• Aucun résultat trouvé

Surface area of cement paste conditioned at various relative humidities

N/A
N/A
Protected

Academic year: 2021

Partager "Surface area of cement paste conditioned at various relative humidities"

Copied!
15
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Cement and Concrete Research, 13, January 1, pp. 49-60, 1983-01-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/0008-8846(83)90127-8

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Surface area of cement paste conditioned at various relative humidities

Litvan, G. G.; Myers, R. E.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=3a653746-dd6e-4493-b181-0c7834b120b8 https://publications-cnrc.canada.ca/fra/voir/objet/?id=3a653746-dd6e-4493-b181-0c7834b120b8

(2)

TH1

N21d

?.

1065

C . 2

ational Research Council of Canada

mG

~ n s e i l

national de recherches du Canada

SURFACE AREA OF CEMENT PASTE

CONDITIONED AT

VARIOUS RELATIVE HUMIDITIES

by

G. G.

Litvan and R.

E.

Myers

Reprinted from

ANALYZED

Cement and Concrete Research

Vol. 13, No. 1. 1983

p. 49-60

L

..

.

..- .

-

.

.

BlDG. RE$.

L I B R A R Y

83-

02-

2

5

B I B L I O T H ~ Q U E

r

Recta.

85rim.

DBR Paper No. 1065

Division of Building Research

(3)

This publication is being distributed by the Division of Building Research of the National Research Council of Canada. It should not be reproduced in whole or in part without permis- sion of the original publisher. The Division would be glad to be of assistance in obtaining such permission.

Publications of the Division may be obtained by mailing the appropriate remittance (a Bank, Express, or Post Office Money Order, or a cheque, made payable to the Receiver General of Canada, credit NRC) to the National Research Council of Canada, Ottawa. KIA OR6. Stamps are not acceptable. A list of all publications of the Division is available and may be obtained from the Publications Section. Division of Buildina Re- search, National Research Council of ~ a n a d a , Ottawa. KIA-ORG.

(4)

SURFACE AREA OF CEMENT PASTE CONDITIONED AT VARIOUS RELATIVE HUMIDITIES

G . G . L i t v a n and R.E. Myers

B u i l d i n g M a t e r i a l s S e c t i o n , D i v i s i o n o f B u i l d i n g Research, N a t i o n a l Research Council o f Canada, Ottawa, Canada K1A OR6

CEMENT and CONCRETE RESEARCH. Vol. 1 3 , pp. 49-60, 1983. P r i n t e d i n t h e USA.

0008-8846/83/010049-12$03.00/0 Copyright ( c ) 1982 Pergamon P r e s s , Ltd.

I

(Communicated by F.H. Wittmann) (Received J a n u a r y 25, 1982)

ABSTRACT

The N 2 BET s u r f a c e a r e a (SA) o f b o t t l e h y d r a t e d p o r t l a n d cement i s

g r e a t l y reduced i f exposed t o changing r e l a t i v e h u m i d i t i e s . The maximum SA l o s s , from 8 3 m2/g, o c c u r r e d on exposure t o between 40 and 60% RH. I n a d d i t i o n , t h e number and r a t e o f humidity changes appear t o a f f e c t t h e v a l u e o f t h e SA, which i n c r e a s e s o n l y when exposed t o r e l a t i v e h u m i d i t i e s i n e x c e s s o f 75%. The phenomenon c a n n o t be e x p l a i n e d by t h e u s u a l c a u s e s o f a g i n g o f h i g h s p e c i f i c SA s o l i d s . I t i s proposed t h a t t h e s o l i d , deformed by non-uniform m o i s t u r e d i s t r i b u t i o n d u r i n g changing humidity c o n d i t i o n s , b r e a k s and makes i n t e r p a r t i c l e bonds. A unique f e a t u r e o f cement p a s t e i s t h a t t h e s e bonds can e a s i l y form and remain i n t a c t even a f t e r t h e m o i s t u r e g r a d i e n t v a n i s h e s .

I n t r o d u c t i o n

Hunt, Tomes and B l a i n e (1) r e p o r t e d i n 1960 t h a t t h e BET n i t r o g e n s u r f a c e a r e a (SA) o f h y d r a t e d cement p a s t e depends t o a g r e a t e x t e n t on t h e r e l a t i v e humidity (RH) a t which t h e specimens a r e s t o r e d p r i o r t o t e s t i n g . G e n e r a l l y , t h e r e i s a d e c r e a s e i n SA, w i t h t h e g r e a t e s t l o s s o c c u r r i n g a t an i n t e r m e d i a t e r e l a t i v e humidity o f 40%.

The phenomenon, which h a s become known a s aging, was s t u d i e d by C o l l e p a r d i ( 2 ) , Bye and Chigbo ( 3 ) , and P a r r o t t , Hansen and Berger (4), b u t no agreement c o n c e r n i n g i t s c a u s e was r e a c h e d . Because s u r f a c e a r e a i s one o f t h e most c h a r a c t e r i s t i c p h y s i c a l p r o p e r t i e s o f d i s p e r s e systems, an a l t e r a t i o n of i t s

v a l u e i s i n d i c a t i v e o f s i g n i f i c a n t changes i n t h e m i c r o s t r u c t u r e , w i t h a p o t e n t i a l b e a r i n g on s u c h i m p o r t a n t macroscopic phenomena a s c r e e p and d r y i n g s h r i n k a g e . For t h e s e r e a s o n s an e x t e n s i o n o f t h e i n v e s t i g a t i o n of SA l o s s seems u s e f u l .

