞ ð2Þ

is a popular one. In this paper, we investigate this continuation approach again by using a more general function/p:R2!R, called the generalized Fischer–Burmeister function and defined by

/pða;bÞ:¼ kða;bÞkp ðaþbÞ; ð3Þ

0096-3003/$ - see front matterÓ2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2012.10.033

Corresponding author.

E-mail addresses:jschen@math.ntnu.edu.tw(J.-S. Chen),697400011@ntnu.edu.tw(J.-F. Li),jwu_dora@mail.dlut.edu.cn(J. Wu).

1Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office. The author’s work is supported by National Science Council of Taiwan.

Applied Mathematics and Computation 219 (2012) 3975–3992

Contents lists available atSciVerse ScienceDirect

Applied Mathematics and Computation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a m c

(2)

wherep>1 is an arbitrary fixed real number andkða;bÞkpdenotes thep-norm ofða;bÞ, i.e.,kða;bÞkp¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi jajpþ jbjp pp

. In other words, in the generalized FB function/p, we replace the 2-norm ofða;bÞappeared in the FB function by a more generalp- norm. The function/p is still an NCP-function, which naturally induces another NCP-functionwp:R2!Rþgiven by

wpða;bÞ:¼1

2j/pða;bÞj2: ð4Þ

For any givenp>1, the functionwpis shown to possess all favorable properties of the FB functionwFB. Traditionally, in the continuation approach for BQP, one needs to utilize the fact that

x2 f0;1gn()xi¼x2i; i¼1;2;. . .;n: ð5Þ To the contrast, our proposed continuous optimization approach arises from the complementarity condition formulation of 01 vectorx2 f0;1gn, which includes the equivalence(5)with redundant constraints

06xi61; i¼1;2;. . .;n:

so that it can generate an integer feasible solution. For finding the global minimizer of our continuous optimization problem, we employ the similar way as in[10,11]. In summary, the method is to add a quadratic penalty term associated with its equi- librium constraints and a logarithmic barrier term associated with box constraints16xi61;i¼1;2;. . .;n, respectively, to the objective function, and then construct a global smoothing function. Since the generalized Fischer–Burmeister functionwp is quasi-linear, the quadratic penalty for equilibrium constraints will make the convexity of the global smoothing function more stronger. Particularly, we have shown that the global smoothing function is strictly convex in the whole domain for barrier parameter large enough or in a subset of its domain for penalty parameter large enough. According to the feature above, we use a global continuation algorithm defined in[11]via a sequence of unconstrained minimization for this function with varying penalty and barrier parameters. Although the idea is brought from[11], as will be seen, the theoretical back- ground for such extension can not be easily carried over. Indeed, it needs some subtle analysis for extending the background materials. Without loss of generally, in this paper we consider the case thatS¼ f1;1gn. By a transformationz¼ ðxþeÞ=2 for the variablexand the unit vector e inR, we can extend the conclusions to the caseS¼ f0;1gn.

2. Continuous formulation based onUpfunction

In this section we will reformulate(1)as an equivalent continuous optimization based on the/pfunction. As will be seen, the following equivalence plays a key role which says that a binary constraintt2 fa;bgwitha;b2Ris equivalent to a com- plementarity condition (or equilibrium constraint), i.e.,

t2 fa;bg () taP0; btP0; ðtaÞðtbÞ ¼0:

With this, the unconstrained BQP problem in(1)can be recast as a mathematical programming problem with equilibrium constraints (MPEC)

min fðxÞ

s:t: ð1þxi;1xiÞ ¼0; i¼1;2;. . .;n;

1þxiP0; 1xiP0; i¼1;2;. . .;n:

ð6Þ

In fact, given any NCP-function/:RR!R, the property of NCP-functions (see[6]) yields that the equilibrium constraint in(6)is indeed equivalent to an equality constraint associated with/:

ð1þxi;1xiÞ ¼0; 1þxiP0; 1xiP0; ()/ð1þxi;1xiÞ ¼0: ð7Þ Thus we reformulate the original BQP problem, which together with(6) and (7), as the following continuous optimization problem:

min fðxÞ

s:t: /ð1þxi;1xiÞ ¼0; i¼1;2;. . .;n

16xi61; i¼1;2;. . .;n:

ð8Þ

Accordingly, the global minimizer of (8) is the solution of (1). Note that although the box constraints 16xi61;i¼1;2;. . .;nin(8)are indeed redundant, we keep them on purpose. Actually, we shall see that such constraints play a crucial role in the construction of a global smoothing function for problem(8)as was shown in[9,10]. Generally speaking, most NCP-functions are non-differentiable, such as the popular Fischer–Burmeister function in(2), the generalized Fischer–Burmeister function in(3), as well as the minimum function

