• Aucun résultat trouvé

(1)Sturmian Words 2.0

N/A
N/A
Protected

Academic year: 2022

Partager "(1)Sturmian Words 2.0"

Copied!
58
0
0

Texte intégral

(1)

Sturmian Words

2.0. Introdution

Sturmian words are innite words over a binary alphabet that have exatly

n+1fators of length n for eah n 0. It appears that these wordsadmit

severalequivalentdenitions,andanevenbedesribedexpliitlyinarithmeti

form. Thisarithmetidesriptionisabridgebetweenombinatorisandnumber

theory. Moreover,the denition byfators makesthat Sturmian wordsdene

symbolidynamial systems. The rst detailed investigations of these words

were done from this point of view. Their numerousproperties andequivalent

denitions, andalso thefat that theFibonaiwordisSturmian,hasleadto

agreat development,undervariousterminologies,oftheresearh.

TheaimofthishapteristopresentbasipropertiesofSturmianwordsand

of theirtransformation by morphisms. Thestyleof exposition relies basially

onombinatorialarguments.

The rst setion is devoted to the proof of the Morse-Hedlund theorem

stating the equivalene of Sturmian wordswith the set of balaned aperiodi

wordandthesetofmehanialwordsofirrationalslope. Wealsomentionseveral

otherformulationsofmehanialwords,suhasrotationsanduttingsequenes.

We next give properties of the set of fators of one Sturmian word, suh as

losureunder reversal,theminimalityoftheassoiateddynamialsystem,the

fatthatthesetdependsonlyontheslope,andwegivethedesriptionofspeial

words.

In the seond setion, we give a systemati exposition of standard pairs

and standardwords. Weprovetheharaterizationbythe doublepalindrome

property,desribetheonnetionwithFineandWilf'stheorem. Then,standard

sequenesareintroduedtoonnetstandardwordstoharateristiSturmian

words. Therelation to Beatty sequenesis in the exerises. This setion also

ontains the enumeration formula for nite Sturmian words. It ends with a

shortdesriptionoffrequenies.

ThethirdsetionstartsbyprovingthatthemonoidofSturmianmorphisms

is generated by three well-known morphisms. Then, standard morphisms are

investigated. A desription of all Sturmian morphisms in terms of standard

morphisms is given next. The setion ends with theharaterization of those

algebrainumbersthatyieldxedpointsbystandardmorphisms.

(2)

Someproblems arejust exerises,but mostontainadditionalpropertiesof

Sturmianwords,withappropriatereferenes. ItisdiÆulttotraebakmanyof

thepropertiesofSturmianwords,beauseofthesatteredorigins,terminology

and notation. When we quote a referene in the Notes setion, we are only

relativelyertainthat itisthesoureoftheresult.

Inthis hapter,wordswillbeoverabinaryalphabetA=f0;1g.

2.1. Equivalent denitions

This setionisdevoted totheproofofatheorem(Theorem2.1.13)statingthe

equivalene ofthree properties, alldening what weall Sturmian words. We

startbydeningSturmianwordsto haveminimalomplexityamongaperiodi

innite words. We rst provethat Sturmian words are exatly the aperiodi

balaned words. Wethenintrodueso alledmehanialwordsandprovethat

these yieldanother haraterizationof Sturmianwords. Other formulationsof

the mehanial denition,by rotationand utting sequenes, are given in the

seond paragraph. Thethird paragraphontainsseveral propertiesonerning

thesetoffatorsofaSturmianword.

2.1.1. Complexityand balane

TheomplexityfuntionofaninnitewordxoversomealphabetAwasdened

inChapter1. Itisthefuntion thatounts,foreahintegern0,thenumber

P(x;n)offatorsoflengthnin x:

P(x;n)=Card(F

n (x)):

ASturmianwordisaninnitewordssuhthatP(s;n)=n+1foranyinteger

n 0. Aording to Theorem 1.3.13, Sturmian words are aperiodi innite

wordsofminimalomplexity. SineP(s;1)=2,anySturmianwordisovertwo

letters. A right speialfatorof awordx isawordusuh that u0and u1are

fatorsof x. Thus,s isaSturmianwordifandonlyifithasexatlyoneright

speialfatorofeahlength.

AsuÆxofaSturmianwordis aSturmianword.

Example 2.1.1. WeshowthattheFibonai word

f =0100101001001010010100100101001001

denedinChapter1isSturmian. Itwillbeonvenient,inthishapter,tostart

thenumerationofniteFibonaiwordsdierently,andtosetf

1

=1,f

0

=0.

Sinef ='(f),itisaprodutofwords01and0. Thus,theword11isnot

a fator of f and onsequently P(f;2) = 3. The word000 is not a fator of

'(f),sineotherwiseit isaprex ofsome'(x)for afatorx off, andx has

to startwith11.

Toshowthat f isSturmian, weprovethat f hasexatlyonerightspeial

(3)

We start by showingthat, for no wordx, both0x0and 1x1are fatorsof

f. This islear ifx isthe emptywordand ifx is asingle letter. Arguing by

indution onthe length,assumethat 0x0and1x1are in F(f). Then x starts

and ends with 0,and x =0y0for somey. Sine 00y00 and 10y01haveto be

fators of '(f), there exists a fator z of f suh that '(z) = 0y. Moreover,

00y0='(1z1) and010y01='(0z0), showingthat 1z1and 0z0arefatorsof

f. Thisisaontraditionbeausejzjj'(z)j<jxj.

We show now that f has at most one right speial fator of eah length.

Assume indeed that uand v are right speial fators of thesame length,and

letx be thelongestommonsuÆxofuand v. Then thefour words0x0,0x1,

1x0,1x1arefatorsoff,whih ontraditsourpreviousobservation.

Toshow that f has atleast onerightspeial fator ofeahlength, weuse

therelation

f

n+2

=g

n

~

f

n

~

f

n t

n

(n2) (2.1.1)

whereg

2

="andforn3

g

n

=f

n 3 f

1 f

0

; t

n

=

01 ifnisodd,

10 otherwise.

Observethat therstletterof

~

f

n

istheoppositeof therstletterof t

n . This

provesthat

~

f

n

isarightspeialfatorfor eahn2. SineasuÆxof aright

speialfatorisitselfarightspeialfator,thisprovesthatrightspeialfators

ofanylengthexist.

Equation (2.1.1) is provedby indution. Indeed, f

4

= "(010)(010)10and

f

5

=0(10010)(10010)01. Next,isiteasilyhekedbyindution that

'(u )0~ =0('(u))

(2.1.2)

foranywordu. Itfollowsthat '(

~

f

n t

n )=0

~

f

n+1 t

n+1

andsine'(g

n )0=g

n+1 ,

onegets(2.1.1).

We now start to give another desription of Sturmian words, namely as

balaned words. Theheight of awordx isthenumberh(x)oflettersequalto

1in x. Giventwowordsxandyofthesamelength,theirbalaneÆ(x;y)isthe

number

Æ(x;y)=

h(x) h(y)j

Asetof wordsX isbalanedif

x;y2X; jxj=jyj ) Æ(x;y)1

Aniteorinnitewordisitself balanediftheset ofitsfatorsisbalaned.

Proposition2.1.2. LetX beafatorialsetofwords. IfX isbalaned,then

foralln0,

n

(4)

Proof. The onlusion is lear for n = 0;1, and it holds for n = 2 beause

X annot ontain both 00 and 11. Arguing by ontradition, let n 3 be

the smallestinteger for whih the statement is false. Set Y =X\A n 1

and

Z = X \A n

. Then Card(Y) n and Card(Z) n+2. For eah z 2 Z,

its suÆxof lengthn 1isin Y. Bythepigeon-holepriniple,there exist two

distint wordsy;y 0

2Y suhthatallfour words0y;1y;0y 0

;1y 0

areinZ. Sine

y 6=y 0

there existsawordx suh thatx0 andx1areprexesofy and y 0

. But

then, both0x0and1x1arewordsinX,showingthatX isunbalaned.

Theargumentusedin theproofanberenedasfollows.

Proposition2.1.3. LetX be afatorial set of words. The set X is unbal-

aned ifand onlyif there existsapalindrome wordwsuh that 0w0and 1w1

arein X.

Proof. Theonditionis learlysuÆient. Conversely,assumethat X is unbal-

aned. Considertwowordsu;v2X ofthesamelengthnsuhthatÆ(u;v)2,

and takethemof minimallength. Therstlettersof uandv aredistint, and

soare thelast letters. Assuming that ustartswith 0and v with1, there are

fatorizations u = 0wau 0

and v = 1wbv 0

for some words w;u 0

;v 0

and letters

a6=b. Infat a=0andb=1sineotherwiseÆ(u 0

;v 0

)=Æ(u;v),ontraditing

theminimalityofn. Thus,againbyminimality, u=0w0andv=1w1.

Assumenextthatwis notapalindrome. Thenthereisaprexzof wand

alettera suh thatzais aprex ofw, z~isasuÆxofw buta~z is notasuÆx

of w. Then ofourseb~z isasuÆxofw, whereb istheotherletter. Thisgives

a proper prex 0za of u and a proper suÆx b~z1 of v. If a = 0 and b = 1,

then Æ(0z0;1~z 1)=2, ontraditing theminimality ofn. Butthen u=0z1u 00

and v =v 00

1~z0fortwowordswith Æ(u 00

;v 00

)=Æ(u;v),ontraditing againthe

minimality. Thuswisapalindrome.

