• Aucun résultat trouvé

On the volume of intersection of three independent Wiener sausages

N/A
N/A
Protected

Academic year: 2022

Partager "On the volume of intersection of three independent Wiener sausages"

Copied!
25
0
0

Texte intégral

(1)

www.imstat.org/aihp 2010, Vol. 46, No. 2, 313–337

DOI:10.1214/09-AIHP316

© Association des Publications de l’Institut Henri Poincaré, 2010

On the volume of intersection of three independent Wiener sausages

M. van den Berg

1

Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom. E-mail:M.vandenBerg@bris.ac.uk Received 6 December 2008; revised 9 February 2009; accepted 10 February 2009

Abstract. LetKbe a compact, non-polar set inRm, m≥3 and letSKi (t)= {Bi(s)+y: 0st, yK}be Wiener sausages associated to independent Brownian motionsBi, i=1,2,3 starting at 0. The expectation of volume of3

i=1SKi (t)with respect to product measure is obtained in terms of the equilibrium measure ofKin the limit of larget.

Résumé. SoitKun ensemble compact, non-polaire dansRm(m≥3)et soitSKi (t)= {Bi(s)+y: 0st, yK}des saucisses de Wiener associées à des processus Browniens indépendantsBi, i=1,2,3 initalisés à 0. L’espérance des volumes de3

i=1SKi (t) par rapport à la mesure produit est obtenue en termes de la mesure d’équilibre deKlorsquettend vers l’infini.

MSC:35K20; 60J65; 60J45

Keywords:Wiener sausage; Equilibrium measure

1. Introduction

Let K be a compact, non-polar set in Euclidean space Rm (m=2,3, . . .), and let (B(s), s≥0;Px, x ∈Rm) be Brownian motion associated to the parabolic operator−+∂t. The Wiener sausage associated toK, and generated byBup to timetis the random setSK(t)defined by

SK(t)=

B(s)+y: 0st, yK .

Its volume, denoted by|SK(t)|, is a simple example of a non-Markovian functional of Brownian motion. It plays a key role in the study of stochastic phenomena like trapping in random media, random Schrödinger operators, and diffusion of matter [15]. The expectation of|SK(t)|has been the subject of extensive investigation. Spitzer [14], Le Gall [8–10] and Port [12] analyzed its asymptotic behaviour for larget, while van den Berg and Le Gall [17] initiated the study of the asymptotic behaviour for smallt. See in particular Chapter 2 of [3] for an up to date account of the smalltbehaviour in the more general setting of a Riemannian manifold.

LetSKi

i(t), i=1, . . . , ndenote Wiener sausages associated to compact, non-polar setsKi, i=1, . . . , n, and gen- erated by independent Brownian motions Bi, i=1, . . . , n respectively. The random setn

i=1SKi

i(t) shows up in numerous places in the physical sciences. In quantum field theory one is interested in estimates for the probability that this random set is empty, in particular in the casen=2, m=4, andK1= · · · =Kn=K[1,2]. The phenomenon of loop condensation [6] for the intersection ofnindependent random walks onZm(or Wiener sausages inRm) with

1Supported by The Leverhulme Trust, Research Fellowship 2008/0368.

(2)

n > m/(m−2)initiated the study of the large deviations for the volume of intersection on the scale of their mean [18] in the case where theKi’s are balls with equal radius. In polymer physics one wishes to obtain properties of the volume of intersection in either the random walk approximation onZ3[7,11], or in the Brownian motion approxima- tion inR3. Below we calculate the precise expected volume of intersection in the physically relevant casesm=3, and n=2, orn=3. While we only consider identical polymersK1= · · · =Kn=K, and of equal lengtht, extensions can easily be obtained to include expressions for the expected volume ofSKi

i(ait ), i=1, . . . , n, where theai’s are strictly positive and not all of them infinite. In the proofs of Theorems1–3below we will see that the physically relevant case m=3 is mathematically the most challenging yielding a non-trivial leading term.