/minða;bÞ ¼minfa;bg:

However, it is very interesting to observe that, when specializing/in(8)as the generalized Fischer–Burmeister function, we can reach smooth constraint functions

(3)

/pð1þxi;1xiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi j1þxijpþ j1xijp qp

2¼0; i¼1;2;. . .;n

and consequently some usual nonlinear programming solvers can be employed to design an effective algorithm for solving problem(8). In view of this, we in this paper pay attention to the following equivalent continuous formulations reformulated by the generalized Fischer–Burmeister function:

min fðxÞ

s:t: /pð1þxi;1xiÞ ¼0; i¼1;2;. . .;n

16xi61; i¼1;2;. . .;n:

ð9Þ

We also note that using the equivalence thatxi2 f1;1g ()x2i ¼1 gives another another type of continuous optimization:

min fðxÞ

s:t: x2i ¼1; i¼1;2;. . .;n

16xi61; i¼1;2;. . .;n:

ð10Þ

The formulation of(10)looks simple and friendly at first glance, nonetheless, the following remarkable advantages explain why we still stick to the smooth constrained optimization problem(9):

(i) The quasi-linearity of generalized Fischer–Burmeister function implies that it feasible set tends to be convex.

(ii) The equality constraint conditions/pð1þxi;1xiÞ ¼0;i¼1;2;. . .;nhave incorporated the equivalent formulation x2i ¼1;i¼1;2;. . .;n, ofx2 f1;1gwith its relaxation formulation16xi61;i¼1;2;. . .;n, which indicates that, when solving(9)with a penalty function method, an implicit interior point constraint is additionally imposed on.

(iii) FromProposition 2.1as below, we see that the quadratic penalty function of equality constraints is strictly convex in a very large region when the penalty parameter is large enough.

These advantages have great contributions to searching for an optimal solution or a favorable suboptimal solution of(1), which will be shown later. Before we prove the main proposition, we first introduce several technical lemmas which are important for building up the background materials of our extension.

Lemma 2.1. Let f;g be real-valued functions fromRtoRþ. Suppose f;g satisfy (i) f0ðxÞ>0and g0ðxÞ<0for all x2 ða;bÞ,

(ii) f00ðxÞ<0and g00ðxÞ<0for all x2 ða;bÞ, (iii)ðfgÞ0ðaÞ<0and fðaÞPgðaÞ.

ThenðfgÞ0ðxÞ<0for all x2 ða;bÞ.

Proof. To achieve our result, we need to verify two things: (i)ðfgÞ0ðaÞ<0 and (ii)ðfgÞ0ðxÞis decreasing onx2 ða;bÞ. We pro- ceed these verifications as below.

(i) From the assumptions and the chain rule, it is clear that ðfgÞ0ðaÞ ¼f0ðaÞgðaÞ þfðaÞg0ðaÞ<0:

(ii) SinceðfgÞ0ðxÞ ¼f0ðxÞgðxÞ þfðxÞg0ðxÞ, we see that in order to showðfgÞ0ðxÞis decreasing onx2 ða;bÞ, it is enough to argue bothf0ðxÞgðxÞandfðxÞg0ðxÞare decreasing onða;bÞ. We look into the first term first. Note that

f0ðxÞgðxÞ

ð Þ0¼f00ðxÞgðxÞ þf0ðxÞg0ðxÞ60 8x2 ða;bÞ;

becausef00ðxÞ<0;gðxÞP0;f0ðxÞ>0 andg0ðxÞ<0. This claims thatf0ðxÞgðxÞis decreasing onx2 ða;bÞ. The decreasing of fðxÞg0ðxÞoverða;bÞcan be concluded similarly.

Thus, from all the above, the proof is complete. h

The conclusion of next lemma is simple and neat, however, its arguments are very tedious. Indeed the main idea behind is approximation.

Lemma 2.2. Letwpbe defined as in(4). Then,w00pð1þt;1tÞis positive at t¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p for all pP2.

Proof. For symmetry, we only prove the case oft¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p . First, from direct computations and simplifying the expression ofw00p, we have

J.-S. Chen et al. / Applied Mathematics and Computation 219 (2012) 3975–3992 3977

(4)

w00pð1þt;1tÞ ¼ ð1þtÞpþ ð1tÞp1p

ð1þtÞ2ð1tÞ2ð1þtÞpþ ð1tÞp2Fðp;tÞ; ð11Þ whereFðp;tÞ ¼f0ðp;tÞ½f1ðp;tÞ þf2ðp;tÞ þf3ðp;tÞ þf4ðp;tÞwith

f0ðp;tÞ ¼ ð1 þtÞpþ ð1tÞp1p; f1ðp;tÞ ¼ ð1tÞ2ðtþ1Þ2p; f2ðp;tÞ ¼ ðtþ1Þ2ð1tÞ2p;

f3ðp;tÞ ¼ ð2t2þ4p6Þðtþ1Þpð1tÞp; f4ðp;tÞ ¼ ð88pÞð1t2Þp:

Since the first term on the right side of(11)is always positive for allpP2, it suffices to show thatF p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

>0 for all pP2. However, it is very hard to claim this fact directly. Our strategy is to construct a functionA:R!Rsuch that

AðpÞ6F p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

8pP2: ð12Þ

The special feature forAðpÞis that it is easier to verifyAðpÞP0 for allpP2 so that our goal could be reached. Now, we pro- ceed the proof by carrying out the aforementioned two steps.

Step (1): Construct a functionAðÞsatisfying(12). Indeed, the functionFð;Þis composed off0;f1;f2;f3andf4, so for eachfi, we will construct a corresponding piecewise functionaisuch thataiðpÞ6fi p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2131 p

fori¼0;1;2;3;4. Then, combining them together to build up the functionAðÞ. For making the reader understand more easier, we will give some pictures during the process of proof.

(i) First, we explain how to set upa0ðpÞ. Notice that the second derivative off0with respect topis positive att¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p for allpP2;f0is strictly convex att¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2131 p

for allpP2 (the detailed arguments are provided in Appendix A).

Hence, we consider a real piecewise function defined as a0ðpÞ ¼

1

8ðp2Þ þ223 if 26p68 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p 6þ8ð223Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p þ1 if pP8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2131

p 6þ8ð223Þ:

8<

:

Fig. 1depicts the relation betweena0ðpÞandf0 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

. Besides, the following facts a0ð2Þ ¼f0 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

lim

p!2þa00ðpÞ< d dpf0 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

a000ðpÞ ¼0< d2 dp2f0 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

Fig. 1.The graphs ofa0andf0.

(5)

indicate the first part of functiona0ðpÞis less thanf0 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

for 2<p68 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

6þ8ð223Þ. On the other hand, an- other fact

p!1limf0 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 q

þ1

says that the second part of functiona0ðpÞis less than or equal tof0 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

forpP8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

6þ8ð223Þ. Thus, we conclude that

a0ðpÞ6f0 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

8pP2:

(ii) Secondly, we consider a quadratic function defined as a1ðpÞ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q 2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q 4

ln 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

ðp1Þ2 þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q 2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q 4

1ln 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

: Fig. 2depicts the relation betweena1ðpÞandf1 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2131

p

. Again, using the following facts a1ð2Þ ¼f1 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

; a01ð2Þ ¼ d

dpf1 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

a001ðpÞ6 d2 dp2f1 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

8pP2;

we immediately achieve a1ðpÞ6f1 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

8pP2:

(iii) Thirdly, we consider a function defined as

a2ðpÞ ¼

15ðp2Þ þ 1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p 4

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p 2

if 26p612þ20 2 13223

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p 40ð213Þ 4010ð223Þ

; 0

if pP12þ20 2 13223

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p 40ð213Þ 4010ð223Þ : 8>

>>

>>

>>

<

>>

>>

>>

>:

Fig. 2.The graphs ofa1andf1.

J.-S. Chen et al. / Applied Mathematics and Computation 219 (2012) 3975–3992 3979

(6)

Fig. 3depicts the relation betweena2ðpÞandf2 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

. We observe that the functionf2is positive and convex on pP2, then the following facts

a2ð2Þ ¼f2 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

lim

p!2þa02ðpÞ< d dpf2 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

a002ðpÞ ¼0< d2 dp2f2 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

8p>2 yielda2ðpÞ6f2 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2131

p

for allpP2.

(iv) Fourthly, we consider a real piecewise function defined as

a3ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2213

p 2412ð223Þ

þ16ð223213Þ 8

h i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2213

p ð24ð223Þ 48Þ þ40ð223213Þ þ20 if 26p65

2; 314213þ314

ð2213Þ527231213þ7231

ð2213Þ52 if 526p618;

0 if pP18:

8>

>>

>>

><

>>

>>

>>

:

Fig. 4depicts the relation betweena3ðpÞandf3 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

. The relation is clear from the picture, however, we need to go through three subcases to verify it mathematically.

If 26p65

2, we computef3 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

¼2ð213Þ 8þ4p

ð2213Þp. Moreover, we have d

dpf3 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

¼ ð2213Þp 4þ2ð213Þ 8þ4p

lnð2213Þ

h i

;

d2 dp2f3 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

¼ ð2213Þplnð2213Þ8þ2ð213Þ 8þ4p

lnð2213Þ

h i

:

Then, the following facts a3ð2Þ ¼f3 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

a3 5

2 ¼f3 5 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

lim

p!2þa03ðpÞ6 d dpf3 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

Fig. 3.The graphs ofa2andf2.