Remark 2.1.4. Inthe proofthat theFibonaiwordf is Sturmiangivenin

Example2.1.1,weatuallystartedbyshowingthatf isbalaned.

Theorem 2.1.5. Letxbeaninniteword. Thefollowingonditionsareequiv-

alent.

(i) xisSturmian,

(ii) xisbalaned andaperiodi.

Proof. If x is aperiodi, then P(x;n) n+1for all n byTheorem 1.3.13. If

x is balaned,then by Proposition 2.1.2,P(x;n)n+1for alln. Thus x is

Sturmian.

Toprovetheonverse,weassumex isSturmianandunbalaned,andshow

thatxiseventuallyperiodi. Sinexisunbalaned,thereisapalindromeword

w suh that0w0,1w1arefatorsof x. Thisshowsthat wisrightspeial. Set

n=jwj+1. SinexisSturmian,thereisauniquerightspeialfatoroflength

n, whihis either0w or1w. Wesupposethat0w isrightspeial,so1w isnot,

(5)

Any ourrene of1w in x isfollowed by theletter 1. Letv bea wordof

lengthn 1suhthatu=1w1visinF(x). Theworduhaslength2n. Weprove

thatallfatorsoflengthnofuareonservative. InviewofProposition1.3.14,

x iseventuallyperiodi.

Toshow thelaim, it suÆesto provethat theonly right speial fatorof

lengthn,thatis0w,isnotafatorofu. Assumetheontrary. Thenthereexist

fatorizationsw=s0t;v=yz;w=t1y.

u

1 w 1 v

0 w

1 s 0 t 1 y z

Sinew isapalindrome, therstfatorization impliesw=

~

t0~s, and theletter

followingtheprextin wisbotha0anda1.

Theslopeofanonemptywordx isthenumber(x)= h(x)

jxj .

Example 2.1.6. The height of x = 0100101 is 3, and its slope is 3=7. The

wordx anbedrawn onagridbyrepresentinga0(resp. a1) asahorizontal

(resp. adiagonal)unit segment. Thisgivesapolygonallinefrom theoriginto

thepoint(jxj;h(x)),and theline from theoriginto thispoint hasslope(x).

SeeFigure 2.1.

r r

r r r

r r r

0 1 0 0 1 0 1

(7,3)

Figure2.1. Heightandslopeoftheword0100101.

It iseasilyhekedthat

(xy)= jxj

jxyj (x)+

jyj

jxyj (y)

Proposition2.1.7. A fatorialset ofwordsX isbalaned ifand onlyif,for

allx;y2X,x;y6=",

(x) (y)

<

1

+ 1

: (2.1.3)

(6)

Proof. Assume rst that (2.1.3) holds. For x;y 2 X of the same length, the

equationgives

h(x) h(y)

<2

showingthat X isbalaned.

Conversely,assume that X is balaned,and letx;y bein X. If jxj= jyj,

then(2.1.3)holds. Assumejxj>jyj,andsetx=zt,withjzj=jyj. Arguingby

indution onjxj+jyj,wehave

(t) (y)

<

1

jtj +

1

jyj

andsineX is fatorial,jh(z) h(y)j1,whene

(z) (y)

1

jyj . Next,

(x) (y)= jzj

jxj (z)+

jtj

jxj

(t) (y)

= jzj

jxj

(z) (y)

+ jtj

jxj

(t) (y)

thus

(x) (y)

<

1

jxj +

jtj

jxj

1

jyj +

1

jtj

= 1

jxj +

1

jyj :

Corollary 2.1.8. Let x be an innite balaned word, and for eah n 1,

let x

n

be the prex of lengthn of x. The sequene ((x

n ))

n1

onvergesfor

n!1.

Proof.Indeed,(2.1.3)showsthat ((x

n ))

n1

isaCauhysequene.

Thelimit

= lim

n!1 (x

n )

istheslopeoftheinnitewordx.

Example 2.1.9. Toomputetheslopeofaninnitebalanedword,itsuÆes

toomputethelimitoftheslopesofaninreasingsequeneofprexes(oreven

fators,asshownbythenextproposition). FortheFibonaiinniteword,the

slopesof theniteFibonaiwordsf

n

are easilyomputed. Indeed,jf

n j=F

n

andh(f

n )=F

n 2

,whene

(f)= lim

n!1 F

n 2

F

n

= 1

2

;

where =(1+ p

5)=2.

Proposition2.1.10. Let x be an innitebalaned word with slope. For

everynonemptyfatoruofx,onehas

(u)

1

: (2.1.4)

(7)

Morepreisely,oneofthefollowingholds: either

juj 1<h(u)juj+1 forallu2F(x) (2.1.5)

or

juj 1h(u)<juj+1 forallu2F(x) (2.1.6)

Ofourse,theinequalitiesin (2.1.5)and(2.1.6)arestrit ifisirrational.

Proof. Let x

n

bethe prex of length n of x. Given some ", onsider n

0 suh

thatforallnn

0 ,

(x

n

)

":

Then,using(2.1.3),

(u)

(u) (x

n )

+

(x

n

)

<

1

juj +

1

n +"

Forn!1andthen"!0,theinequalityfollows. Equation(2.1.4)meansthat

juj 1h(u)juj+1

Iftheseondlaimwerewrong,therewouldexistu;vinF(x)suhthat juj

1 = h(u) and jvj+1 = h(v). But then j(u) (v)j = 1=juj+1=jvj, in

ontraditionwith(2.1.3).

Proposition2.1.11. Letx beaninnitebalanedword. Theslopeofxis

arationalnumberifandonlyifxiseventuallyperiodi.

Proof.Ifx=uy

!

, then

(uy n

)=

h(u)+nh(y)

juj+njyj

!(y)

forn!1,showingthattheslopeisrational.

Fortheonverse,wesupposethat(2.1.5)holds. Theotheraseissymmetri.

Theslopeofx isarationalnumber=q=pwithqand prelativelyprime. By

(2.1.5),anyfatoruofxoflengthphasheightqorq+1. Thereareonlynitely

manyourrenesoffatorsoflengthpandheightq+1,sineotherwisethere

isafatorw=uzvofx withjuj=jvj=pandh(u)=h(v)=q+1. Inviewof

(2.1.5)

2+2q+h(z)=h(uzv)1+p+jzj+p=1+2q+jzj

wheneh(z)jzj 1,in ontraditionwith(2.1.5).

Bythepreedingobservation,thereisafatorizationx=tysuhthatevery

wordinF

p

(y)hasthesameheight. Considernowanourreneazbofafator

in y of lengthp+1,with aandb letters. Sine h(az)=h(zb), onehasa=b.

This means that y is periodi with period p. Consequently, x is eventually

(8)

2.1.2. Mehanial words,rotations

Giventworealnumbersandwith01,wedenetwoinnitewords

s

;

:N !A; s 0

;

:N !A

by

s

;

(n)=b(n+1)+ bn+

s 0

;

(n)=d(n+1)+e dn+e

(n0)

Itis easyto hekthats

;

(n)ands 0

;

(n)indeedarein f0;1g. Thewords

;

is thelower mehanial wordands 0

;

istheupper mehanial wordwith slope

andinterept. (Thisslopewillbeshowninamomenttobethesameasthe

slopeofabalanedword.) Itislearthatif 0

isaninteger,thens

;

=s

; 0

and s 0

;

=s 0

; 0

. Thus we may assume0<1or0<1(both will be

useful).

r r

r r r

r r r

r r

r r r

r r r

0 1 0 0 1 0 0

y=x+

P

n P

0

n

Figure2.2. Mehanialwordsassoiatedwiththeliney=x+.

Theterminologystemsfromthefollowinggraphialinterpretation(seeFig-

ure2.2). Considerthestraightlinewith equationy=x+. Thepointswith

integeroordinatesjustbelowthislineareP

n

=(n;bn+). Twoonseutive

pointsP

n and P

n+1

are joined bya straight line segmentthat is horizontal if

s

;

(n)=0anddiagonalifs

;

(n)=1.

Thesameobservationholds forthe pointsP 0

n

=(n;dn+e) loatedjust

abovetheline.

r r

r r r

r

r r r

r r r

s;

s 0

;

n

0 1 0 0

0 0 1 0

y=x+

!

!

!

!

!

!

!

!

!

!

!

!

(9)

Clearly,

s

0;

=s 0

0;

=0

!

; s

1;

=s 0

1;

=1

!

Let 0 < < 1. Sine 1+bn+ = dn+e whenever n+ is not an

integer,onehass

;

=s 0

;

exeptedwhenn+isanintegerforsomen0.

Inthisase(seeFigure 2.3),

s

;

(n)=0; s 0

; (n)=1

and,ifn>0,

s

;

(n 1)=1; s 0

;

(n 1)=0

Thus, if isirrational, s

; and s

0

;

dierby at mostonefator of length2.

Amehanialwordisirrational orrational aordingtoitsslopeisrationalor

irrational.

A speial asedeservesonsideration, namelywhen 0<<1and =0.

Inthisase,s

;0

(0)=b=0,s 0

;0

(0)=de=1,and ifisirrational

s

;0

=0

; s 0

;0

=1

wheretheinniteword

isalledtheharateristiwordof.