Define fort >0 the expectation with respect to the product law by Nn,m(t)=E10⊗ · · · ⊗En0

n i=1

SKi (t)

. Letu:(RmK)×(0,)→Rbe the solution of

u=∂u

∂t, x∈RmK, t >0, (1)

with initial condition

u(x;0)=0, x∈RmK, (2)

and boundary condition

u(x;t )=1, x∂K, t >0, (3)

where∂Kis the boundary ofK. Equations (1)–(3) are to be understood in the weak sense. (The pointwise limit in (3) holds only at the regular points of∂K.) It is well known that the solution of (1)–(3) is given by

u(x;t )=Px[TK< t], (4)

whereTK is the first hitting time ofK, TK=inf

s≥0: B(s)K

. (5)

We adopt the usual convention in (5) that the infimum over the empty set equals+∞. We extenduto all ofRm× (0,)by puttingu(x;t )=1 onK×(0,). By Fubini’s theorem we have that

Nn,m(t)=

Rmdx

Px[TK< t]n

. (6)

In the last paragraph of this section we will show that

N2,m(t)=2N1,m(t)N1,m(2t ), t >0. (7)

The asymptotic behaviour ofN2,m(t)ast→ ∞ort→0 can then be read-off from the results obtained in [3,8,9,12, 14,17]. No such recursive formulae are known forn=3,4, . . . .In this paper we obtain the asymptotic bahaviour in the case wheren=3, m=3,4, . . . ,andt→ ∞. The strong dimension dependence in our main results, Theorems1–3 below, is directly related to the integrability properties ofPx[TK <∞]for large|x|. These integrability properties improve as the dimensionmincreases. Ifm=3,4, . . . ,then (Theorem 2 in [16])

tlim→∞Nn,m(t)=

Rmdx

cm μK(dy)|xy|2m n

<, (8)

if and only ifn > m/(m−2), whereμK denotes the equilibrium measure supported onK, and cm=41πm/2

(m−2)/2 .

(3)

Throughout the paper we denote the Newtonian capacity ofKby C(K)=μK(K).

Euler’s constant is denoted byγ, Catalan’s constant is denoted byG, and H= 1/

3

0

1+θ21

logθdθ. (9)

Theorem 1. Letm=3.Then fort→ ∞ N3,3(t)=21(4π)2C(K)3logt

(4π)2C(K)2 μK(dy)log|y| +2(4π)3(2π−πγ−12G−6H )C(K)3 +(4π)3

R3dx

μK(dy1K(dy2K(dy3)

|xy1|1|xy2|1− |x|2

|xy3|1 +3(4π)7/2C(K)4t1/2logt+O

t1/2 . Theorem 2. Letm=4.Then fort→ ∞

N3,4(t)=

R4dx

c4 μK(dy)|xy|2 3

−3(4π)4C(K)3t1logt +6(4π)4C(K)t1

μK(dy1K(dy2)log|y1y2| +3(4π)4−2−log 4+log 3)C(K)3t1

+3(4π)2

R4dx

c4 μK(dy)|xy|2 3

C(K)t1+O

t1logt2 . Theorem 3. Letm=5,6,7, . . . .Then fort→ ∞

N3,m(t)=

Rmdx

cm μK(dy)|xy|2m 3

−3(4π)m2m3(m−2)1

(m−4)/2 C(K)

μK(dy1K(dy2)|y1y2|4mt(2m)/2 +6(m−2)1(4π)m/2C(K)

Rmdx

cm μK(dy)|xy|2m 3

t(2m)/2

+

⎧⎨

31(4π)5

12+π−2√ 3

C(K)3t2+O t5/2

, m=5, 21(4π)6C(K)3t3logt+O

t3

, m=6,

O tm/2

, m≥7.