(7)

andf3 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

being concave on 2; 52

implya3ðpÞ6f3 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

under this case.

If526p618, using the facts that a3

5 2 ¼f3

5 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

lim

p!52þ

a03ð Þp 6 d dpf3

5 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

; anda3ðpÞ ¼f3 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2131 p

having only one solution atp¼52, we obtaina3ðpÞ6f3 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

under this case.

IfpP18, knowingf3ðpÞ>0 for allp, then it is clear thata3ðpÞ6f3 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

under this case.

(v) Finally, notice that the second derivative off4with respect topis positive att¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p for allpP2þlnð22

1 3Þ lnð2213Þ , and negative for p62þlnð22

1 3Þ

lnð2213Þ , so f4 is strictly convex at t¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

for all pP2þlnð22

1 3Þ

lnð2213Þ and strictly concave for all p62þlnð22

13Þ

lnð2213Þ . Hence, we consider a real piecewise function defined as

a4ðpÞ ¼

15350p8ð2213Þ2þ15325 if 26p65

2; 49750þ16ð2213Þ2

h i

5832548ð2213Þ2 if 526p63;

1310p135 if 36p649

13; 152 if pP4913: 8>

>>

>>

>>

><

>>

>>

>>

>>

:

Fig. 5depicts the relation betweena4ðpÞandf4 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

. Again, we need to discuss several subcases to prove the rela- tion mathematically.

For 26p65

2, the following facts a4ð2Þ ¼f4 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

lim

p!2þa04ðpÞ< d dpf4 2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

a004ðpÞ ¼0< d2 dp2f4 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

yield the first part of functiona4ðpÞis less thanf4 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

under this case.

Fig. 4.The graphs ofa3andf3.

J.-S. Chen et al. / Applied Mathematics and Computation 219 (2012) 3975–3992 3981

(8)

For526p63, using the following facts a4ð3Þ<f4 3;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

p!3lima04ðpÞ> d dpf4 3;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

;

a004ðpÞ ¼0< d2 dp2f4 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

:

ð13Þ

We havea4ðpÞis less thanf4 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

under this case.

For 36p649

13, we know that lim

p!3þa04ðpÞ> d dpf4 3;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

:

This together with(13)givesa4ðpÞis less thanf4 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

under this case.

ForpP4913, fromf4ðpÞbeing strictly convex for allp62þlnð22

1 3Þ

lnð2213Þ and being strictly concave for allpP2þlnð22

1 3Þ

lnð2213Þ , we know d

dpf4

1þlnð2213Þ lnð2213Þ

!

¼0 and lim

p!1f4ðpÞ ¼0;

which lead tof4ðpÞ>152 for allp62. Thus,a4ðpÞ6f4 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

under this case.

Now, we are ready to define a functionA:R!Rsatisfying(12). As the mentioned idea, the function is defined by AðpÞ ¼a0ðpÞ½a1ðpÞ þa2ðpÞ þa3ðpÞ þa4ðpÞ:

According to our constructions ofaiðpÞ, it is clear thatAðpÞ6F p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

for allpP2.Fig. 6shows the relation between AðpÞandF p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2131

p

.

Step (2): We will show thatAðpÞP0 for allpP2. Notice thatAðpÞis piecewise smooth, hence A0ðpÞis a piecewise function. Indeed, the expression ofA0ðpÞlooks very ugly and tedious, we display it Appendix B. Furthermore, we also present an approximate expression forA0ðpÞin Appendix C which helps us understand the structure ofA0ðpÞ. The key point is that from the expression of theA0ðpÞ, we can verify the following facts:

Að2Þ ¼0;

A 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 q

6þ8ð223Þ

>A 5

2 >0;

and

A0ðpÞ<0 if p2 ð52;8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

6þ8ð223ÞÞ; A0ðpÞ>0 otherwise;

(

Fig. 5.The graphs ofa4andf4.

(9)

with the exception of points of discontinuity. Thus, we concludeAðpÞP0 for allpP2 and(12)is satisfied, which imply F p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2131 p

P0 for allpP2. Then, the proof is complete. h

Lemma 2.3

(a) Let f be a convex function defied on a convex set C inRnand g be a nondecreasing convex function defined on an interval I in R. Suppose fðCÞ#I. Then, the composite function gf defined byðgfÞðxÞ ¼gðfðxÞÞis convex on C.

(b)Suppose/1:U!Ris a twice continuously differentiable function with a compact setU2Rnand/2:X!Ris a twice con- tinuously differentiable function such that the minimum eigenvalue of its Hessian matrixr2xx/2ðxÞis greater than

e

(>0) for all x2X, whereXU. Then there exists a constantb^>0such that/1þb/2is a strictly convex function onXforb>^b.