Remark 2.1.12. The ondition 0 1 in the denition of mehanial

wordsisnotarestrition,but asimpliation. Oneouldindeedusethesame

denition of s

;

without anyondition on. Sine bs

;

(n)1+b,

thenumberss

;

(n)thenanhavethetwovalueskandk+1where k=b.

Thusthewordss

; ands

0

;

areoverthetwoletteralphabet fk;k+1g. This

alphabet anbetransformedbakintof0;1gbyusingtheformula

s

;

(n)=b(n+1)+ bn+ b

Mehanialwordsanbeinterpretedin severalotherways. Consideragain

a straight line y = x+, for some > 0 not restrited to be less than 1,

andnotrestritedtobepositive. Considertheintersetions ofthisline with

thelines of the gridwith nonnegativeintegeroordinates. We geta sequene

Q

0

;Q

1

;:::of intersetion points. Weall Q

n

=(x

n

;y

n

)horizontal if y

n is an

integer,andvertialifx

n

isaninteger. Ifbothareintegers,weinsertbeforeQ

n

asiblingQ

n 1 ofQ

n

with thesameoordinates,andweagreethatthe rstis

horizontalandtheseond isvertial(orvie-versa,but wedoalwaysthesame

hoie). InFigure2.4below,Q

0

isvertial,beauseispositive.

Writing a 0 for eah vertial point and a 1 for eah horizontal point, we

obtain an inniteword K

;

that is alled the (lower) utting sequene (with

theotherhoieforlabelingsiblings,onegetsanupperuttingsequeneK 0

; ).

To eah Q

n

= (x

n

;y

n

), we assoiate a point I

n

= (u

n

;v

n

) with integer

oordinates. ThepointI

n

isthepointbelow(belowand totherightof)Q

n if

Q

n

isvertial(horizontal). Formally,

(u

n

;v

n )=

(dx

n e;y

n

1) ifQ

n

ishorizontal,

(x ;by ) ifQ isvertial

(10)

y=x+

r r

r

r r

r r r

r r

r

r r

r r

r r

I

0 I

1 I

2 J

0 J

1 J

2

Q0 Q1 Q

2

011 0111 01

y=

1+

x+

1+

r r

r

r r

r r

r r

r r

r

r r

r r

r r

I 0

0 I

0

1 I

0

2 J

0

0 J

0

1 J

0

2

0 1 1 0 1 1 1 0

Figure 2.4. Cuttingsequeneandorrespondingmehanialsequene.

SimilarpointsJ

n

aredenedabovetheline(seeFigure2.4). Itiseasytohek

that u

n +v

n

=nforn0,andthat

K

; (n)=v

n+1 v

n

=1+u

n u

n+1

Inthespeialase=0and irrational, weagaingetthesameinniteword

uptotherstletter. There isawordC

suhthat

K

;0

=0C

; K

0

;0

=1C

ObservethatQ

n

ishorizontalifandonlyif

1+v

n u

n

+<1++v

n

(2.1.7)

andQ

n

isvertialifandonlyif

v

n u

n

+<1+v

n

(2.1.8)

Wenowhekthat

K

;

=s

=(1+);=(1+)

Indeed, thetransformation (x;y)7!(x+y;x) of theplane maps theline y =

x+toy==(1+)x+=(1+),andapointI

n

=(u

n

;v

n )toI

0

n

=(n;v

n ).

It remainsto showthat

v

n

=

n+

(2.1.9)

(11)

Usingu

n +v

n

=n,wegetfrom(2:1:7)that

v

n

+1=(1+)=(1+)n+=(1+)<1+v

n

andfrom(2:1:8) that

v

n

=(1+)n+=(1+)<v

n

+1=(1+)

Thus,(2:1:9)holdsforhorizontalandforvertialsteps. Thus,uttingsequenes

arejust anotherformulationofmehanialwords.

Mehanialwordsanalsobegenerated byrotations. Let0<<1. The

rotationofangleisthemappingR=R

from [0;1[intoitselfdened by

R (z)=fz+g

wherefzg=z bzisthefrationalpartofz. IteratingR ,onegets

R n

()=fn+g

Moreover,astraightforwardomputationshowsthat

b(n+1)+=1+bn+ () fn+g1

Thus,deningapartitionof[0;1[by

I

0

=[0;1 [; I

1

=[1 ;1[;

onegets

s

; (n)=

0 ifR n

()2I

0

1 ifR n

()2I

1

(2.1.10)

Itwillbeonvenienttoidentify[0;1[withthetorus(ortheunitirle). For0

b<a<1,theset [a;1℄[[0;b[isonsideredasanintervaldenoted[a;b[. Then,

for any subinterval I of [0;1[, the sets R (I) and R 1

(I) are always intervals

(evenwhenoverlappingthepoint0).

As anexample of theuse of rotations, onsider awordw = b

0 b

1 b

m 1 ,

with b

0

;b

1

;::: letters. Wewantto knowwhether wis afatorof somes

;

=

a

0 a

1

,witha

0

;a

1

;:::letters. By(2.1.10),a

n+k

=b

i

ifandonlyifR n+i

()2

I

b

i

,orequivalently,ifandonlyifR n

()2R i

(I

b

i

). Thus, forn0,

w=a

n a

n+1 a

n+m 1

() R n

()2I

w

(2.1.11)

whereI

w

istheinterval

I

w

=I

b0

\R 1

(I

b1

)\\R m+1

(I

bm

1 )

TheintervalI

w

isnon emptyifandonlyifw isafatorofs

;

. Observethat

thispropertyisindependentof,andthuswordss

; ands

;

0 havethesame

setoffators. Aombinatorialproofwill begivenlater(Proposition2.1.18).

Mehanial words are quite naturally dened as two-sided innite words.

However,itappearsthatseveralproperties,suhasTheorem2.1.13below,only

(12)

Theorem 2.1.13. Letsbeaninniteword.Thefollowingareequivalent:

(i) sisSturmian;

(ii) sisbalanedandaperiodi;

(iii) sisirrationalmehanial.

The proof will bea simpleonsequene of twolemmas. In theproofs, we

willuseseveraltimestheformula

x 0

x 1<bx 0

bx<x 0

x+1:

Lemma 2.1.14. Letsbeamehanialwordwithslope. Thensisbalaned

ofslope. Ifisrational,thensispurelyperiodi. Ifisirrational,thensis

aperiodi.

Proof. Lets=s

;

bealowermehanialword. Theproofissimilarforupper

mehanialwords. Theheightofafatoru=s(n)s(n+p 1)isthenumber

h(u)=b(n+p)+ bn+, thus

juj 1<h(u)<juj+1 (2.1.12)

This implies bjuj h(u)1+bjuj, and shows that h(u) takesonly two

onseutivevalues,whenurangesoverthefatorsofaxed lengthofs. Thus,

sisbalaned. Moreover,by(2.1.12)

(u)

<

1

juj

Thus(u)!forjuj!1andistheslopeofsasitwasdenedforbalaned

words. Thisprovestherststatement.

Ifisirrational,thewordsisaperiodibyProposition2.1.11. If=q=pis

rational,thenb(n+p)+=q+bn+,foralln0. Thuss(n+p)=s(n)

foralln,showingthatsispurelyperiodi.

Lemma 2.1.15. Let sbeabalaned inniteword. Ifsis aperiodi,then sis

irrationalmehanial. Ifs ispurely periodi,thensisrationalmehanial.

Proof.InviewofCorollary2.1.8,shasaslope,say. Denotebyh

n

theheight

oftheprexoflengthnofs.

Foreveryrealnumber,oneat leastofthefollowingholds:

{h

n

bn+foralln;

{h

n

bn+foralln.

Indeed,ontheontrarythereexistarealnumber andtwointegersn;n+ksuh

that h

n

< bn+ and h

n+k

> b(n+k)+ (or the symmetri relation).

This implies that h

n+k h

n

2+b(n+k)+ bn+ > 1+k, in

ontraditionwith(2.1.4).

Set

=inff jh bn+forallng

(13)

ByProposition 2.1.10,onehas1,and<1ifisirrational. Observethat

foralln0

h

n

n+h

n

+1 (2.1.13)

sine otherwisethere is an integern suh that h

n

+1 < n+, and setting

=h

n

+1 n, onehas <and n+ =h

n

+1>h

n

, in ontradition

withthedenitionof.

Ifsisaperiodi,thenisirrationalbyProposition2.1.11,andn+isan

integerforatmostonen. By(2.1.13),eitherh

n

=bn+ foralln,andthen

s=s

; ,orh

n

=bn+ for allbut onen

0 , andh

n0

+1=n

0

+. Inthis

ase,onehash

n

=dn+ 1eforallnands=s 0

; 1 .

If s = u

!

is purely periodi with period juj =p, then = q=p with q =

h(u)=h

p

. Againh

n

=bn+ifn+isneveraninteger(thisdepends on

).

If h

n

=n+for somen, welaimthat h

n

=bn+for alln. Assume

the ontrary. Then by (2.1.13), 1+h

m

= m+, for some m and we may

assume n < m < n+p. Consider the words y = s(n+1)s(m) and z =

s(m+1)s(n+p). Then(y)=(h

m h

n

)=(m n)= 1=jyjand(z)=

(h

n+p h

m

)=(n+p m)=+1=jzj,whene

(y) (z)

=1=jyj+1=jzj,in

ontraditionwithProposition2.1.7. Similarly, if1+h

n

=n+forsomen,

thenh

n

=dn+e foralln.