(5)

G.G. L i t v a n , R.E. Myers

Vol. 1 3 , No. 1

Method

The SA of t h e specimens was determined by t h e volumetric method i n a NUMINCO Model MIC 103 apparatus. P r i o r t o measurement a specimen a t room temperature was pumped through a l i q u i d n i t r o g e n t r a p u n t i l t h e r e s i d u a l p r e s s u r e was l e s s t h a n 1 x 10-I Pa. In some c a s e s , where so i n d i c a t e d and a f t e r determination of SA, specimens were heated t o 80 and t o llO°C,

r e s p e c t i v e l y , during evacuation p r i o r t o r e p e a t i n g t h e measurement t o a s s e s s t h e e f f e c t of t h e p r e p a r a t o r y t r e a t m e n t on SA.

The l e v e l of t h e l i q u i d n i t r o g e n surrounding t h e specimen bulb was maintained ( a u t o m a t i c a l l y ) a t a c o n s t a n t h e i g h t (+1 mm).

The SA was c a l c u l a t e d from f i v e a d s o r p t i o n p o i n t s with a c o r r e l a t i o n c o e f f i c i e n t >0.9999.

S a t u r a t e d s o l u t i o n s of K B r , NaC1, NaN02, NaBr, K2C03, CaC12 and L i C l a s well a s anhydrous Mg(C104)2 provided c o n s t a n t humidity i n g l a s s d e s i c c a t o r s i n which t h e specimens were s t o r e d . The s o l u t i o n s were s t i r r e d with magnetic s t i r r e r s f o r 1 min i n every 6-min period i n o r d e r t o minimize h e a t i n g e f f e c t s . M a t e r i a l s

Type 10 normal p o r t l a n d cement was used t h a t had been b o t t l e hydrated (150 g cement i n 750 m l water) i n continuous r o t a t i o n f o r 288 days. Specimens f o r s t o r a g e were obtained by withdrawing a dose of c o n s t a n t volume from t h e well-mixed suspension with a s p e c i a l p i p e t t e . I t was c e n t r i f u g e d f o r 8 min and t h e c l e a r l i q u i d decanted, y i e l d i n g a s l u r r y weighing approximately 11 g.

Procedure

F i r s t S e r i e s : The sequence of t h e experimental procedure i s shown i n Fig. 1. Point AO: A specimen of t h e thoroughly mixed, c e n t r i f u g e d s l u r r y was t r a n s f e r r e d i n a gloved box t o a vacuum apparatus f o r drying. The atmosphere i n t h e gloved box was maintained moisture- and C02-free with anhydrous

Mg (C104) 2 and I n d i c a r b .

The sample was pumped a t room temperature through a l i q u i d N 2 t r a p f o r 28 days, during which time weight l o s s was l e s s than 3 x gg-l day-'. F i n a l degassing t o 1 x 10-I Pa was accomplished by pumping, s t i l l a t room temperature, i n t h e s u r f a c e a r e a a p p a r a t u s . (In some i n s t a n c e s , where i n d i c a t e d , t h e specimen was heated t o 80 o r 100°c during t h e l a s t drying s t e p . ) The described drying procedure was followed r o u t i n e l y with every specimen i n v e s t i g a t e d i n t h e p r o j e c t . The s u r f a c e a r e a of t h e o r i g i n a l p a s t e i s l a b e l l e d AO.

(6)

Vol. 13, No. 1 51

SURFACE AREA, CEMENT PASTE, RELATIVE HUMIDITY

Point Al: A t t h e beginning of t h e experiment, on 0 day, a thoroughly mixed, c e n t r i f u g e d s l u r r y was placed i n each of t h e e i g h t c o n d i t i o n i n g

d e s i c c a t o r s which were then pumped down t o 30 KPa p r e s s u r e . Humidities i n t h e d e s i c c a t o r s were 0, 11, 32, 42, 57, 66, 75 and 85%. Conditioning l a s t e d f o r a minimum of 133 days, during which period t h e d e s i c c a t o r s were l e f t

undisturbed i n an a i r - c o n d i t i o n e d room.

A t t h e end of t h e s t o r a g e period 1 . 5 g samples were removed and prepared f o r s u r f a c e a r e a determination.

P o i n t s A2 and A3: The remainder of t h e p a s t e i n t h e e i g h t d e s i c c a t o r s was a t t h i s s t a g e (205 days a f t e r 0 day) divided i n t o two p o r t i o n s ; one was t r a n s f e r r e d t o one l e v e l higher humidity and t h e o t h e r p o r t i o n t o one l e v e l lower humidity. A f t e r 124 days of s t o r a g e the specimens were d r i e d and SA v a l u e s obtained. The SA v a l u e s of t h e specimens conditioned a t t h e s e

h u m i d i t i e s were A2 and A3, r e s p e c t i v e l y . P o i n t s A4 and AS: On day 426 t h e specimens l e f t i n t h e d e s i c c a t o r s were

1 > r e t u r n e d f o r 224 days t o t h e h u m i d i t i e s

0 1 3 3 205 3 2 9 4 2 6 6 5 0 d a y s a t which t h e y had been o r i g i i ~ a l l y conditioned. A4 and A5 a r e t h e SA v a l u e s of t h o s e samples exposed t o FIG. 1 higher and lower h u m i d i t i e s ,

r e s p e c t i v e l y . Thus A l , A4 and A5 were Sequence of experimental obtained a t t h e same r e l a t i v e humidity. procedures followed i n I t should be noted t h a t specimens, once F i r s t S e r i e s . Numbers i n vacuum d r i e d f o r SA determination, were boxes i n d i c a t e RH n o t replaced i n s t o r a g e u n l e s s

s p e c i f i c a l l y s t a t e d . The e n t i r e c y c l e r e q u i r e d 650 days.