Proof

(a) See[2, ChapIII, Lemma1.4].

(b) See[9, Theorem3.1]. h

Proposition 2.1. Let/p andwpbe defined as in(3) and (4), respectively. Then, for any fixed pP2, the following hold.

(a) The function/pð1þt;1tÞis strictly convex for all t2R.

(b) The functionwpð1þt;1tÞis strictly convex for all t R ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

h i

. Proof

(a) It is known know that/pis a convex function[4–6]. Note thatfis a composition of/pand an affine function. Thus,fis convex since it is a composition of a convex function and an affine function (the composition of two convex functions is not necessarily convex, however, our case does guarantee the convexity because one of them is affine).

(b) Due to the symmetry ofwpð1þt;1tÞ, it is enough to show thatwpð1þt;1tÞis strictly convex fortP ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p . To

proceed, we discuss two cases.

(i) If tP1, the function wpð1þt;1tÞ can be regard as a composite function of /pð1þt;1tÞ and hðÞ ¼ ðÞ2. BecausehðÞis nondecreasing convex function on½0;1and/pð1þt;1tÞis positive strictly convex fortP1, fromLemma 2.3, we obtainwð1þt;1tÞis strictly convex fortP2.

(ii) If 1>tP ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p , we know that

Fig. 6.The graphs ofAandF.

J.-S. Chen et al. / Applied Mathematics and Computation 219 (2012) 3975–3992 3983

(10)

w0pð1þt;1tÞ ¼ /pð1þt;1tÞ/0pð1þt;1tÞ;

w00pð1þt;1tÞ ¼ /h 0pð1þt;1tÞ/0pð1þt;1tÞ /pð1þt;1tÞ/00pð1þt;1tÞi :

Then, it suffices to show thatw00pð1þt;1tÞ<0 forpP2. To this end, we compute the third derivative of/pð1þt;1tÞ with respect totand prove that it is negative. To see this,

/000pð1þt;1tÞ ¼4ð1þtÞpþ ð1tÞp1pð1þtÞpð1tÞpðp1Þ

ð1þtÞ3ðt1Þ3ð1þtÞpþ ð1tÞp3 Tðp;tÞ; ð14Þ whereTis a real valued function defined by

Tðp;tÞ ¼ ð1þtÞpð2p13tÞ ð1tÞpð2pþ3t1Þ:

It is not hard to verify the first term of the right side of(14)is always negative for allpP2. Thus, we only need to show Tðp;tÞ>0 for allpP2 which is equivalent to verifyingTð2;tÞ>0 andTðp;tÞ>Tð2;tÞfor allp>2. These can be done as below.

(i) BecauseTð2;tÞ ¼6t6t3, it is clearTð2;tÞ>0.

(ii) To show thatTðp;tÞ>Tð2;tÞforp>2, we first argue that

ð1þtÞp>ð1tÞp1ð2pþ3t1Þ 8p>2; ð15Þ It is equivalent to show that ð1þtÞp

ð1tÞp1ð2pþ3t1Þis greater than 1 for allp>2. Therefore, we consider the derivative of the following function with respect topas follows:

d dp

ð1þtÞp

ð1tÞp1ð2pþ3t1Þ¼ ð1þtÞp

ð1tÞp1ð2pþ3t1Þ2 ð1½ 3t2pÞlnð1tÞ þ ð2pþ3t1Þlnð1þtÞ 2: ð16Þ Observing both terms of the right side of(16) are positive for allp>2 and using ð1þtÞp

ð1þ3tþ2pÞð1tÞp1>1 when p = 2, we can achieve(15). Secondly, we know that

2p13t>1t 8p>2: ð17Þ

Combining(15) and (17), we haveTðp;tÞPTð2;tÞ. Hence, /000pð1þt;1tÞ<0 8pP2:

Then, applyingLemma 2.1gives the desired result for which we setfðtÞ ¼ /pð1þt;1tÞandgðtÞ ¼/0pð1þt;1tÞ. h The result ofProposition 2.1(b) could be improved under some sense. More specifically, the interval wherewpð1þt;1tÞ is strictly convex varies as long aspchanges. We originally wish to figure out the exact interval wherewpð1þt;1tÞis strictly convex for eachp. However, it is very hard to find a closed form dependingpto reflect this feature (indeed, it

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

p=1.1 p=1.5 p=2 p=3 p=10

Fig. 7.The graphs ofwpð1þt;1for differentp.

(11)

may be not possible in our opinion). To compromise, we try to find such an appropriate common interval for allpP2 as shown inProposition 2.1(b). The following two figures (Figs. 7 and 8) depict the geometric view regarding what we just mentioned.