Proof of theorem2.1.13. Weknowalreadyby Theorem2.1.5that (i)and (ii)

are equivalent. Assume that s is irrational mehanial. Then s is balaned

aperiodibyLemma2.1.14. Conversely,ifsisbalanedandaperiodi,thenby

theLemma2.1.15sisirrationalmehanial.

Example 2.1.16. To show that a balaned innite word is not always me-

hanialwhen theslope isrational (sotheonverse isfalsein Lemma 2.1.14),

onsider theinnitebalaned word01

!

. It isnot amehanialword. Indeed,

ithasslope1,andallmehanialwordss

1;

areequalto 1

!

.

Let us onsider mehanial wordswith rationalslopein somemoredetail.

For arational number =p=q with 0 1and p;q relativelyprime, the

innitewordss

;0 ands

0

;0

arepurelyperiodi. Denenitewords

t

p;q

=a

0 a

q 1

; t 0

p;q

=a 0

0 a

0

q 1

by

a

i

=

(i+1) p

q

i p

q

; a 0

i

=

(i+1) p

q

i p

q

Clearly,t

p;q andt

0

p;q

haveheightp. Theyareprimitivewordsbeause(p;q)=1.

Inpartiular, t

0;1

=0 andt

1;1

=1. These wordsare alled Christoel words.

In any ase, s

p=q;0

= t

!

p;q and s

0

p=q;0

= t 0

p;q

!

. Moreover, if 0 < p=q < 1, the

word t

p;q

starts with0 andends with 1(and t 0

p;q

starts with 1and ends with

0). Thereisawordz

p;q

suhthat

t

p;q

=0z

p;q 1; t

0

=1z

p;q

0 (2.1.14)

(14)

The wordz

p;q

is easily seento beapalindrome. Later, wewill seethat these

words,alled entralwords,haveremarkableombinatorialproperties.

Thefollowingresultdealswithnitewords.

Proposition2.1.17. A nite word w is a fator of some Sturmian word if

andonlyifitisbalaned.

Proof. Clearly a fator of a Sturmian word is balaned. For the onverse,

onsider abalanedwordw,and dene

0

=max((u) 1=juj);

00

=min ((u)+1=juj)

wherethemaximumandtheminimumistakenoverallnonemptyfatorsuof

w. Sinewisbalaned,onegetsfromProposition2.1.10that

(u) 1=juj<(v)+1=jvj

forallnonemptyfatorsuandv ofw. Thus 0

<

00

.

Takeanyirrationalnumberwith 0

<<

00

. Thenbyonstrution,for

everynonemptyfatoruofw,

(u)

<1 (2.1.15)

Let w

n

be the prex of length n of w. By(2.1.15), there exists a real

n

suhthat

h(w

n

)=n+

n

; j

n j<1

Moreover,for n > m, setting w

n

= w

m

u, onegets h(w

n

) h(w

m

) = h(u)=

(n m)+(

n

m

),showingthatj

n

m

j<1. Set

= max

1njwj

n :

Then

n+h(w

n

)=n++(

n

)>n+ 1

wheneh(w

n

)=bn+. ThisprovesthatwisaprexoftheSturmianword

s

; .

2.1.3. The fators ofone Sturmian word

Theaim ofthis paragraphisto givepropertiesof theset offatorsofasingle

Sturmianword.

Proposition2.1.18. LetsandtbeSturmianwords.

1. Ifsandthavesameslope,thenF(s)=F(t).

(15)

Proof. Let be the ommon slope of s and t. By Proposition 2.1.10, every

fatoruofsveries

j(u) j <

1

juj

(indeed,equalityisimpossiblebeauseisirrational). Next,foreveryfatorv

oft,

j(v) j <

1

jvj

LetX=F(s)[F(t). Theset X isfatorial. Itisalsobalanedsine

j (u) (v)j j(u) j+j(v) j <

1

juj +

1

jvj

InviewofProposition2.1.2

Card(X\A n

)n+1

foreveryn. ThusF(s)=X =F(t).

Let nowbetheslopeofsand betheslopeoft. Wemaysupposethat

>. Foranyfatoruofssuhthat( )2=juj,onehas(u) > 1=juj

byProposition2.1.10whene(u) =((u) )+( )1=jujshowing

thatuisnotafatoroft.

Proposition2.1.19. Theset F(s) offatorsof aSturmianwords islosed

underreversal.

Proof. Set

~

F(s) = f~x j x 2 F(s)g. The set X = F(s)[

~

F(s) is balaned.

In view of Proposition 2.1.2, Card(X \A n

) n+1, for eah n, and sine

Card(F(s)\A n

)=n+1,onehasX =F(s). Thus

~

F(s)=F(s).

WenowompareSturmianwords,withrespettotheirslopeandinterept.

ThelexiographiorderdenedinChapter1extendstoinnitewordsasfollows,

withtheassumptionthat 0<1. Giventwoinnitewordsx=a

0 a

n and

y = b

0 b

n

, we say that x is lexiographially less than y, and we write

x<y ifthereisanintegern suhthat a

i

=b

i

fori=0;:::;n 1and a

n

=0,

b

n

=1.

Proposition2.1.20. Let0<<1beanirrationalnumberand let; 0

be

realnumberswith 0; 0

<1. Then

s

;

<s

; 0

() <

0

:

Proof.Sineisirrational,thesetoffrationalpartsfngforn0isdensein

theinterval[0;1[. Thus<

0

ifand onlyifthereexistsanintegern1suh

that1 0

fng<1 ,andthisisequivalenttobn+ 0

=1+bn+.

If nis thesmallestinteger forwhih this equality holds, thens

;

(n 1)=0

ands

; 0

(n 1)=1ands

; 0

(k)=s

;

(k)fork<n 1.

Observethatthispropositiondoesnotholdforrationalslopes,sineindeed

s =0

!

forall.

(16)

Lemma 2.1.21. Let 0<; 0

<1be irrationalnumbersand let; 0

be real

numbers. Anyoftheequalitiess

;

=s

0

; 0,

s

;

=s 0

0

; 0

ors 0

;

=s 0

0

; 0

implies

=

0

and 0

mod1.

Proof. Anyof theequalitiesimpliesthat = 0

beauseequalwordshavethe

sameslope. Next,s

;

=s

; 0

implies 0

mod1bythepreviousproposition.

Finally, onsider the equality s

;

=s 0

; 0

. If n+ 0

is notan integerfor all

n 1, then s 0

; 0

= s

; 0

and the onlusion holds. Otherwise, let n be the

uniqueintegersuhthatn+

0

isaninteger. Thens

;+(1+n)

=s 0

; 0

+(1+n) ,

showingagainthat 0

mod1.

Sturmianwordswithinterept0havemanyinterestingproperties. Weob-

served already that, for an irrational number0 < < 1, the words s

;0 and

s 0

;0

dieronlybytheirrstletter,andthat

s

;0

=0

; s 0

;0

=1

where

istheharateristiwordofslope. Equivalently,

=s

;

=s 0

;

Thefollowingproposition statesaombinatorial haraterizationof harater-

istiwordsamongSturmianwords.

Proposition2.1.22. ForeverySturmianwords,either0sor1sisSturmian.

ASturmianwordsisharateristiifandonlyif0sand1sarebothSturmian.

Proof. The rst laim follows from the fat that s

;

= as

;

, for some

a2f0;1g.

Ifs=s

;

=s 0

;

istheharateristiwordofslope, then0s=s

;0 and

1s=s 0

;0

areSturmian.

Conversely,theSturmianwords0sand 1shavesameslope,say. Denote

by and 0

theirinterept. Thentheir ommonshifts hasinterept +=

0

+, andbyLemma 2.1.21, 0

mod1and we maytake0= 0

<1.

Thus 0s =s

;

and 1s= s 0

;

. Assume > 0. The rst letter of 0sis gives

0=b+ b=b+andtherstletterof1sis1=d+e de. Then

2=d+e,aontradition. Thus=0.

Wearenowabletodesriberightspeialfators.

Proposition2.1.23. The set of right speial fators of a Sturmian word is

thesetofreversalsoftheprexesof theharateristiwordofsameslope.

CallafatorwofaSturmianwordsleftspeialifboth0wand1warefatorsof

s. Clearly,wisleftspeialifandonlyifw~isrightspeial. Thustheproposition

statesthatthesetofleftspeialfatorsofaSturmianwordisthesetofprexes

(17)

Proof. LetsbeaSturmianwordofslope. ByProposition2.1.22,theinnite

words0

and1

areSturmianandlearlyhaveslope. Thus

F(s)=F(

)=F(0

)=F(1

)

by Proposition 2.1.18. Consequently, for eah prex p of

, 0p and 1p are

fators of s. Sine F(s) is losed under reversal, this shows that p~is right

speial. Thusp~istheuniquerightspeialfatoroflengthjpj.

Example 2.1.24. Consider again the Fibonai word f. We have seen in

Example 2.1.1 that its right speial fators are the reversals of its prexes.

Thuseah prexof f is leftspeial. This showsthat F(f)=F(0f)=F(1f).

Consequently,f is harateristiofslope1=

2

.

Proposition2.1.25. Thedynamial system generated by a Sturmianword

isminimal.

Proof.LetsbeaSturmianword,andletxbeaninnitewordsuhthatF(x)

F(s). Clearly,xisbalaned. Also,xhasthesameirrationalslopeass. Thusx

isaperiodiandthereforeisSturmian. ByProposition 2.1.18(1),F(x)=F(s).