Gravimetric S e r i e s : Companion specimens t o t h o s e i n t h e F i r s t S e r i e s were placed, on 0 day, i n a second s e t of e i g h t d e s i c c a t o r s maintained a t t h e same humidity l e v e l s a s t h o s e chosen f o r t h e o t h e r s e r i e s , These specimens were weighed p e r i o d i c a l l y t o monitor t h e p r o g r e s s of e q u i l i b r a t i o n of t h e samples i n t h e F i r s t S e r i e s . By following t h i s procedure i t was not necessary t o open t h e d e s i c c a t o r s of t h e F i r s t S e r i e s .

The r a t e of weight change a f t e r 28 days of s t o r a g e was between

70 and 5 x gg-l d a y - l ; t h i s decreased t o between 4 and 0.7 x gg-l daye1 a t t h e end of t h e c o n d i t i o n i n g p e r i o d .

Second S e r i e s : In a few c a s e s t h e specimens conditioned a t 0, 11, 32 and 42% RH were d - d r i e d ( 7 x Pa water vapor p r e s s u r e ) and following SA

determination (Al) were divided i n t o two p a r t s ; one p o r t i o n was re-exposed t o 100% RH and t h e o t h e r t o t h e humidity a t which t h e companion A 1 was obtained. Carbonation: The C02 content of t h e o r i g i n a l s t o c k , bottle-hydrated p a s t e , was 0.616, a v a l u e t h a t i n c r e a s e d t o only 0.96% a f t e r it was handled s i x

(7)

Vol. 13, No. 1

G.G. Litvan, R.E. Myers

times, indicating 100

.

I 1 1 I 1 1 I I I the effectiveness of the precautions 9 0

-

taken to avoid carbonation. 80

- -

D R I E D A T R O O M TEMP Results

---

D R I E D A T 80°C ... D R I E D A T llO°C Point A0 70

-

or The SA value of

the original paste

-

on 0 day was 83.0 m2 g-l. In

-

the course of the

study the

-

determination was

repeated several times. The good

-

reproducibility indicated that no 20

-

-

further change (such as hydration) 10

-

-

affecting SA took place on storing

I I I I I I I I I the paste in water.

0 o 1 0 20 30 40 50 60 70 30 90 100 Point A1 R E L A T I V E H U M I D I T Y . % The SA values of specimens FIG. 2 conditioned at various humidities

N2 BET surface area of cement paste stored at various are shown in

humidities (Al) and dried prior to SA determination of Fig. 2. Drastic

20, 80 or llO°C decrease in SA is

particularly noticeable at intermediate humidities. After conditioning at 42% RH SA was less than 25% ofthe original value of samples initially conditioned at 100% RH.

These results are in general agreement with those of Hunt et al. (I), although there are significant differences: in the study by Hunt et al. conditioning was not done above 80% RH and the shape of the curve in the 80 to 100% RH region (showing only small changes in SA) was not recorded. Because of the larger number of RH levels in the present study, the curve is generally better defined. At very low humidities Hunt et al. obtained SA values greater than those of the original wet paste, probably the result of

high drying rates, the effects of which have been well documented (5). In a

recent study Parrott et al. (4) observed low SA values not much larger than

those obtained at 40% RH following storage at below 40% RH.

The SA of the A1 points in Fig. 2 for specimens conditioned at various humidities and dried at temperatures of 20, 80 and 110°C prior to SA

determination are similar in shape, indicating that the observed features are not affected by the rigidly held water. Elevation of the temperature from 20 to llO°C resulted in 20% higher A1 values. Whether or not chemically bound water was also removed in this process cannot be ascertained. The results once again underline the need for standardizing every aspect of the SA determination if quantitative comparisoll is contemplated.

(8)

Vol. 1 3 , No. 1 53

SURFACE AREA, CEMXNT PASTE, RELATIVE HUMIDITY P o i n t s A2 t o A5

The SA v a l u e s of t h e specimens a t t h e previous s t a g e s of t h e c o n d i t i o n i n g c y c l e , A2 t o AS, a r e shown i n Figs. 3 and 4. The following o b s e r v a t i o n s were made :

1) A s A2 and A3 a r e i n every c a s e l e s s than t h e r e s p e c t i v e A1 v a l u e s , it i s c l e a r t h a t SA l o s s occurred with changes i n humidity t o e i t h e r h i g h e r o r lower l e v e l s .

2) For samples o r i g i n a l l y conditioned a t 32, 42, 75 and 85% RH, A2 = A3; f o r t h o s e conditioned a t 57 and 66% RH, A2 > A3; and f o r t h o s e conditioned a t

11% RH, A2 < A3.

3) In t h e range from 11 t o 66% RH completion of t h e humidity c y c l e by r e - e s t a b l i s h i n g t h e RH of p o i n t A 1 r e s u l t e d i n a f u r t h e r d e c r e a s e i n SA: A2 > A4 and A3 > AS.