3. Global continuation algorithm for BQP

Due to the logarithmic barrier function being strictly convex andProposition 2.1, we now introduce the quadratic penalty Pn

i¼1wpð1þxi;1xiÞfor the equality constraints and the logarithmic barrierPn

i¼1½lnð1þxiÞ þlnð1xiÞof the box con- straints into the(9). Construct a global smoothing function

/ðx;

a

;

s

Þ ¼fðxÞ þ

a

X

n

i¼1

wpð1þxi;1xiÞ

s

X

n

i¼1

lnð1þxiÞ þlnð1xiÞ

½ ð18Þ

where

s

>0 is a barrier parameter and

a

>0 is a penalty parameter. The next property indicates that the strictly convexity of function/ðx;

a

;

s

Þonð1;1Þnwhen the barrier parameter is large enough, and the strictly convexity of function/ðx;

a

;

s

Þin a large subset of its domain for all

s

>0.

Proposition 3.1. Let/ðx;

a

;

s

Þbe the function defined by(18). Then, the following hold.

(a) There exists a constant^

s

>0such that if

s

>^

s

and

a

>0;/ðx;

a

;

s

Þis strictly convex onð1;1Þn.

(b) There exists a constant

a

^>0 such that if

a

>

a

^ and

s

>0;/ðx;

a

;

s

Þ is strictly convex on the set D:¼ x2 ð1;1Þnj jxij>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

;i¼1;2;. . .;n

n o

.

Proof

(a) LetX¼ ð1;1Þnand denote /aðxÞ:¼fðxÞ þ

a

X

n

i¼1

wpð1þxi;1xiÞ;

/bðxÞ:¼ Xn

i¼1

½lnð1þxiÞ þlnð1xiÞ:

Then the expression of the Hessian matrix of/bðxÞat anyx2Xis given by r2xx/bðxÞ ¼diag 1

ð1x1Þ2þ 1

ð1þx1Þ2; ; 1

ð1xnÞ2þ 1 ð1þxnÞ2

!

;

0 1

2

3 0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2

y−axis x−axis

z−axis

Fig. 8.The graph ofwpð1þt;1with a fixedp.

J.-S. Chen et al. / Applied Mathematics and Computation 219 (2012) 3975–3992 3985

(12)

where diagðxÞ denotes a diagonal matrix with the components of xas the diagonal elements. Moreover, the function

1 ð1xiÞ2þð1þx1

iÞ2 has minimum 2 at point xi¼0, and so every diagonal element of r2xx/bðxÞis at least 2. Thus, by letting U¼ ½1;1n;

e

¼2 and usingLemma 2.3(b) yield the desired result.

(b) Set/a¼fðxÞand /b¼Xn

i¼1

wpð1þxi;1xiÞ

s a

Xn

i¼1

½lnð1þxiÞ þlnð1xiÞ: From the proof ofLemma 2.2, it follows that

r2xx

Xn

i¼1

wpð1xi;1xiÞ

!

¼diagw00pð1x1;1þx1Þ; ;w00pð1xn;1þxnÞ

;

wherew00pð1xi;1þxiÞcan be found in(11). Now takingfðtÞ ¼ /pð1þt;1tÞ;gðtÞ ¼/0pð1þt;1tÞand applying the proof (ii) ofLemma 2.1, we have

w00pð1t;1þtÞ>w002ð1t;1þtÞ 8p>2:

In addition, from[11](Lemma 3.1), we also have

w00bð1t;1þtÞ ¼2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð2t2þ2Þ3 q

8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð2t2þ2Þ3

q >0:0004 8jtj>0:51:

Therefore, the above two inequalities imply

w00pð1t;1þtÞ>0:0004 8jtj>0:51 and 8pP2:

This indicates that every diagonal element of r2xxwp is at least 0:0004. Using the fact that the Hessian matrix of saPn

i¼1½lnð1þxiÞ þlnð1xiÞis positive definite, we obtain that every diagonal element ofr2xx/bis at least 0:0004. Now taking

U¼ ½1;1n; X¼D and

e

¼0:0004

and applyingLemma 2.3gives the desired conclusion. h

As remarked in[11], the result ofProposition 3.1offers motivation to use the function/ðx;

a

;

s

Þto develop a global con- tinuation algorithm for the constrained optimization problem(9). This method will generate a global optimal solution or at least a desirable local solution via a sequence of unconstrained minimization

minx2Rn/ðx;

a

k;

s

kÞ ð19Þ

with an increasing penalty parameter sequencef

a

kgand a decreasing barrier parameter sequencef

s

kg. Note that to ensure the strict convexity of/ðx;

a

k;

s

kÞ, we have to utilize a sufficiently large initial value

s

0to start with the algorithm. As the iteration goes on, the convexity of logarithmic barrier

s

kPn

i¼1½lnð1þxiÞ þlnð1xiÞwill become weak, but the strict con- vexity of/ðx;

a

k;

s

kÞcan still be guaranteed due to the increasing of the penalty parameter

a

k. This means that for eachk2IN, the minimization problem(19)can be easily solved if we have skillful technique to adjust the parameter

a

and

s

. Algorithm 3.1

Step 0 Given parameters

a

0;

s

0,

r

1>1;

r

22 ð0;1Þand

>0. Select a starting point^x0and setk¼0.