Thisshowsthatsandx generatethesamedynamialsystem.

Observe that Proposition 2.1.18(2)is aonsequene of Proposition 2.1.25.

Indeed,theintersetionoftwodistintminimaldynamialsystemsisthetrivial

system.

2.2. Standard words

Thissetionisonernedwithafamilyofnitewordsthat arebasibriksfor

onstrutingharateristiSturmianwords,in the sense that everyharater-

istiSturmianwordisthelimit ofasequeneof standardwords. Thiswill be

shownin Setion2.2.2.

2.2.1. Standard words and palindromewords

After basi denitions, wegivetwoharaterizations of standardwords. The

rstisbyaspeialdeomposition intopalindromewords(Theorem2.2.4),the

seond (Theorem 2.2.11) by anextremal propertyon the periods of the word

thatisloselyrelatedtoFineandWilf'stheorem. Wegivethena\mehanial"

haraterization of entral and standard words(Proposition 2.2.15). We end

withanenumerationformulaforstandardwords.

Considertwofuntions and fromf0;1g

f0;1g

intoitselfdened by

(u;v)=(u;uv); (u;v)=(vu;v)

The set of standard pairs is the smallestset of pairs of words ontaining the

pair(0;1) andlosed under and . Astandard wordisanyomponentofa

(18)

(0;1)

(0;01) (10;1)

(0;001) (010;01) (10;101) (110;1)

(0;0001) (0010;001)(010;01001)(01010;01) (10;10101)

(01001010;01001)

Figure2.5. Thetreeofstandardpairs.

Example 2.2.1. Figure2.5showsthebeginningofthetreeofstandardpairs.

Consideringtheleftmostandrightmostpaths,onegetsthepairs

(0;0 n

1); (1 n

0;1) (n1)

Next tothemarethepairs

(0(10) n

;01); (10;(10) n

1) (n1)

These arethepairswithoneomponentoflength1or2.

FiniteFibonaiwordsarestandard,sine(f

0

;f

1

)=(0;1), andforn1,

(f

2n+2

;f

2n+1

)= (f

2n

;f

2n 1 ).

Everystandardwordwhih isnotaletter isaprodut oftwostandardwords

whih aretheomponentsofsomestandardpair. Thenextpropositionstates

someelementaryfats.

Proposition2.2.2. Letr=(x;y)beastandardpair.

1. Ifr6=(0;1)thenoneofx ory isaproperprexoftheother.

2. Ifx(resp.y)isnotaletter,thenx endswith10(resp.y endswith01).

3. Onlythelast twolettersofxyandyxaredierent.

Proof.Weprovethelast laimbyindutiononjxyj. Assumeindeedthat xy=

p01andyx=p10.Then (r)=(x;xy)andxxy=xp01,(xy)x=x(yx)=xp10,

sothelaimistruefor (r). Thesameholdsfor(r).

Everystandardpairisobtainedinauniquewayfrom(0;1) byiterateduse

of and . Indeed, if (x;y) is a standardpair, then it is an image through

(resp. ) ifand only ifjxj <jyj (resp. jxj>jyj). Thus, there is aunique

produtW =

1

Æ:::Æ

n

,with

i

2f ;gsuh that

(19)

Considertwomatries

L=

1 0

1 1

; R=

1 1

0 1

and deneamorphism from the monoidgenerated by and into theset

of22matriesby

( )=L; ()=R ;

and(

1 Æ :::Æ

n

)=(

1

)(

n

). If(x;y)=W(0;1),thenastraightforward

indutionshowsthat

(W)=

jxj

0 jxj

1

jyj

0 jyj

1

(2.2.1)

Observethateverymatrix(W)hasdeterminant1. Thusif(x;y)isastandard

pair,

jxj

0 jyj

1 jxj

1 jyj

0

=1 (2.2.2)

showingthattheentriesinthesamerow(olumn)of(W)arerelativelyprime.

From(2.2.2),onegets

h(y)jxj h(x)jyj=1: (2.2.3)

(reallthath(w)=jwj

1

istheheightofw). Thisshowsalsothatjxjandjyjare

relativelyprime. A simpleonsequeneis thefollowingproperty.

Proposition2.2.3. A standardwordisprimitive.

Proof.Let wbeastandardwordwhih is notaletter. Then w=x orw=y

for some standard pair (x;y). From (2.2.3), one gets that h(w) and jwj are

relativelyprime. This impliesthat wisprimitive.

The operations and anbeexplained throughthree morphismsE, G,

Donf0;1g

whihweintroduenow. Thesewillbeusedalsointhesequel. Let

E: 07!1

17!0

; G: 07!0

17!01

; D:

07!10

17!1

It is easily heked that E ÆD = GÆE = '. We observe that, for every

morphismf,

(f(0);f(1))=(fG(0);fG(1)); (f(0);f(1))=(fD(0);fD(1))

ForW =

1

Æ:::Æ

n

,with

i

2f ;g,dene

^

W =

^

n Æ:::Æ

^

1 ,with

^

=G,

^

=D. Then

W(0;1)=(

^

W(0);

^

W(1)): (2.2.4)

Standardwordshavethefollowingdesription.

Theorem 2.2.4. Awordwisstandardifandonlyifitisaletterorthereexist

palindromewordsp,qandrsuhthat

w=pab=qr (2.2.5)

(20)

Example 2.2.5. Theword01001010isstandard(seeFigure2.5)and

01001010=(010010)10=(010)(01010):

Westarttheproofwithalemmaofindependentinterest.

Lemma 2.2.6. If aprimitiveword isa produtof twononempty palindrome

words,thenthis fatorizationisunique.

Proof. Let w be a primitive word and assume w = pq = p 0

q 0

for palindrome

wordsp;q;p 0

;q 0

. Wesuppose jpj> jp 0

j, so that p=p 0

s(=sp~ 0

), sq =q 0

(= q~s)

forsomenonemptywords. Thussp~ 0

q=pq=p 0

q 0

=p 0

q~s,showingthatp 0

qand

~

s are powersof somewordz. But thenw =pq = ~sp 0

q =z n

forsome n2,

ontraditingprimitivity.

Observethat (2.2.5)impliesthefollowingrelations.

Lemma 2.2.7. Ifw=pab=qrforpalindromewordsp,q,r,andlettersa6=b,

thenoneofthefollowingholds

(i) r=",p=(ba) n

b,q=(ba) n+1

b=wforsomen0;

(ii) r=b,p=a n

,q=a n+1

,w=a n+1

b forsomen0;

(iii) r=bab,p=b n+1

,q=b n

,w=b n+1

ab forsomen0;

(iv) r=basab,p=qbas,w=qbasabforsomepalindromewords.

Weneedanotherlemma.

Lemma 2.2.8. Letx;ybewordswithjxj;jyj2. Thepair(x;y)isastandard

pairifandonlyifthere existpalindromewordsp,q,rsuhthat

x=p10=qr and y=q01 (2.2.6)

or

x=q10 and y=p01=qr: (2.2.7)

Proof.Assumethat(2.2.6)holds(theotheraseissymmetri). Ifristheempty

word,thenbythepreviouslemma

(x;y)=((01) n+1

0;(01) n+1

001)= ((01) n+1

0;01)

showingthat thepair(x;y)isstandard.

Ifr=0,then(x;y)=(1 n

0;1 n

01)= (1 n

0;1), andifr=010,then(x;y)=

(0 n

10;0 n

1)=(0;0 n

1).

Thus, we may assume that r = 01s10 for some palindrome word s. By

(2.2.6),if followsthat y is aprexof x,sox=yz forsomewordz. Weshow

that (z;y)is standard. From p=q01s= s10qit followsthat q 6=s. Assume

jqj<jsj (the otherase issymmetri). Then s=qt for somewordt, andthe

equationp=qt10q showsthat thewordr 0

=t10isapalindrome. Thus

0

(21)

and(z;y)satises(2.2.6).

Conversely, let(x;y)beastandardpair,and assume(x;y)= (x;z),that

isy=xz. Ifzisaletter,then(x;z)=(1 n

0;1)forsomen1and

x=q10; y=p01=qr

forq=1 n 1

,p=1 n

,r=101.

Thuswemayassumethat forsomepalindromewordsp,q,r,either

x=p10=qr; z=q01

or

x=q10; z=p01=qr:

Intherstase,

x=p10; y=xz=(qrq)01=p(10q01)

Intheseond ase,

x=q10; y=xz=q(10p01)=(qrq)01

beause10p=rq. Thus(2.2.7)holds.

Proof ofTheorem2.2.4. Letwbeastandardword,jwj2. Thenthereexists

astandardpair(x;y)suh that w=xy (or symmetriallyw=yx). If x=0,

then y = 0 n

1 for somen 0, and xy = 0 n+1

1has the desired fatorization.

A similar argument holds for y = 1. Otherwise, either (2.2.6) or (2.2.7) of

Lemma2.2.8holds. Intherstase,xy=p(10q01)=qrq01andin theseond

ase,xy=q(10p01)=qrq01beause10p=rq. Thefatorizationisuniqueby

Lemma2.2.6beauseastandardwordisprimitive.

Conversely,ifw=p10=qr(orw=p01=qr)forpalindromewordsp,q,r,

then byLemma 2.2.8, theword wis aomponentof somestandardpair,and

thusisastandardword.