4) A t 11% RH A4 < AS; between 32 and 57% RH A4 = AS; and a t 66% RH A4 > AS. 5) In t h e c y c l e s o r i g i n a t i n g a t 75 and 85% RH A4 > > A? and A5 >> A3;

A4 >> A5 even A4 > A l .

6) The c y c l e s commencing a t 32 and 42% RH appear t o be uniquely symmetrical inasmuch a s changes i n r e l a t i v e humidity r e s u l t i n s i m i l a r SA l o s s e s , i r r e s p e c t i v e of d i r e c t i o n .

7) P l o t s of SA v a l u e s , A 1 t o AS, a s a f u n c t i o n of r e l a t i v e humidity (Fig. S),

show t h a t changing h u m i d i t i e s below 66% RH r e s u l t i n a converging t o a common low v a l u e t h a t occurs between 42 and 57% RH.

Second S e r i e s

The r e s u l t s shown i n Fig. 6 i n d i c a t e t h e following:

1 ) SA l o s t on exposure t o low h u m i d i t i e s can be recovered only by exposure t o very high h u m i d i t i e s .

2) A s expected, t h e e x t e n t of recovery i s i n v e r s e l y p r o p o r t i o n a l t o t h e magnitude of t h e SA l o s s ( s e e Fig. 6, p l o t a t lower r i g h t ) .

Discussion

The good agreement between t h e r e s u l t s of previous s t u d i e s (1,4) and t h e p r e s e n t work l e a v e s l i t t l e doubt t h a t N 2 BET s u r f a c e a r e a l o s s on s t o r a g e a t varying h u m i d i t i e s i s a r e a l i t y . Surface a r e a r e d u c t i o n was a l s o observed using water a s a b s o r b a t e ( 6 ) , and t h e phenomenon cannot be considered a s an a r t e f a c t of n i t r o g e n a d s o r p t i o n . Despite t h e l a r g e d i s c r e p a n c i e s between N 2

and H20 BET a r e a i n numerical v a l u e s they appear t o be q u a l i t a t i v e l y s i m i l a r . Furthermore, t h e a r e a a t 52% RH was only h a l f of t h a t a t s a t u r a t i o n when examined by t h e small-angle X-ray s c a t t e r i n g method ( 7 ) , r e q u i r i n g no a d s o r b a t e . I t s u g g e s t s t h a t t h e r e s u l t s r e f l e c t r e a l p h y s i c a l changes. Rate and Frequency Dependence

The r e s u l t s i n d i c a t e t h a t SA i s a f f e c t e d n o t only by t h e a b s o l u t e l e v e l of humidity during s t o r a g e but a l s o by t h e number and r a t e of changes i n

r e l a t i v e humidity. Hunt e t a l . (1) observed t h a t crushed specimens undergo s m a l l e r SA d e c r e a s e than do 12 mm diameter c y l i n d e r s because t h e former specimens d r y f a s t e r . An important element of t h e s o l v e n t replacement technique (5) was t h e very high drying r a t e t h a t r e s u l t e d i n N 2 SA v a l u e s comparable t o t h o s e obtained with water a s adsorbent.

I t seems q u i t e p o s s i b l e t h a t t h e SA v a l u e s below 42% RH i n t h e F i r s t S e r i e s would, a f t e r a number of RH changes, d e c r e a s e t o l e s s t h a n 10 m 2 g-l.

(9)

5 4 Vol. 13, No. 1

G.G. Litvan, R.E. Myers

100 90 80 70 m

-

N 6 0 - a Y E -x 50 W U u I I I '1 A

-

100% AO.

-

-

/ - -

4

-

/

/

-

/

-

/

-

3 VI I I I '1 C

-

-

100% AO.

-

-

/

-

/

I

-

/

I

/

4

-

I

-

1

-

/A 1

-

A3 I I I f B

-

-

100% AO.

-

I

/-

-

I -

t

-

I

I

1

3 0 2 0 - 10 0

/

-

/

/

-

/

* -\

-

A 7 ~ 7 ~ 0 A2.\ ,~ 5 / - A , A4

-

-

I 1 1 4 RELATIVE H U M I D I T Y , 90 F I G . 3

SA at various stages of conditioning cycle, A 0 to A 5

A :

-

'

A2

-

A5 A4

-

-

I I I r 1 I 1 1 1 -2 0 30 40 50 300 6000 0 10 20 30 100 100 90 80 7 0 - N E

-

60 2 CL 5 0 W U 2 4 0 - RELATIVE H U M I D I T Y , % F I G . 4

SA at various stages of conditioning cycle, A 0 to A5

I I I f - I A

-

100%

-

ADO

-

/N-

/ - -

-

J

-

/

-

/

-

4 B 1 I I ' C I I I

-

-

100%

-

1 0 0 2 -

-

\ l c o r

-

& A 4 AD, A 5 n \ AO.

\ cH-

-

-

-

-

-

-

+\, A3

-

-

-

-

-

1 .A2 - / A d #

-

A%,.

'

O A S

-

-

-

I I I 1 LL 3

#

'

-

50 60 70 80 '100 60 70 80 90 100 70 80 90 100

-

-

-

-

-

-

.