Define the last exit time ofKby LK=sup

s≥0:B(s)K

, (10)

andLK= +∞if the supremum is over the empty set. The law ofLKis given by (see [13,15]) Px[LK< t] = t

0

ds μK(dy)p(x, y;s), (11)

(4)

wherep(x, y;s), x∈Rm, y∈Rm, s >0 is the transition density for Brownian motion (associated to−+∂s ) given by

p(x, y;s)=(4πs)m/2e−|xy|2/(4s). (12)

In particular

Px[LK<∞] =Px[TK<∞] =cm μK(dy)|xy|2m. (13) This reproves (8) by the monotone convergence theorem, (6) and (13).

The first step in the proofs of Theorems1–3is to substitute

Px[TK< t] =Px[LK< t] +Px[TK< t < LK] (14)

in (6), and to bound higher order contributions from terms involving e.g. (Px[TK < t < LK])2. These bounds are given in Proposition4below. The proof is deferred to Section2. The asymptotic behaviour of

Rmdx (Px[LK< t])3 ast→ ∞is given in Propositions6–8below for dimensionsm=3, m=4, andm≥5 respectively. The correspond- ing calculations are deferred to Sections 4–6 respectively. Finally, the asymptotic behaviour of

Rmdx (Px[LK <

∞])2Px[TK< t < LK]ast→ ∞is given in Proposition5. The proof relies on an application of the strong Markov property atTKand is deferred to Section3.

Proposition 4. Letm=3,4, . . . .DefineRm(t)by N3,m(t)=

Rmdx

Px[LK< t]3

+3

Rmdx

Px[LK<∞]2

Px[TK< t < LK] +Rm(t).

Then fort→ ∞ R3(t)=O

t1/2 , R4(t)=O

t2logt and form=5,6, . . .

Rm(t)=O t2m

.

Proposition 5. Letm=3,4, . . . .Then fort→ ∞ (i) m=3

R3dx

Px[LK<∞]2

Px[TK< t < LK] =(4π)7/2C(K)4t1/2logt+O t1/2

, (ii) m=4

R4dx

Px[LK<∞]2

Px[TK< t < LK] =(4π)2

R4dx

Px[LK<∞]3

C(K)t1+O

t1logt2 , (iii) m=5,6, . . .

Rmdx

Px[LK<∞]2

Px[TK< t < LK]

=(4π)m/2 m

2 −1 1

R4dx

Px[LK<∞]3

C(K)t(2m)/2+O tm/2

.

(5)

Proposition 6. Letm=3.Then fort→ ∞

R3dx

Px[LK< t]3

=21(4π)2C(K)3logt(4π)2C(K)2 μK(dy)log|y| +2(4π)3(2π−πγ−12G−6H )C(K)3

+(4π)3

R3dx

μK(dy1K(dy2K(dy3)

|xy1|1|xy2|1− |x|2

|xy3|1 +O

t1/2 .

Proposition 7. Letm=4.Then fort→ ∞

R4dx

Px[LK< t]3

= R4dx

Px[LK<∞]3

−3(4π)4C(K)3t1logt +6(4π)4C(K)t1

μK(dy1K(dy2)log|y1y2| +3(4π)4−2−log 4+log 3)C(K)3t1+O

t2logt . Proposition 8. Letm=5,6, . . . .Then fort→ ∞

Rmdx

Px[LK< t]3

= Rmdx

Px[LK<∞]3

−3(4π)m2m3(m−2)1

(m−4)/2 C(K)

μK(dy1K(dy2)|y1y2|4mt(2m)/2

+

⎧⎨

31(4π)5

12+π−2√ 3

C(K)3t2+O t5/2

, m=5, 21(4π)6C(K)3t3logt+O

t3

, m=6,

O tm/2

, m≥7.