A wordwisentralifw01(orequivalentlyw10)isastandardword. As we

shallsee,entral wordsplayindeedaentralrole.

Corollary 2.2.9. Awordisentral ifandonlyifitisintheset

0

[1

[(P\P10P)

whereP isthe setofpalindrome words. Thefatorizationofaentralwordw

asw=p10q withp;qpalindromewordsisunique.

Observethat P\P10P =P\P01P.

Proof. Let w 20

[1

[(P \P10P). By theprevious haraterization,w01

is a standard word, so w is entral. Conversely, if w01 is standard, then w

is a palindrome and w01 = qr for some palindrome words q and r. Either

w 2 0

[1

, or by Lemma 2.2.7, r =" and w = (10) n

1 for some n 1, or

w=q10sforsomepalindrome s,asrequired.

(22)

Corollary 2.2.10. A palindromeprex(suÆx)ofaentralwordisentral.

Proof.Weonsidertheaseofaprex. Letpbeaentralword.Ifp20

[1

,the

resultislear. Letxbeastandardwordsuhthatx=pab,withfa;bg=f0;1g.

Thenx=yzforastandardpair(y;z)or(z;y). Sety=qbaandz=rab,where

q;rareentralwords. Thenp=qbar=rabq andbysymmetrywemayassume

that jrj<jqj.

Letwbeapalindromeprexofp. Ifjwjjqj,theresultholdsbyindution.

If w= qb then wis apowerof b. Thus set w=qbat where t is aprex of r.

Siner isaprexofq, thewordtisaprexofq, andsinew=

~

tabq, onehas

t=

~

t. Thus,byCorollary2.2.9,w=qbatisentral.

Thenextharaterizationrelatesentral wordstoperiods inwords. Reall

from Chapter 1that givena word w= a

1 a

n

, where a

1

;:::;a

n

are letters,

anintegerkis aperiodofwif k1and a

i

=a

i+k

forall1in k. Any

integerknisaperiodwiththisdenition.

An integerk with 1 k jwj is aperiod of w if and only if there exist

wordsx,y,andz suhthat

w=xy=zx; jyj=jzj=k:

Fine andWilf's theoremstatesthat ifawordwhastwoperiods kand `, and

jwjk+` gd(k;`),then gd(k;`) isalso aperiod ofw. Inpartiular,if k

and `arerelativelyprime,andjwjk+` 1,thenwisthepowerofasingle

letter. Theboundis sharp,andthe questionarisesto desribethewordsw of

length jwj= k+` 2having periods k and `. This isthe objetof thenext

theorem.

Theorem 2.2.11. Awordwisentralifandonlyifithastwoperiodskand

` suh that gd(k;`) =1and jwj =k+` 2. Moreover,if w 2= 0

[1

, and

w =p10q with p,q palindrome words, thenfk;`g=fjpj+2;jqj+2gand the

pairfk;`gisunique.

The proof will show that any word w having two periods k and ` suh that

gd(k;`)=1andjwj=k+` 2isoveranalphabetwithat mosttwoletters.

Proof. Let w be a entral word. Then w01 is a standard word, and there is

a standard pair (x;y) suh that w01 = xy. If x = 0 ory = 1, then w is a

powerof 0 resp. of 1, and w has periods k = 1and ` = jwj+1. Otherwise,

x =p10and y =q01 for somepalindrome wordsp, q, and w =p10q =q01p

has two periods k = jxj and ` = jyj whih are relatively prime by Equation

(2.2.3). Assume that w has also periods fk 0

;` 0

g, with k 0

+` 0

2 =jwj. We

maysupposek<k 0

<` 0

<`. Sinek+` 0

1jwj,Fine andWilf's theorem

applies. Sowhasalsotheperiodd=gd(k;` 0

). Similarly,whasalsotheperiod

d 0

=gd(k;k 0

). Soithas theperiod gd(d;d 0

)=1. This provesthat thepair

fk;`gisunique.

Conversely,ifwisapowerofaletter,theresultistrivial. Thusweassume

(23)

Sine whasperiod k,there isawordx oflengthjxj=` 2thatis botha

prexandasuÆxofw. Similarly,thereisawordyoflengthjyj=k 2thatis

bothaprexand asuÆxofw. Consequently,thereexist wordsuandv,both

oflength2,suhthat

w=yux=xvy

We provebyindution onjwj that x, y, w are palindrome words, that uand

v are omposed of distint letters, and that no other letters than those of u

appear inw(thatiswisoveranalphabet oftwoletters).

Ifk=2,theny istheemptyword. Thusux=xv,and `isodd. Therefore

u=ab, v =ba, x =(ab) n

a, w =(ab) n+1

a for lettersa 6=b and somen 0.

Theresultholdsin thisase.

Ifk=` 1,thenx=ya=by forlettersaandb. Butthena=b andwis

apowerofaletter,aasethatwehaveexluded.

Thus weassumek` 2. Then yuis aprex ofx. Dene z byyuz=x.

Then

x=yuz=zvy

showingthat x hasperiodsjyuj=k and juzj=` k. Sinegd(k;` k)=1

andjxj=k+(` k) 2,wegetbyindutionthatx isapalindrome,andthat

itsprex oflengthk 2,that isy, anditssuÆxof length` k 2,thatis z

also are palindromes. Moreover,u =ab for letters a6=b, and u~= v beause

yuz=z~uy=zvy. Also, thewordx (andy,andthereforealso w)isomposed

onlyofa'sandb's. Thuswisentral.

Theorem 2.2.11assoiates,to everyentral wordof lengthm,apair fk;`g

of relativelyprime integerssuh that k+` 2 =m. We now show that, for

eahpairfk;`gofrelativelyprime integers,thereexists indeed aentralword

oflengthk+` 2andperiods kand`.

Leth;mberelativelyprimeintegerswith1h<m. Deneaword

z

h;m

=a

1 a

2 a

m 2 (a

n

2f0;1g)

by

a

n

=

(n+1) h

m

n h

m

:

Thesewordshavealreadybeenmentionedinourdisussionofrationalmehan-

ial words (Equation 2.1.14). Eah word z

h;m

has length m 2 and height

h 1.

Proposition2.2.12. Foreveryouple1h<mofrelativelyprimeintegers,

the word z

h;m

is entral. It has the periods k and ` where k+` = m and

kh1modm.

Proof.Denekby1km 1,andsetkh=1+m. Observethatkexists

beausehandm arerelativelyprime. Let`=m k. Then `h 1modm,

and`istheuniqueintegerintheinterval[0:::;m 1℄withthisproperty. Next

(n+k) h

=+

nh+1

(24)

Sinenh6 1modmfor1n` 1,itfollowsthat

nh+1

m

=

nh

m

(1n` 1)

Consequently,a

n+k

=a

n

for 1n` 2. Asimilar argumentholdswhen k

isreplaedby`and 1ishangedinto1.

Assume that some integerddivides k and `. Then d divides also m. But

k and` arerelativelyprimeto m, sod=1andgd(k;`)=1. Thisproves,by

Theorem2.2.11,thatz

h;m

isentral.

Example 2.2.13. The wordsz

1;m

= 0 m 2

and z

m 1;m

= 1 m 2

are entral.

Inpartiular,z

1;2

=".

Example 2.2.14. Forh=5,m =18, onegetsz

5;18

=0010001001000100,a

wordoflength16. Byinspetion,onendstheperiods7and11. Theprevious

propositionallowsto omputethem, sine1151mod18.

Proposition2.2.15. Leth;mberelativelyprime integerswith 1h<m.

Thereexistexatlytwostandardwordsofheighthandlengthm,namelyz

h;m 10

andz

h;m

01. Thesewordsarebalaned.

Proof.ByProposition2.2.12,thewordsz

h;m

10andz

h;m

01arestandardwords

of height handlengthm. Theyarefatorsof theSturmianwordss

h=m;0 and

s 0

h=m;0

andthereforearebalaned. Weprovethatthereexistsonlyonestandard

wordof heighthandlengthm endingin10. Assume therearetwo,saywand

w 0

. Then

w=xy; w 0

=x 0

y 0

forsomestandardpairs(x;y),(x 0

;y 0

). Byformula(2.2.3),

h(x)jyj h(y)jxj=1; h(x 0

)jy 0

j h(y 0

)jx 0

j=1

Sinem=jxj+jyjandh=h(x)+h(y),thisgives

h(x)m jxjh=1; h(x 0

)m jx 0

jh=1

whene

(h(x) h(x 0

))m=(jx 0

j jxj)h

Sine gd(m;h) =1, m divides jx 0

j jxj. Thus jxj =jx 0

j, that is x =x 0

and

y=y 0

.

Reall that Euler's totient funtion is dened for m 1 as thenumber

(m) ofpositiveintegerslessthanmandrelativelyprime tom

Corollary 2.2.16. Thenumberofstandardwordsoflengthmis2(m),the

number of entral words of length m is (m+2), where is Euler's totient

(25)

2.2.2. Standard sequenesand harateristi words

Inthissetion,weusepartiularmorphismsthatwillalsobeonsideredin the

next setion. Three of them, namely E, G, and D, were already introdued

earlier. Here, these morphisms are used to relate standard words to hara-

teristi words, and bothto theontinued fration expansion of theslopeof a

harateristiword. Considerthemorphisms

E: 07!1

17!0

; ':

07!01

17!0

; '~:

07!10

17!0

Fromthese, wegetothermorphisms,denotedG,

~

G,D,

~

Dand denedby

G='ÆE: 07!0

17!01

;

~

G='~ÆE: 07!0

17!10

D=EÆ':

07!10

17!1

;

~

D=EÆ'~:

07!01

17!1

Ofourse,'=GÆE=EÆDand'~=

~

GÆE=EÆ

~

D.