Step 1 Solve the unconstrained minimization problem(19)with the starting point^xk, and denote byxkits optimal solution.

Step 2 If ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn i¼1wpð1xki;1xkiÞ q

6

, terminate the algorithm, else go to Step 3.

Step 3 Update the parameters

a

kþ1¼

r

1

a

kand

s

kþ1¼

r

2

s

k. Step 4 Set^xkþ1¼^xk;k¼kþ1 and go to Step 1.

IsAlgorithm 3.1well-defined? To answer this, we give an existence theorem of solution for the unconstrained minimi- zation problem(19). In fact, its proof can be found in[11]Lemma 3.2, we give a brief proof here for completeness.

Proposition 3.2. Let/ðx;

a

k;

s

kÞbe the function defined as in(18). Then, the following hold.

(a) For each k2IN, the minimization problem(19)has a solution xk.

(b) From (a), there exists an^

s

such that the solution to problem(19)is unique when

s

k>^

s

.

(13)

Proof

(a) We first show the existence ofxkfor eachk2IN. LetX1¼ 34;34

. Since/ðx;

a

k;

s

kÞis continuous andX1is a compact set, there exist two real numbersL1andU1such that

L16/ðx;

a

k;

s

kÞ6U1 8x2X1:

On the other hand, we note that/ðx;

a

k;

s

kÞ ! þ1whenxi0!1orxi0!1þfor somei02 f1;2;. . .;ng. Hence, the continuity of function/ðx;

a

k;

s

kÞimplies that there exists andwith 0<d<1=4 such that

/ðx;

a

k;

s

kÞPU1 8x2 ð1;ð 1þd [ ½1d;1ÞÞn: ð20Þ LetX¼ ½1þd;1dn. Again,/ðx;

a

k;

s

kÞbeing continuous on a compact setXimplies that there exists an^x2Xsuch that for eachk2IN

/ð^x;

a

k;

s

kÞ6/ðx;

a

k;

s

kÞ 8x2X:

Moreover, due toX1#X, we know

/ð^x;

a

k;

s

kÞ6U1: ð21Þ

Combining(20) and (21)yields that

/ð^x;

a

k;

s

kÞ6/ðx;

a

k;

s

kÞ 8x2 ð1;1ÞnnX:

Thus, together with(20), it shows that^xis exactly the desired solutionxk.

(b) From conclusion ofProposition 3.1(a),/ð^x;

a

k;

s

kÞis strictly convex onð1;1Þn. Hencexkis unique. h

4. Numerical experiments

In this section, we report numerical results ofAlgorithm 3.1for solving the unconstrained binary quadratic programming problem. Our numerical experiments are carried out in Matlab (version 7.8) running on a PC Inter core 2 Q8200 of 2.33 GHz CPU and 2.00 GB Memory.

In our numerical experiments, we employ BFGS algorithm with strong Wolfe–Powell line search to solve the uncon- strained minimization problem(19), and terminate the current iteration as long asxksatisfies the following criterion:

rx/ðxk;

a

k;

s

kÞ

65:0e3:

The values for the parameters involved inAlgorithm 3.1are chosen as follows:

a

0¼0;

r

1¼2;

r

2¼0:5;

e

¼1:0e3;

and the initial barrier parameter

s

0varies with the scale of problems (here we choose its value the same as that in[11]). The starting point^x0¼0:9ð1;1;. . .;1ÞT2Rnis used for all test problems. To obtain an integer solutionx from the final iterate point^x ofAlgorithm 3.1, we let

xi ¼ 1 ifj^xi þ1j61:0e2 1 ifj^xi 1j61:0e2 (

fori¼1;2;. . .;n:

The test problems are all from the OR-Library and have the following formulation max zTQz

s:t: zi2 f0;1g; i¼1;2;. . .;n:

To solve these problems with Algorithm 3.1, we use the formula z¼ ðxþeÞ=z to transform them into the following formulation

min 14xTQx12xTQe14eTQe s:t: xi2 f1;1g; i¼1;2;. . .;n:

The optimal values generated byAlgorithm 3.1with differentp(p= 1.1, 2, 4, 5, 10, 20, 50, 100) are listed inTables 1–5(see Appendix D), where ‘–’ means that the algorithm fails to get an optimal solution when the maximum CPU time arrives.