We conclude thisIntroductionwith a short proof of (7). Lett >0, and letB(s)=B(t+s)B(t ), andB (s)= B(ts)B(t )for everys∈ [0, t]. ThenB andB are two independent Brownian motions on the time interval[0, t]. LetSK(t)andSK (t)respectively denote the corresponding Wiener sausages associated toK over the time interval [0, t]. Let SK(t,2t )= {B(s)+y: ts≤2t, y∈K}be the Wiener sausage generated by B over the time interval [t,2t]. By translation invariance of Lebesgue measureE[|SK(t)SK(t,2t )|] =E[|SK(t)SK (t)|] =N2,m(t).On the other hand,N1,m(2t )=E[|SK(2t )|] =E[|SK(t)|] +E[|SK(t,2t )|] −E[|SK(t)SK(t,2t )|] =2N1,m(t)N2,m(t), which is (7).

2. Proof of Proposition4

To prove Proposition4we defineLKandTKas in (10) and (5) respectively. Then Px[TK< t]3

=

Px[LK< t] +Px[TK< t < LK]3

Px[LK< t]3

+3

Px[LK< t]2

Px[TK< t < LK]. On the other hand, sincePx[TK< t < LK] =Px[TK< t < LK<∞] ≤Px[t < LK<∞], we have that

Px[LK< t]

Px[TK< t < LK]2

≤Px[LK<∞]Px[t < LK<∞]Px[TK< t < LK]

(6)

and

Px[TK< t < LK]3

≤Px[LK<∞]Px[t < LK<∞]Px[TK< t < LK]. Hence

Px[TK< t]3

Px[LK< t]3

+3

Px[LK< t]2

Px[TK< t < LK] +4Px[LK<∞]Px[t < LK<∞]Px[TK< t < LK] and

0≤Rm(t)≤4

RmdxPx[LK<∞]Px[t < LK<∞]Px[TK< t < LK]. (15) Lemma 9. Letm=3,4, . . . .Then forx∈Rm, t >0

Px[t < LK<∞] ≤ m

2 −1 1

(4π)m/2C(K)t(2m)/2C(K)t(2m)/2. (16) Proof. By (11) and (12)

Px[t < LK<∞] =

t

ds μK(dy)p(x, y;s)

t

ds μK(dy)(4πs)m/2

= m

2 −1 1

(4π)m/2C(K)t(2m)/2. (17)

By (15) and Lemma9 0≤Rm(t)C(K)t(2m)/2

RmdxPx[LK<∞]Px[TK< t < LK]. (18) Le Gall showed that form=3 andt→ ∞(Lemma 2 in [8])

R3dxPx[LK<∞]Px[TK< t < LK] =(4π)2C(K)3+o(1), (19) and that form=4 andt→ ∞((9) in [8])

R4dxPx[LK<∞]Px[TK< t < LK] =2(4π)4C(K)3t1(logt )

1+o(1)

. (20)

Proposition4follows for m=3 and m=4 from (18)–(20). The proof of Proposition4 for m≥5 relies on some independent estimates ((32), Lemmas10and14) which will be proved in Sections3and4below. By (15) and (32) below we have that fort≥2T

Rm(t)≤4C

RmdxPx[LK<∞]Px[t < LK<∞]Px[TK< t]t(2m)/2 +4C

m 2 −1

RmdxPx[LK<∞]Px[t < LK<∞] tT

0

dsPx[s < TK< t](ts)m/2, (21)

(7)

where C=

m 2 −1

1

(4π)m/2C(K) (22)

and

T =C2/(m2). (23)

By Lemma9we have that the first term in the right-hand side of (21) is bounded by 4CC(K)

Rmdx

Px[LK<∞]2

t2m.

To estimate the contribution from the second term in the right-hand side of (21) we consider the contributions from [0, T],[T , t/2]and[t /2, tT]to the integral with respect tos. Since

T 0

dsPx[s < TK< t](ts)m/2T (tT )m/2Px[LK<∞]

we have by (17) that[0, T]contributes at most C(K)2

Rmdx

Px[LK<∞]2

T (tT )m/2t(2m)/2=O t1m

. To estimate the contribution from[T , t /2]we note that

Px[s < TK< t](ts)m/2(t/2)m/2Px[s < LK<∞]. (24) Hence[T , t/2]contributes, by (24), the first equality in (16) and Lemma14below, at most