I t 20 10 O k

-

-

-

-

-

-

I 1 / ' . A z - -

-/

~ 4 , ~ A - L - ~ -A3 A 5

-

I 1 1 1 40 50 60 70 5 0

(10)

Vol. 1 3 , No. 1 55

SURFACE AREA, CEMENT PASTE, RELATIVE HUMIDITY

In t h i s r e g i o n t h e specimens experience t h e h i g h e s t r a t e of drying i f t h e moist samples a r e placed i n t h e r e s p e c t i v e d e s i c c a t o r s , minimizing t h e e f f e c t s of SA l o s s . Several subsequent c o n d i t i o n i n g s t e p s a r e probably r e q u i r e d t o reduce SA t o i t s f i n a l low v a l u e , a t which s t a g e t h e A 1 v e r s u s RH curve would c l o s e l y resemble t h a t of P a r r o t t e t a l . ( 4 ) . The r a t e of drying above 47% RH I I I I I I I I I a l s o a f f e c t s t h e 0 o 10 2 0 30 40 50 60 7 0 8 0 90 100 u l t i m a t e v a l u e of drying shrinkage R E L A T I V E H U M I D I T Y , % (8) and c r e e p FIG. 5 A 1

.

. .

A5 v a l u e s a s a f u n c t i o n of RH (9-11). ~ r y i n ~ a t r a p i d r a t e s induces s t r e s s e s of magnitude p r o p o r t i o n a l t o r a t e of d r y i n g . Cady e t a l . (12) observed t r a n s i e n t d e c r e a s e of t h e t e n s i l e s t r e n g t h of cement mortar b r i q u e t s on drying, and Litvan (13) has r e p o r t e d s i m i l a r t r a n s i e n t r e d u c t i o n of Young's modulus of hardened cement p a s t e . Repeated wetting and drying c y c l e s appear t o a f f e c t c r e e p of cement p a s t e (9,lO) and t h e volume changes of Ca(011)2 compacts (14).

40 t o 60% RH Range

The g r e a t e s t d e c r e a s e i n SA occurs a t o r i n t h e v i c i n i t y of 40% RH. A r e l a t i v e p r e s s u r e of 0.4 i s of g r e a t s i g n i f i c a n c e i n s e v e r a l a r e a s of s u r f a c e chemistry. In hundreds of a d s o r p t i o n isotherms, including hardened cement p a s t e , t h i s i s t h e inception p o i n t of t h e h y s t e r e s i s loop (15,16); below t h i s p r e s s u r e micropore f i l l i n g and above it c a p i l l a r y f i l l i n g occur. For t h i s reason 0.4 r e l a t i v e p r e s s u r e was chosen a s t h e r e f e r e n c e s t a t e f o r s u r f a c e a r e a determination by t h e a-method (17).

I t i s a l s o known t h a t when d r y cement p a s t e i s wetted, 65 t o 70% of t h e expansion t a k e s p l a c e below 50% RH; and t h a t when d - d r i e d and exposed t o higher h u m i d i t i e s a p o t e n t i a l f o r i r r e v e r s i b l e shrinkage develops (18).

Creep r a t e i n c r e a s e s r a p i d l y a t h u m i d i t i e s above 42% RH (19); t h e

compressive s t r e n g t h of cement mortar and t h e e l a s t i c modulus of cement p a s t e (20), i f conditioned a t 40 t o 50% RH, a r e a t t h e i r lowest l e v e l . The

c o e f f i c i e n t of thermal expansion of cement p a s t e i s maximum a t 40% RH (14). In f i r s t - d r y i n g shrinkage 47% RH was found t o be a most s i g n i f i c a n t

(11)

56 Vol

.

G.G. Litvan, R.E. Myers

RELATIVE HUMIDITY. %

13, No.

RELATIVE HUMIDITY. % RH % OF

CONDITIONING STEP

FIG. 6

SA regeneration after conditioning.

100% RH ( ~ 0 ~ )

Sequence of procedure 100%

RH

(AO) + X% RH (Al) + 0%

RH ( ~ 0 ~ ) Top graphs: SA at various stages of conditioning.

Bottom, left: A1 and ~ l l vs

RH.

Right : AO' as a function of RH of A1 conditioning step.

condition; and Helmuth and Turk drew attention to the link between shrinkage and SA loss (8). Feldman showed (21) that, on rewetting, tile layers of the cement paste open up significantly only after 42%

RH.

Shrinkage of lime compacts following carbonation (22) and conditioning at various humidities

(14) is maximum at 50% RH. Reversibilitv

Whereas changing humidities during storage, either increasing or decreasing, result in lower surface area values, the trend is reversed on exposure to very high RH, at least to 75% (Fig. 4). Recovery of the SA loss on resaturationin water has been reported previously (4,7). The reversible portion of drying shrinkage manifested itself only on rewetting (8).

(12)

Vol. 13, No. 1 57

SURFACE AREA, CEMENT PASTE, RELATIVE HUMIDITY

P o s s i b l e Causes of Aging

A time-dependent a l t e r a t i o n of high s p e c i f i c s u r f a c e a r e a s o l i d s i s a w e l l known phenomenon (23) a t t r i b u t e d t o s e v e r a l causes. I t w i l l be examined f o r r e l e v a n c e t o t h e p r e s e n t c a s e of cement p a s t e . F i r s t , however, t h e p o s s i b i - l i t y t h a t t h e o b s e r v a t i o n s can be accounted f o r by assuming continued

h y d r a t i o n has t o be considered. Obviously, t h e formation of new compounds could a l t e r s u r f a c e a r e a . T h i s hypothesis must be r e j e c t e d , however, because t h e b o t t l e hydrated cement used was well hydrated on 0 day. I t may be

mentioned t h a t h y d r a t i o n , except a t high temperatures and f o r an i n i t i a l period (24), normally l e a d s t o an i n c r e a s e and n o t a d e c r e a s e of SA (25).