Lemma 2.2.17. Foranyrealnumber,thefollowingrelationshold: E(s

; )=

s 0

1 ;1

andE(s 0

; )=s

1 ;1 .

Proof.Forn0,

s 0

1 ;1

(n)=d(1 )(n+1)+1 e d(1 )n+1 e

=1 (d n e d (n+1) e)=1 s

; (n)

beause d re=brfor everyreal numberr. This provestherst equality,

andtheseondissymmetri.

Lemma 2.2.18. Let0<<1. For0<1,

G(s

; )=s

1+

;

1+

;

~

G(s

; )=s

1+

; +

1+

; '(s

; )=s

0

1

2

; 1

2

andfor0<1,

G(s 0

; )=s

0

1+

;

1+

;

~

G(s 0

; )=s

0

1+

; +

1+

; '(s 0

;

)=s1

2

; 1

2 :

Proof.Lets=a

0 a

1 a

n

beaninniteword,thea

i

beingletters. Aninteger

nis theindex ofthe k-thourreneof theletter1in sif a

0 a

n

ontainsk

letters1anda

0 a

n 1

ontainsk 1letters1. Ifs=s

;

and0<1,this

meansthat

b(n+1)+=k; bn+=k 1

whihimpliesn+<k(n+1)+,that is

n=

k

1

:

(26)

Similarly,ifs=s 0

;

and0<1,then

d(n+1)+e=k+1; dn+e=k

andn= j

k

k

.

SetG(s

; )=b

0 b

1 b

i

, with b

i

2f0;1g. Sine everyletter1in s

; is

mapped to 01in G(s

;

), the prex a

0 a

n of s

;

(where n is theindex of

thek-thletter 1)is mappedontotheprex b

0 b

1 b

n+k of G(s

;

). Thusthe

index ofthek-thletter1inG(s

; )is

n+k=

&

k

1+

1+

1 '

Thisprovestherstformula.

Next,weobservethat,foranyinnitewordx,onehas

G(x)=0

~

G(x)

Indeed,the formulaG(w)0=0

~

G(w)iseasily shown tohold fornite wordsw

by indution. Furthermore,if aSturmianwords

;

starts with 0and setting

s

;

= 0t, onegets t = s

;+

. Altogether

~

G(s

; )= s

=(1+);(+)=(1+) for

0<1. Theproofoftheotherformulais similar. Finally, sine'=GÆE,

'(s

;

)=G(s 0

1 ;1 )=s

0

(1 )=(2 );(1 )=(2 ) .

Corollary 2.2.19. For any Sturmianwords, theinnite wordsE(s),G(s)

~

G(s), '(s),'(s),~ D(s)

~

D(s)areSturmian.

Formulas similar to those of Lemma 2.2.18hold for ' ;~ D;

~

D (Problem 2.2.6).

Reallthat theharateristiwordofirrationalslopeisdenedby

=s

;

=s 0

; :

Thepreviouslemmasimply

Corollary 2.2.20. Foranyirrationalwith0<<1,onehas

E(

)=

1

; G(

)=

=(1+)

Form1,deneamorphism

m by

m :

07!0 m 1

1

17!0 m 1

10

It iseasilyhekedthat

m

=G m 1

ÆEÆG:

Corollary 2.2.21. Form1,onehas

m (

)= .

(27)

Proof. Sine E ÆG(

) =

1=(1+)

, the formula holds for m = 1. Next,

G(

1=(k +) )=

1=(1+k +)

,sothelaimistruebyindution.

We use this orollary for onneting ontinued frations to harateristi

words. Reall that everyirrational number admits aunique expansionasa

ontinuedfration

=m

0 +

1

m

1 +

1

m

2 +

1

(2.2.8)

where m

0

;m

1

;::: are integers,m

0

0, m

i

>0for i1. If(2.2.8) holds, we

write

=[m

0

;m

1

;m

2

;:::℄:

The integersm

i

are alled the partial quotientsof . If thesequene (m

i )is

eventuallyperiodi,andm

i

=m

k +i

forih,thisisreportedbyoverliningthe

purelyperiodi part,asin

=[m

0

;m

1

;m

2

;:::;m

h 1

;m

h

;:::;m

h+k 1

℄:

Let =[0;m

1

;m

2

;:::℄ betheontinued fration expansionof an irrational

with0<<1. If,forsome with0< <1,

=[0;m

i+1

;m

i+2

;:::℄

weagreetowrite

=[0;m

1

;m

2

;:::;m

i +℄:

Corollary 2.2.22. If =[0;m

1

;m

2

;:::;m

i

+℄for someirrationaland

0<;<1,then

=

m1 Æ

m2

ÆÆ

mi (

)

Let (d

1

;d

2

;:::;d

n

;:::) beasequene of integers, with d

1

0 and d

n

>0 for

n>1. Tosuhasequene,weassoiateasequene(s

n )

n 1

ofwordsby

s

1

=1; s

0

=0; s

n

=s dn

n 1 s

n 2

(n1) (2.2.9)

Thesequene(s

n )

n 1

isastandardsequene, andthesequene(d

1

;d

2

;:::)is

itsdiretive sequene. Observethat ifd

1

>0,thenanys

n

(n0)starts with

0;ontheontrary,ifd

1

=0,thens

1

=s

1

=1,ands

n

startswith1forn6=0.

Everys

2n

endswith0,everys

2n+1

endswith1.

Example 2.2.23. Thediretivesequene(1;1;:::)givesthestandardsequen-

e dened by s

n

= s

n 1 s

n 2

, that is the sequene of nite Fibonai words.

Observethatthediretivesequene(0;1;1;:::)resultsinthesequeneofwords

(28)

Every standard word ours in some standard sequene, and every word

ourringin astandardsequeneisastandardword. Thisresultsbyindution

from thefat that,fors

n

=s d

n

n 1 s

n 2

,onehas

(s

n

;s

n 1 )=

dn

(s

n 2

;s

n 1

); (s

n 1

;s

n )=

dn

(s

n 1

;s

n 2 )

Thus

(s

2n

;s

2n 1 )=

d2n

Æ d2n

1

ÆÆ d1

(0;1)

(s

2n

;s

2n+1 )=

d2n+1

Æ d2n

Æ d2n

1

ÆÆ d1

(0;1)

ByEquation2.2.4,thisgivestheexpressions

s

2n

=G d

1

ÆD d

2

ÆÆD d

2n

(0)=G d

1

ÆÆD d

2n

ÆG d

2n+1

(0)

s

2n+1

=G d

1

ÆD d

2

ÆÆD d

2n+2

(1)=G d

1

ÆÆD d

2n

ÆG d

2n+1

(1)

Proposition2.2.24. Let=[0;1+d

1

;d

2

;:::℄ betheontinuedfrationex-

pansion of some irrational with 0 < < 1, and let (s

n

) be the standard

sequeneassoiatedto (d

1

;d

2

;:::). Theneverys

n

isaprexof

and

= lim

n!1 s

n :

Proof.Bydenition,s

n

=s dn

n 1 s

n 2

forn1. Dene morphismsh

n by

h

n

=

1+d

1 Æ

d

2

ÆÆ

d

n :

Welaimthat

s

n

=h

n (0); s

n s

n 1

=h

n

(1); n1

This holdsforn=1sineh

1 (0)=0

d1

1=s

1 andh

1 (1)=0

d1

10=s

1 s

0 . Next,

forn2,

h

n (0)=h

n 1 (

d

n

(0))=h

n 1 (0

dn 1

1)=s d

n 1

n 1 s

n 1 s

n 2

=s

n

and

h

n (1)=h

n 1 (0

dn 1

10)=s

n s

n 1

Forany innite word x, the innite word h

n

(x) starts with s

n

beauseboth

h

n

(0) andh

n

(1) startwiths

n

. Thus,setting

n

=[0;d

n+1

;d

n+2

;:::℄, one has

=h

n (

n

) byCorollary2.2.22andthus

startswith s

n

. This provesthe

rstlaim. Theseond isanimmediateonsequene.

Itiseasilyhekedthat

1+d

1 Æ

d

2

ÆÆ

d

r

=G d1

ÆEÆG d2

ÆEÆÆG dr

ÆEÆG

=

G d

1

ÆD d

2

ÆÆD d

r

ÆG ifriseven,

G d1

ÆD d2

ÆÆD dr

ÆDÆE otherwise.

Example 2.2.25. ThediretivesequenefortheFibonaiwordis (1;1;:::).

The orresponding irrational is 1=

2

= [0;2;1;1;:::℄, and indeed the innite

2

(29)

Example 2.2.26. Sine 1= = [0;1;1;1;:::℄, theorresponding standardse-

quene iss

1

=1,s

2

=10,s

3

=101,.... Thesequene isobtainedfrom theFi-

bonaisequenebyexhanging0'sand1's,inonordanewithLemma2.2.17,

sineindeed1=+1=

2

=1.