4C m

2 −1

2m/2tm/2

t /2 T

ds RmdxPx[LK<∞]Px[t < LK<∞]Px[s < LK<∞]

C(K)4tm/2

t /2 T

ds

0

ds1

t

ds2

s

ds3(s1s2+s2s3+s3s1)m/2

C(K)4tm/2

t /2 T

ds

t

ds2

s

ds3(s2+s3)1(s2s3)(2m)/2

C(K)4tm/2

t /2 T

ds

t

ds2s2m/2

T

ds3s3(2m)/2

C(K)4T(4m)/2t2m.

To estimate the contribution from the interval[t /2, tT]we have, by Lemma10below, that

RmdxPx[LK<∞]Px[t < LK<∞] tT

t /2

dsPx[s < TK< t](ts)m/2

C1

RmdxPx[LK<∞]Px[t < LK<∞] tT

t /2

ds sm/2(ts)(2m)/2

C1(t/2)m/2

RmdxPx[LK<∞]Px[t < LK<∞] tT

−∞ ds (t−s)(2m)/2

C12(2+m)/2T(4m)/2

RmdxPx[LK<∞]Px[t < LK<∞]tm/2. (25)

(8)

By the first equality in (16)

RmdxPx[LK<∞]Px[t < LK<∞]

= Rmdx μK(dy1)

0

ds1p(x, y1;s1) μK(dy2)

t

ds2p(x, y2;s2)

=

μK(dy1K(dy2)

0

ds1

t

ds2p(y1, y2;s1+s2)C(K)2t(4m)/2. Hence (25) is O(t2m).

3. Proof of Proposition5

Letc∈Rm, r >0, and letB(c;r)= {x: |xc| ≤r}, Rc=inf{r >0: KB(c;r)}, and letR=inf{Rc: c∈Rm}. Without loss of generality we may assume that the infimum in the latter is attained at the origin.

The main ingredient in the proof of Proposition5is to use the strong Markov property forPx[TK< t < LK]at the stopping timeTK. So

Px[TK< t < LK] =Ex

1{TKt}PB(TK)[tTK< LK<∞]

. (26)

For anyzKandyK, we have that|yz| ≤2R. Hence Pz[ts < LK<∞] =

ts

dτ (4πτ )m/2 μK(dy)e−|yz|2/(4τ )

t

dτ (4πτ )m/2 μK(dy)eR2/t

= m

2 −1 1

(4π)m/2C(K)eR2/tt(2m)/2. (27)

It follows that

Rmdx

Px[LK<∞]2

Px[TK< t < LK]

m

2 −1 1

(4π)m/2C(K)eR2/tt(2m)/2

Rmdx

Px[LK<∞]2

Px[TK< t]. (28)

To prove the lower bound in Proposition5form≥5 we note that

Px[TK< t] ≥Px[LK<∞] −Px[t < LK<∞]. (29)

Hence form≥5 we have, by Lemma9, that

Rmdx

Px[LK<∞]2

Px[TK< t] ≥

Rmdx

Px[LK<∞]3

C(K)t(2m)/2

Rmdx

Px[LK<∞]2

. We conclude that form≥5 the left-hand side of (28) is bounded from below by

m 2 −1

1

(4π)m/2C(K)

Rmdx

Px[LK<∞]3

t(2m)/2+O tm/2

.

(9)

To prove the lower bound in Proposition5form=4 we note that by (28), (29)

R4dx

Px[LK<∞]2

Px[TK< t < LK]

(4π)2C(K)eR2/tt1

R4dx

Px[LK<∞]3

C(K)t1

R4dx

Px[LK<∞]2

Px[t < LK<∞]. Lemma15in Section5implies that

R4dx

Px[LK<∞]2

Px[t < LK<∞] =O

t1logt .

We conclude that form=4 the left-hand side of (28) is bounded from below by (4π)2C(K)

R4dx

Px[LK<∞]3

t1+O

t2logt .