Surface a r e a l o s s of high s p e c i f i c SA s o l i d s i s o f t e n a r e s u l t of enhanced s o l u b i l i t y . Such s o l i d s a r e known t o d e c r e a s e t h e i r s u r f a c e f r e e energy through d i s s o l u t i o n and p r e c i p i t a t i o n . T h i s mechanism must a l s o be r u l e d out f o r cement p a s t e s f o r t h e following reasons:

1 ) SA d e c r e a s e occurs a t h u m i d i t i e s below 40% RH, y e t adsorbed water i n t h i s r e g i o n r e j e c t s s o l u t e s (26).

2) There i s l e a s t l o s s of SA a t high h u m i d i t i e s , when t h e c o n d i t i o n s f o r t h i s mechanism would be t h e most f a v o r a b l e .

3) On t h e b a s i s of t h e mechanism, SA d e c r e a s e s during prolonged exposure t o c o n s t a n t humidity, so t h a t i n s e n s i t i v i t y t o RH changes would be expected. The c o n t r a r y has been observed.

S i l i c e o u s s u r f a c e s a r e known t o undergo gradual dehydration of t h e SiOH groups l e a d i n g t o t h e formation of Si-0-Si b r i d g e s , a process accompanied by s u r f a c e a r e a r e d u c t i o n (27). Polymerization of s u r f a c e s i l a n o l groups a s one cause of aging was suggested by C o l l e p a r d i (28), who a l s o r e p o r t e d t h a t from t h e r a t e of SA d e c r e a s e a t d i f f e r e n t temperatures t h e a c t i v a t i o n energy i s 10 t o 12 kcal/mol. T h i s v a l u e i s i n t h e same range a s t h e a c t i v a t i o n energy of t h e s i l a n o l condensation r e a c t i o n determined by Kiselev (29).

In support of t h e s i l a n o l polymerization t h e o r y i s t h e w e l l - e s t a b l i s h e d f a c t t h a t r e h y d r a t i o n of dehydrated s i l i c a , a s f o r SA change, i s a f u n c t i o n of r e l a t i v e humidity and w i l l occur only i f l i q u i d water i s p r e s e n t i n t h e c a p i l l a r i e s (30). With t h i s mechanism t h e d i f f i c u l t y i s t h a t t h e e f f e c t of a l t e r n a t i n g h u m i d i t i e s cannot be explained. R e c r y s t a l l i z a t i o n of one o r more c o n s t i t u e n t s on a l a r g e s c a l e can be r u l e d o u t on t h e b a s i s of C o l l e p a r d i ' s work, which could not d e t e c t i n t h e X-ray d i f f r a c t o g r a m s of calcium s i l i c a hydrates any change due t o aging (28).

Collapse of t h e layered s t r u c t u r e of t h e s i l i c a t e h y d r a t e s on drying does not e x p l a i n SA r e d u c t i o n a d e q u a t e l y because t h e phenomenon i s observed a l s o a t r e l a t i v e l y high h u m i d i t i e s , and even on wetting ( s e e p o i n t s A 1 and A2 i n Fig. 4 ) . For t h e same reason t h e suggestion t h a t g e l p a r t i c l e s a r e brought c l o s e r t o g e t h e r during d e s o r p t i o n and t h a t c o n t a c t p o i n t s a r e c r e a t e d under p r e s s u r e (31) cannot be accepted a s t h e f u l l explanation.

The most important c h a r a c t e r i s t i c s o f t h e SA l o s s phenomenon t h a t must be accounted f o r a r e : 1 ) t h e a r e a r e d u c t i o n i t s e l f , 2) t h e s e n s i t i v i t y of t h e phenomenon t o t h e number and 3) t h e r a t e of humidity changes. There i s l i t t l e doubt t h a t f i r s t drying shrinkage (8) i s an important f a c t o r i n t h e i n i t i a l phases o f c o n d i t i o n i n g , but i t cannot account f o r a l l t h e f i n d i n g s .

The o b s e r v a t i o n s l i s t e d above i n d i c a t e , however, t h e o p e r a t i o n of a time- dependent process g r e a t l y a f f e c t i n g t h e behaviour of t h e p a s t e . Under changing humidity c o n d i t i o n s two such p r o c e s s e s can be i d e n t i f i e d : moisture t r a n s f e r , and volume change of t h e s o l i d . Time dependence of volume change i n response t o RH change has n o t , t o t h e a u t h o r s ' knowledge, been r e p o r t e d i n

(13)

5 8 Vol. 1 3 , No. 1

G.G. L i t v a n , R.E. Myers

t h e l i t e r a t u r e . I t seems, t h e r e f o r e , reasonable t o assume t h a t t h e r a t e - c o n t r o l l i n g process i n f l u e n c i n g t h e e v e n t s i s t h e t r a n s f e r of moisture.

This hypothesis i m p l i e s t h a t d e c r e a s e i n SA follows from t h e e x i s t e n c e of moisture g r a d i e n t , r e s u l t i n g i n t u r n i n non-uniform volume changes throughout t h e p a s t e . Such a c o n d i t i o n deforms t h e s o l i d network, breaking some bonds and c r e a t i n g new c o n t a c t p o i n t s , t h e formation of which was suggested by Powers (31). The mechanism i s a common occurrence with a l l t y p e s of porous s o l i d s . The unique f e a t u r e of hydrated cement p a s t e i s t h a t bonds betweenthe s u r f a c e s of s i l i c a t e p a r t i c l e s form r e a d i l y when t h e y a r e brought i n t o c l o s e proximity, a s evidenced by t h e g r e a t s t r e n g t h of c o l d (32) and hot (33) compacted cement.