Example 2.2.27. Consider=( p

3 1)=2=[0;2;1;2;1;:::℄. Thediretive

sequene is(1;1;2;1;2;1;:::), and thestandardsequene startswith s

1

=01,

s

2

=010,s

3

=01001001,...,whene

( p

3 1)=2

=010010010100100100101001001001

Duetotheperiodiityofthedevelopment,wegetforn2thats

n+2

=s 2

n+1 s

n

ifnisodd,ands

n+2

=s

n+1 s

n

ifniseven.

Corollary 2.2.28. Every standard word is a prex of some harateristi

word.

Thus,everystandardwordisleftspeial.

Corollary 2.2.29. A wordisentralifand onlyifitisapalindrome prex

ofsomeharateristiword.

Proof.Aentralwordisaprexofsomestandardword,soalsoofsomehara-

teristiword. Conversely,apalindromeprexofaharateristiwordisaprex

ofanysuÆientlylongwordinitsstandardsequene,soalsoofsomesuÆiently

longentralword. Thus theresultfollowsfromProposition2.2.10.

Proposition2.2.24hasseveralinterestingonsequenes. Therelationtox-

pointsislefttosetion2.3.6. Wefousontwoproperties,rstthepowersthat

mayappear in aSturmian word, and then the omputation of thenumberof

fatorsofSturmianwords.

Letx beaninniteword. Forw2F(x),theindexofwin xisthegreatest

integerdsuhthatw d

2F(x),ifsuhanintegerexists. Otherwise,wissaidto

haveinniteindex.

Proposition2.2.30. EverynonemptyfatorofaSturmianwordshasnite

indexin s.

Proof. Assume the ontrary. There exist a Sturmianwords and a nonempty

fator uof s suh that u n

is afatorof s for everyn1. Consequently, the

periodiwordu

!

is inthedynamialsystemgeneratedbys. Sinethissystem

isminimal,F(s)=F(u

!

),aontradition.

An innite wordx hasbounded index ifthere existsan integerdsuhthat

everynonemptyfatorofx hasanindexlessthanorequalto d.

Theorem 2.2.31. ASturmianwordhasboundedindexifandonlyiftheon-

(30)

Westartwithalemma.

Lemma 2.2.32. Let (s

n )

n 1

be the standardsequene of the harateristi

word

, with=[0;1+d

1

;d

2

;:::℄. Forn3,thewords 1+d

n+1

n

isaprexof

, ands

2+dn+1

n

isnotaprex. Ifd

1

1,this holdsalsoforn=2.

Example 2.2.33. For the Fibonai word f = 0100101001001, we have

s

n

=f

n andd

n

=1foralln. Thelemmalaimsthatforn2,thewordf 2

n is

aprexoftheinnitewordf,andthatf 3

n

isnot. Asanexample,f 2

2

=010010

is a prex and f 3

2

=010010010is not. Observealso that f 2

1

= 0101 is nota

prexoff.

Proof.Weshowthatforn3(andforn2ifd

1

1),onehas

s

n 1 s

n

=s

n t

n 1

; with t

n

=s d

n 1

n 1 s

n 2 s

n 1

Indeed

s

n 1 s

n

=s

n 1 s

dn

n 1 s

n 2

=s dn

n 1 s

d

n 1

n 2 s

n 3 s

n 2

=s d

n

n 1 s

n 2 s

dn

1 1

n 2 s

n 3 s

n 2

=s

n t

n 1

provided d

n 1

1. Observe that t

n 1

is not a prex of s

n

, sine otherwise

s

n

=t

n 1

uforsomewordu,ands

n 1 s

n u=s

2

n ands

n

isnotprimitive.

Clearly,s

n+1 s

n

isaprexoftheharateristiword

. Sine

s

n+1 s

n

=s dn+1

n s

n 1 s

n

=s 1+dn+1

n t

n 1

thewords 1+d

n+1

n

isaprexof

,andsinet

n 1

isnotaprexofs

n

,theword

s 2+d

n+1

n

isnotaprexof

.

Proof of Theorem 2.2.31.Sine aSturmian word has the samefators asthe

harateristiwordofsameslope,itsuÆestoprovetheresultforharateristi

words. Let be the harateristi word of slope = [0;1+d

1

;d

2

;:::℄. Let

(s

n )

n 1

betheassoiatedstandardsequene.

To provethat the ondition is neessary, observe that s dn+1

n

is a prex of

for eah n 1. Consequently, if the sequene (d

n

) of partial quotients is

unbounded, theinnitewordhasfatorsofarbitrarilygreatexponent.

Conversely,assumethat thepartialquotients(d

n

)areboundedbysomeD

and arguing by ontradition, suppose that has unbounded index. Letr be

some integersuh that F() ontainsaprimitivewordof length r with index

greaterthanD+4. Amongthosewords,letwbeawordoflengthrofmaximal

index. Letd+1betheindexofw. ThendD+3. Theproofisinthreesteps.

(1)Theharateristiword hasprexesofthe formw d

, with dD+3.

Indeed,ifw d+1

isaprexof,wearedone. Otherwise,onsideranourrene

of w d+1

. Set w = za with a a letter, and let b be the letter preeding the

ourrene ofw d+1

. If b =a, replae w byaz and proeed. The proess will

stopafteratmostjwj 1stepsbeauseeitheraprexofisobtained,orbeause

(31)

Thusb(za) d+1

isafatorof. Thisimpliesthata(za) d

andb(za) d

arefators,

sow d

isarightspeialfator,andthereforeitisaprexof.

(2)Ifw d

isaprexoftheharateristiword,thenwisoneofthestandard

wordss

n

. Indeed,sete=d 2,sothateD+1. Letnbethegreatestinteger

suh that s

n

is aprex of w e+1

. Then w e+1

is aprex of s

n+1

=s dn+1

n s

n 1 ,

thusalsoofs 1+dn+1

n

. Thisshowsthat

(1+D)jwj(1+e)jwj(1+d

n+1 )js

n

j(1+D)js

n j

whene jwj js

n

j. Now, sine both w e+2

and s 1+d

n+1

n

are prexesof , one

is a prex of the other. If w e+2

is the shorter one, then jw e+2

j = jw e+1

j+

jwj js

n

j+jwj. Thus, w e+2

and s 1+dn+1

n

share a ommon prex of length

js

n

j+jwj. Consequently, wand s

n

arepowersof thesameword,and sine

theyareprimitive,theyareequal.

Ifs 1+d

n+1

n

is theshorteronethen, sine(1+e)jwj(1+d

n+1 )js

n j,

s 1+d

n+1

n

=js

n j+d

n+1 js

n jjs

n j+

d

n+1

1+d

n+1

(1+e)jwjjs

n j+jwj

andthesameonlusionholds.

(3)Iffollowsthats 1+e

n

isaprexofand,sineeD+1d

n+1

+1,also

s 2+d

n+1

n

isaprexof,ontraditingLemma 2.2.32.

We onludethis setionwith theomputation ofthenumberoffatorsof

Sturmian words. Another haraterization of entral words will help. Reall

that a nite word is balaned if and only if it is a fator of some Sturmian

word. Moreover,everybalanedwordw,asafatorofsomeuniformlyreurrent

inniteword,an beextended to theright andto the left, that is waand bw

arebalanedforsomelettersa;b.

Proposition2.2.34. Foranywordw,thefollowingareequivalent:

(i) thewordwisentral;

(ii) thewords0w0,0w1,1w0,1w1arebalaned;

(iii) thewords0w1and1w0arebalaned.

Proof. (i) ) (ii). The words w01 and w10 are standard, and therefore are

prexesof someharateristiwords and 0

. By Proposition 2.1.22thefour

innitewords0,1, 0 0

and1 0

areSturmian,andonsequentlytheirprexes

0w0,0w1,1w0,1w1arebalaned. (ii))(iii)istrivial.

(iii))(i). Weproverstthatwisapalindromeword. Assumetheontrary.

Thenthere arewordsu,v,v 0

andletters a6=b suh thatw=uav=v 0

bu.~ But

then awb = auavb = av 0

b~ub has fators aua and b~ub with height satisfying

jh(aua) h(b~ub)j=2,ontradition.

Let be aharateristi wordsuh that 0w12F(). Sine F() islosed

underreversal(Proposition2.1.19),andwisapalindrome,1w02F(),showing

thatwisarightspeialfatorof. Thusitsreversal(thatiswitself)isaprex

Références

Documents relatifs

We prove that if a Sturmian word is the image by a morphism of a word which is a fixed point of another morphism, then this latter word is mostly a Sturmian word, and the

We characterize all standard words occurring in any characteristic word (and so in any Sturmian word) using firstly morphisms, then standard prefixes and finally

The language L(u) contains infinitely many palindromes, but it need not be closed under reversal, neither recurrent nor rich as illustrated by the following example.. Example 5.6 (PE

By Theorems 1.6 and 1.7, if a Sturmian word is substitution invariant, then it is a fixed point of some primitive substitution with connected Rauzy fractals.. Let σ be an

A corollary of this characterization is that, given a morphic characteristic word, we can’t add more than two letters, if we want it to remain morphic and Sturmian, and we cannot

Let U be an unbordered word on an alphabet A and let W be a word of length 2|U | beginning in U and with the property that each factor of W of length greater than |U| is bordered..

In this paper, we give a simpler proof of this resuit (Sect, 2) and then, in Sections 3 and 4, we study the occurrences of factors and the return words in episturmian words

Now let e &gt; 0 be arbitrary small and let p,q be two multiplicatively independent éléments of H. It remains to consider the case where H, as defined in Theorem 2.2, does not