Finally form=3 we have that the left-hand side of (28) is bounded from below by 2(4π)3/2C(K)eR2/tt1/2

R3dx

Px[LK<∞]2

Px[LK< t]. Lemma12in Section4implies that

R3dx

Px[LK<∞]2

Px[LK< t] =21(4π)2C(K)3logt+O(1). (30) We conclude that form=3 the left-hand side of (28) is bounded from below by

(4π)7/2C(K)4t1/2logt+O t1/2

.

This completes the proof of the lower bound in Proposition5.

To prove the upper bound in Proposition5we note that by the first equality in (27) Pz[ts < LK<∞] ≤

m 2 −1

1

(4π)m/2

C(K)(ts)(2m)/2∧1

. (31)

By (26), (31) and the identity(tTK)(2m)/2=t(2m)/2+21(m−2)TK

0 ds (t−s)m/2it follows that Px[TK< t < LK] ≤CPx[TK< t]t(2m)/2+C

m 2 −1

tT 0

dsPx[s < TK< t](ts)m/2, (32) whereCandT are given by (22) and (23) respectively. Form≥4 we have, by (32), that

Rmdx

Px[LK<∞]2

Px[TK< t < LK]

C

Rmdx

Px[LK<∞]3

t(2m)/2 (33)

+C(K)

Rmdx

Px[LK<∞]2 tT 0

dsPx[s < TK< t](ts)m/2.

The first term in the right-hand side of (33) jibes with the leading term in Proposition5(form≥4). To estimate the second term in the right-hand side of (33) we need the following lemma.

(10)

Lemma 10. Letm≥3,and letT be given by(23).There exists a constantC1depending onKonly such that for all stT andx∈Rm

Px[s < TK< t] ≤C1sm/2(ts).

Proof. By the Markov property atswe have that Px[s < TK< t] =

Rmdy pRmK(x, y;s)Py[TK< ts]

Rmdy p(x, y;s)Py[TK< ts] ≤(4πs)m/2N1,m(ts), (34) wherepRmK(x, y;s), x∈Rm, yRm, s >0 is the transition density with killing onK. SinceN1,m(t)=C(K)t+ o(t)ast→ ∞ we have that there existsT1such thattT1impliesN1,m(t)≤2C(K)t. LetT >0 be arbitrary. If TT1thenN1,m(t) <2C(K)tfor alltT. IfT < T1andTtT1then we have by monotonicity oftN1,m(t) thatN1,m(t)N1,m(T1)≤2C(K)T1(2C(K)T1/T )t. Hence for alltT

N1,m(t)≤2C(K) T1

T ∨1

t, (35)

and the lemma holds with C1=2(4π)m/2C(K)

T1 T ∨1

. (36)

To complete the proof of Proposition5form≥5 we estimate the second term in the right-hand side of (33) as follows. The contribution froms∈ [0, T]to the integral is bounded byT (tT )m/2C(K)

Rmdx (Px[LK<∞])2= O(tm/2). The contribution froms∈ [T , t /2]is bounded, using (16), by

C(K)

Rmdx

Px[LK<∞]2 t /2 T

dsPx[s < LK<∞](ts)m/2

C(K)2

Rmdx

Px[LK<∞]2 t /2 T

ds s(2m)/2(ts)m/2=O tm/2

, while the contribution froms∈ [t /2, tT]is bounded, using Lemma10, by

C(K)C1

Rmdx

Px[LK<∞]2 tT t /2

ds sm/2(ts)(2m)/2=O tm/2

. This completes the proof of Proposition5form≥5.