Loss of SA can a r i s e from reduced a c c e s s i b i l i t y of r e g i o n s o r r e d u c t i o n of t h e a r e a of t h e p a r t i c l e s involved. Gregg and Langford found (34) s i l i c a deformable under compaction and suggested t h a t t h e p a r t i c l e s r e t a i n t h e i r a l t e r e d shape even a f t e r t h e newly formed j u n c t i o n s open up t o accommodate r e l a t i v e movement of t h e p a r t i c l e s when s t r e s s c o n d i t i o n s continue t o change.

I f t r u e , t h i s mechanism i m p l i e s t h e occurrence of a r e a l o s s whenever s t r e s s , i . e . , wetting o r drying, deforms t h e p a s t e .

Because t h e g r a d i e n t i s a f u n c t i o n of t h e r a t e of wetting and drying t h e l o s s of SA i s , understandably, a l s o a f f e c t e d . I n t e r p a r t i c l e bonds, which appear t o be involved i n t h e changes brought about by moisture change i n d i s p e r s e systems such a s c o n c r e t e , a r e most important. The mechanical

p r o p e r t i e s of such s o l i d s a r e determined more by t h e s t r e n g t h of t h e c o n t a c t s between t h e p a r t i c l e s t h a n by t h e s t r e n g t h of t h e p a r t i c l e s themselves (35). I t i s t h u s t o be expected t h a t a phenomenon r e s u l t i n g i n diminution of SAalso a f f e c t s c r e e p and drying shrinkage phenomena. Although t h e cause of SA l o s s i s not c l e a r , t h e r e i s l i t t l e doubt t h a t c a l l i n g t h e phenomenon "aging" i s i n c o r r e c t . The process i s n o t dependent on time but on change of moisture c o n t e n t and t h e r a t e of t h i s p r o c e s s .

T h i s paper i s a c o n t r i b u t i o n from t h e Division of Building Research, National Research Council of Canada, and i s published with t h e approval of t h e d i r e c t o r of t h e Division.

References

1. C.M. Hunt, L . A . Tomes, and R . L . Blaine. Some E f f e c t s of Aging on t h e Surface Area of P o r t l a n d Cement P a s t e . J . Res., NBS, 64A, 163 (1960). 2. M. C o l l e p a r d i . Pore S t r u c t u r e of Hydrated Tricalcium S i l i c a t e . RILEM-

IUPAC Symp. on Pore S t r u c t u r e s and P r o p e r t i e s of M a t e r i a l s . Prague, P a r t 1 B-25 (1973).

3. G . C . Bye and G . O . Chigbo. Aging of Some High Surface Area S o l i d s .

J . Appl. Chem. Biotechnol. 23, 589 (1973).

4. L . J . P a r r o t t , W . Hansen and R . L . Berger. E f f e c t of F i r s t Drying upon t h e Pore S t r u c t u r e of Hydrated A l i t e P a s t e . Cem. Concr. Res., 10, 467 (1980). 5. G . G . Litvan. V a r i a b i l i t y of t h e Nitrogen Surface Area of Hydrated Cement

P a s t e . Cem. Concr. Res., 6, 139 (1976).

6. L.A. Tomes, C.M. Hunt and R . L . Blaine. Some F a c t o r s A f f e c t i n g t h e

Surface Area of Hydrated Portland Cement a s Determined by Water-Vapor and Nitrogen Adsorptions. J . Res., NBS 59, 357 (1957).

(14)

Vol. 13, No. 1 5 9 SURFACE AREA, CEMENT PASTE, RELATIVE HUMIDITY

7. D . N . Winslow and S. Diamond. S p e c i f i c Surface of Hardened Portland Cement P a s t e a s Determined by Small-Angle X-Ray S c a t t e r i n g s . J . Amer. Ceram. Soc., 57, 193 (1974).

8. R.A. Helmuth and D. Turk. The Reversible and I r r e v e r s i b l e Drying Shrinkage of Hardened P o r t l a n d Cement and Tricalcium S i l i c a t e P a s t e . J . Portland Cem. Assoc. RED Lab., 9, 8 (1967).

9. R.G. LIHermite. Volume Changes of Concrete. Fourth I n t . Symp. Chem. Cem. Proc., NBS Monogr. 43, Vol. 2, p. 659 (1962).

10. J . Glucklich. The E f f e c t of Microcracking on Time Dependent Deformations and Long-Term S t r e n g t h of Concrete. I n t . Conf. on S t r u c t u r e of Concrete. London, Sept. 1965.

11. S.E. P i h l a j a v a a r a . A Review of Some of t h e Main R e s u l t s of Research on t h e Aging Phenomena of Concrete: E f f e c t of Moisture Conditions on S t r e n g t h , Shrinkage and Creep of Mature Concrete. Cem. Concr. Res., 4 , 761 (1974).

12. P . D . Cady, K.C. C l e a r and L . G . Marshall. T e n s i l e S t r e n g t h Reduction of Mortar and Concrete Due t o Moisture Gradients. Amer. Concr. I n s t . , Proc. 69, 700 (1972).