Moreover, to present the objective evaluation and comparison of the performance ofAlgorithm 3.1with differentp, we adopt the performance profile introduced in [7]as a means. In particular, we regard Algorithm 3.1corresponding to a pas a solver and assume that there arenssolvers andnjtest problems from the OR-Library collectionJ. We are interested in using the optimal values calculated byAlgorithm 3.1as performance measure for differentp. For each problemjand solvers, let

tj;s:¼ the optimal value of problemjby solvers;

l

j;s:¼ 1 tj;s

:

J.-S. Chen et al. / Applied Mathematics and Computation 219 (2012) 3975–3992 3987

(14)

We compare the performance on problemjby solverswith the best performance by any one of thenssolvers on this prob- lem, i.e., we employ the performance ratio

rj;s

l

j;s

minf

l

j;s:s2 Sg¼maxftj;s:s2 Sg tj;s

;

whereSis the set of eight solvers. An overall assessment of each solver is obtained from

q

sð

s

Þ:¼1 nj

sizefj2 J :rj;s6

s

g;

which is called the performance profile of the reciprocal of optimal solution obtained byAlgorithm 3.1for solvers.

Fig. 9shows the performance profile of the reciprocals of optimal values obtained byAlgorithm 3.1in the range of½1;1:04 for eight solvers on 50 test problems. The eight solvers correspond toAlgorithm 3.1withp¼1:1;p¼2;p¼4;p¼5;p¼10

;p¼20;p¼50 andp¼100, respectively. From this figure, we see thatAlgorithm 3.1are considerably efficient no matter which value ofpis chosen. In fact,Algorithm 3.1with the aforementionedpvalues can solve all the 50 test problems except forp¼5;20;100. Moreover,Algorithm 3.1withp¼4 has the best numerical performance (has the highest probability of being the optimal solver) and the probability of its being the winner on a given BQP is around 0.48. Besides,p¼1:1 and p¼2 have a comparable performance withp¼4, please refer to Appendix D for more detailed numerical reports.

Appendix A

Here is the proof of the strictly convexity off0 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131 p

for allpP2.

To see this, it is enough to verify that d2

dp2f0 p; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

>0 for allp>2. In fact, d2

dp2f0 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

¼f0 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q ln f0ðp; ffiffiffiffiffiffiffiffiffiffiffiffiffi

2131 p

Þp

p2 þaplnðaÞ þbplnðbÞ p f0ðp; ffiffiffiffiffiffiffiffiffiffiffiffiffi

2131 p

Þ

p

2 64

3 75

2

þ 1

p3 f0 p; ffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p

2p1MðpÞ;

ð22Þ wherea¼1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2131 p

;b¼1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

p and

MðpÞ ¼ 2 f0 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

2p

ln f0 p;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2131

q

p

2pðaÞ2pðlnaÞ

" #

þ p22213p

ðlnbÞ22p22213p

ðlnaÞðlnbÞ

h i

þ p22213p

ðlnaÞ22p2213p

ðlnaÞ

h i

þ 2p2213p

ðlnbÞ 2pðb2pÞðlnbÞ 2pðb2pÞðlnbÞ

h i

: ð23Þ

1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

The values of tau

The values of performance profile

p=1.1 p=2 p=4 p=5 p=10 p=20 p=50 p=100

Fig. 9.Performance profile of the reciprocals of optimal values byAlgorithm 3.1with differentp.

Références

Documents relatifs

Abbreviations: MS – Mediterranean Sea; RS – Red Sea; IO – Indian Ocean; SAO – South Atlantic Ocean; SO – Southern Ocean; SPO – South Pacific Ocean; NPO – North Pacific

Prove the Inverse Function Theorem (the statement is below). (Hint: reduce to the case considered in the

We give a very simple algorithm to compute the error and complemen- tary error functions of complex argument to any given

In the case of discrete linear systems with the main operator a contraction, the fact that the maximal function Θ 1 (λ) of the main operator is the null function, gives some

By using variational methods, the existence and the non-existence of nontrivial homoclinic solutions are obtained, depending on a parameter.. Ó 2014

The decomposition of the Laughlin wave function in the Slater orthogonal basis appears in the discussion on the second-quantized form of the Laughlin states and is

In this note, we propose a new method to approximate the minimal time crisis problem using an auxiliary control and a penalty function, and show its convergence to a solution to

Distribution func- tion estimation, Polygonal estimator, Cumulative frequency polygon, Order statistics, Mean integrated squared error, Exponential inequality, Smoothed processes