To complete the proof of Proposition5form=4 we note that Lemma10cannot be used to estimate the integral in (33) since

R4dx (Px[LK<∞])2is divergent. Instead we will use the first inequality in (34). First we note that by (16),Px[s < TK< t] ≤Px[s < LK<∞] ≤C(K)s1. Hence

B(0;2R)

dx

Px[LK<∞]2

Px[s < TK< t] ≤B(0;2R)C(K)s1. (37)

Furthermore for|x| ≥2RandyKwe have that|xy|2(|x| −R)2≥ |x|2/4. SinceKB(0;R)we have that

{|x|>2R}dx

Px[LK<∞]2

Px[s < LK<∞]

{|x|>2R}dx

Px[LB(0;R)<]2 s

μK(dy)p(x, y;τ ) (38)

(11)

C(K)

{|x|>2R}dx

1∧ R

|x| 4

s

dτ (4πτ )2e−|x|2/(16τ )

C(K)R4(8s)1

R/(2

s)

dρ ρ3

1−eρ2

C(K)R4s1 log

R2s

∨1 . By (37) and (38)

R4dx

Px[LK<∞]2

Px[s < TK< t] ≤C2s1

log s

R2

∨1

(39) for someC2depending onKonly. First of all

T 0

ds R4dx

Px[LK<∞]2

Px[s < TK< t](ts)2T (tT )2

R4dx

Px[LK<∞]3

=O t2

. By (39)

t /2 T

ds R4dx

Px[LK<∞]2

Px[s < TK< t](ts)2

≤4t2C2 t /2 T

ds s1

log s

R2

∨1

=O

t1logt2 .

To estimate the contribution froms∈ [t /2, tT]we have by the first inequality in (34) and Fubini’s theorem that

R4dx

Px[LK<∞]2 tT t /2

dsPx[s < TK< t](ts)2

tT

t /2

ds R4dyPy[TK< ts](ts)2

R4dx

Px[LK<∞]2

(4πs)2e−|xy|2/(4s)

(2πt )2

tT t /2

ds R4dyPy[TK< ts](ts)2

R4dx

Px[LB(0;R)<∞]2

e−|xy|2/(4t ). (40) By the Hardy–Littlewood rearrangement inequality [5] and (35), (36) we have that the right-hand side of (40) is bounded by

(2πt )2

tT t /2

ds R4dyPy[TK< ts](ts)2

R4dx

Px[LB(0;R)<∞]2

e−|x|2/(4t )

C1

2t2

tT t /2

ds (t−s)1

0

dρ ρ3

1∧R ρ

4

eρ2/(4t )=O

t1logt2 . This completes the proof of Proposition5form=4.

Finally we prove the upper bound in Proposition5form=3. By (22) Px[TK< t < LK] ≤C

Px[LK< t] +Px[TK< t < LK]

t1/2+C 2

tT 0

dsPx[s < TK< t](ts)3/2.

It follows that fort(2T )(4C2) Px[TK< t < LK] ≤Ct1/2

1+2Ct1/2

Px[LK< t] +C

tT 0

dsPx[s < TK< t](ts)3/2.

Références

Documents relatifs

This technique, originally introduced in [6; 9; 10] for the proof of disorder relevance for the random pinning model with tail exponent α ≥ 1/2, has also proven to be quite powerful

Tool is also user friendly provides rich amount of the information about the distributed application like active objects, threads, requests, connections between the

Cette enquête nous a également permis de voir que la création d’un site internet serait un atout pour les orthophonistes : cela leur permettrait d’avoir

Keywords : Random walk in random scenery; Weak limit theorem; Law of the iterated logarithm; Brownian motion in Brownian Scenery; Strong approxima- tion.. AMS Subject Classification

In the Arctic tundra, snow is believed to protect lemmings from mammalian predators during winter. We hypothesised that 1) snow quality (depth and hardness)

In Section 5, we treat the problem of large and moderate deviations estimates for the RWRS, and prove Proposition 1.1.. Finally, the corresponding lower bounds (Proposition 1.3)

In the eighties, Lawler established estimates on intersection probabilities for random walks, which are relevant tools for estimating the expected capacity of the range (see

We notice that the fact that equality in (10) implies that u is one- dimensional is a specific feature of the Gaussian setting, and the analogous statement does not hold for the