13. G . G . Litvan. Freeze-Thaw D u r a b i l i t y of Porous Building M a t e r i a l s . A.S.T.M., STP 691, p. 455 (1980).

14. E . G . Swenson and P . J . Sereda. Some Aging C h a r a c t e r i s t i c s of Lime.

J . Appl. Chem., 17, 198 (1967).

15. M.R. H a r r i s . A Source of E r r o r i n t h e Computation of Pore S i z e Data from Nitrogen Sorption Isotherms. Chem. Ind., 268 (1965).

16. C . D . Lawrence. An Examination of P o s s i b l e E r r o r s i n t h e Determination of Nitrogen Isotherms on Hydrated Cements. Cem. Concr. Assoc., Publ. 42, 520 (1978).

17. K.S.W. Sing. U t i l i s a t i o n of Adsorption Data i n t h e BET Region. - In Surface Area Determination. London, Butterworths, p. 25 (1972).

18. R.F. Feldman. Mechanism of Creep of Hydrated P o r t l a n d Cement P a s t e . Cem. Concr. Res.

,

2, 54 (1972)

.

19. F.H. Wittmann. Determination of t h e Physical P r o p e r t i e s of Cement P a s t e . Deutscher Ausschuss f u r S t a h l b e t o n Heft 232.

20. F.H. Wittmann. I n t e r a c t i o n of Hardened Cement P a s t e and Water. J . Amer. Ceram. Soc., 56, 409 (1973).

21. R.F. Feldman. Changes t o S t r u c t u r e of Hydrated P o r t l a n d Cement on Drying and Rewetting Observed by Helium Flow Techniques. Cem. Concr. Res., 4, 1

(1974)

.

22. E . G . Swenson and P . J . Sereda. Mechanism of t h e Carbonation Shrinkage of Lime and Hydrated Cement. J . Appl. Chem., 18, 111 (1968).

(15)

Vol. 1 3 , No. 1

G.G. L i t v a n , R.E. Myers

23. S. Brunauer. The Adsorption o f Gases and Vapors. p. 418. P r i n c e t o n U n i v e r s i t y P r e s s , P r i n c e t o n , 1943.

24. J . Skalny and I . O d l e r . Pore S t r u c t u r e o f Hydrated Calcium S i l i c a t e s . 111. I n f l u e n c e of Temperature on t h e Pore S t r u c t u r e of Hydrated T r i c a l c i u m S i l i c a t e . J . C o l l o i d I n t e r f a c e S c i . , 40, 199 (1972).

25. T.C. Powers and T.L. Brownyard. S t u d i e s of t h e P h y s i c a l P r o p e r t i e s of Hardened P o r t l a n d Cement P a s t e . P o r t l a n d Cement Assoc., B u l l . 22,

p. 492 (1948)

.

26. G . G . L i t v a n . Phase T r a n s i t i o n s of Adsorbates. V . Aqueous Sodium C h l o r i d e S o l u t i o n s Adsorbed i n Porous G l a s s . J . C o l l o i d I n t e r f a c e S c i . , 45, 154 (1973).

27. L . E . Copeland and G . J . Verbeck. S t r u c t u r e and P r o p e r t i e s o f Hardened Cement P a s t e s . P r o c . , VI. I n t . Congr. Chem. Cement, Moscow, 1974.

28. M . C o l l e p a r d i . Pore S t r u c t u r e of Hydrated T r i c a l c i u m S i l i c a t e . Proc. RILEM-IUPAC Symp. on Pore S t r u c t u r e and P r o p e r t i e s of M a t e r i a l s , Prague,

1). ti-25 (1973).

29. A.V. Kiselev. The S t r u c t u r e o f C e r t a i n Corposcular Adsorbents and I t s I n f l u e n c e on t h e i r Adsorptive P r o p e r t i e s . In S t r u c t u r e and P r o p e r t i e s of Porous M a t e r i a l s (D.H. E v e r e t t and F.S. s t o n e E d s . ) , London,

B u t t e r w o r t h s , p . 209, 1958.

30. W.K. Lowen and E . C . Broge. E f f e c t s of Dehydration and Chemisorbed

M a t e r i a l s on t h e S u r f a c e P r o p e r t i e s o f Amorphous S i l i c a . J . Phys. Chem., 65, 1 6 (1961)

31. T.C. Powers. P h y s i c a l P r o p e r t i e s of Cement P a s t e . Chemistry of Cement. NBS, mono. 43, p . 601, 1962.

32. J . P . Skalny and A . Bajza. P r o p e r t i e s of Cement P a s t e s . Prepared by High P r e s s u r e Compaction. ACI, P r o c . , 66, 221 (1970).

33. G . R . Gouda and D.M. Roy. C h a r a c t e r i s t i c s of Hot P r e s s e d Cement P a s t e s . J . Amer. Ceram. S o c . , 59, 412 (1976).

34. S . J . Gregg and J . F . Langford. Study of t h e E f f e c t o f Compaction on t h e S u r f a c e Area and P o r o s i t y of S i x Powders by Measurement of N i t r o g e n S o r p t i o n Isotherms. Chem. Soc. Farady T r a n s . 1, 73, 747 (1977).

35. S . I . Kontorovich, Zh. G . Malikova and E . D . Shchukin. I n f l u e n c e of

Dehydration on t h e S t r e n g t h of t h e D i s p e r s e Porous S t r u c t u r e of Magnesium Hydroxide. J . C o l l o i d s , USSR, 34, 63 (1972).

Figure

FIG. 2  conditioned at

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in