• Aucun résultat trouvé

Use of individual retention modeling for gradient optimization in hydrophilic interaction chromatography: Separation of nucleobases and nucleosides

N/A
N/A
Protected

Academic year: 2021

Partager "Use of individual retention modeling for gradient optimization in hydrophilic interaction chromatography: Separation of nucleobases and nucleosides"

Copied!
7
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Journal

of

Chromatography

A

jou rn al h om ep a g e : w w w . e l s e v i e r . c o m / l o c a t e / c h r o m a

Use

of

individual

retention

modeling

for

gradient

optimization

in

hydrophilic

interaction

chromatography:

Separation

of

nucleobases

and

nucleosides

Eva

Tyteca

a,∗

,

Davy

Guillarme

b

,

Gert

Desmet

a

aVrijeUniversiteitBrussel,DepartmentofChemicalEngineering,Pleinlaan2,B-1050Brussels,Belgium

bSchoolofPharmaceuticalSciences,UniversityofGeneva,UniversityofLausanne,20,Boulevardd’Yvoy,1211Geneva4,Switzerland

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received7August2014

Receivedinrevisedform

24September2014

Accepted25September2014

Availableonline13October2014

Keywords:

Computer-assistedmethoddevelopment

Individualretentionmodeling

Nucleobases Nucleosides HILIC

a

b

s

t

r

a

c

t

Inthisstudy,theseparationoftwelvenucleobasesandnucleosideswasoptimizedviachromatogram simulation(i.e.,predictionofindividualretentiontimesandestimationofthepeakwidths)withtheuse ofanempirical(reversed-phase)non-linearmodelproposedbyNeueandKuss.Retentiontime predic-tionerrorsoflessthan2%wereobservedforallcompoundsondifferentstationaryphases.Asasingle HILICcolumncouldnotresolveallpeaks,themodelingwasextendedtocoupled-columnsystems(with differentstationaryphasechemistries)toincreasetheseparationefficiencyandselectivity.The analyti-calexpressionsforthegradientretentionfactoronacoupledcolumnsystemwerederivedandaccurate retentiontimepredictionswereobtained(<2%predictionerrorsingeneral).Theoptimizedgradient (predictedbytheoptimizationsoftware)includedcouplingofanamideandanpentahydroxy function-alizedsilicastationaryphaseswithagradientprofilefrom95to85%ACNin6minandresultedinalmost baselineseparationofthetwelvenucleobasesandnucleosidesinlessthan7min.Thefinalseparation wasobtainedinlessthan4hofinstrumenttime(includingequilibrationtimes)andwasfullyobtained viacomputer-basedoptimization.Assuch,thisstudyprovidesanexampleofacasewhereindividual retentionmodelingcanbeusedasawaytooptimizethegradientconditionsintheHILICmodeusinga non-linearmodelsuchastheNeueandKussmodel.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Tospeedupthemethoddevelopment(MD)processin chro-matography,fullyorsemi-automatedMDsoftwareprogramshave beendevelopedforreversedphaseliquidchromatography(RPLC) [1–6].TheseautomatedMDstrategiesforRPLC describedin lit-eratureareeithersearch-based (e.g.usingtheSimplexmethod) [7],model-based(e.g.Drylab[8],Chromsword)[9]orbasedona combinationofboth(designofexperiments(DoE),multiplelinear regression(MLR)[10],predictiveelutionwindowstretchingand shiftingmethod(PEWS2)[11]).Recently,thePEWS2methodwas successfullyappliedforthegradientoptimizationinhydrophilic interactionchromatography(HILIC)[12].

HILICisbecomingmoreandmorepopular,forthedetermination ofhydrophiliccompounds,poorlyretainedinRPLCconditions,and fortheanalysisofionizablecompounds[13].HILICretentioncanbe

∗ Correspondingauthor.Tel.:+3222693617.

E-mailaddress:eva.tyteca@vub.ac.be(E.Tyteca).

consideredasamixed-modemechanism,combininghydrophilic partitioningoftheanalytesbetweentheorganic-richmobilephase andthewaterenrichedlayerpartiallyimmobilizedonthe station-aryphase, compoundsadsorptionthroughhydrogenbonds,and electrostaticandionicinteractions[14].Althoughboththelinear reversedphase(semi-log)(Eq.(1))andthenormalphase(log-log) retentionrelationshipshavebeenusedinliteraturetomodelHILIC retention[15],thedependencyofln(k)onbothϕandlog(ϕ)inthe HILICseparationmodedoesnotfollowastrictlinearrelationship [15,16].Basedontheseobservations,Jinetal.proposedamixed modelcombiningpartitioning andadsorptionterms (Eq.(2))to describetheretentionbehaviorinHILIC[15].JanderaandHájek [17]introducedanextendedmodelincludingoneextraparameter tobetterdescribetheretentionatlowpercentagesofwater.Other (reversed-phase)non-linearmodelssuchasthequadraticmodel andtheempiricalmodelfromNeueandKuss(Eq.(3))havealso beenproposedinliteraturetodescribetheretentionrelationship intheHILICseparationmode[12].

ln(k)=ln(kw)−Sϕ (1)

http://dx.doi.org/10.1016/j.chroma.2014.09.065

(2)

ln(k)=ln(kw)+S1ϕ+S2 ln(ϕ) (2) ln(k)=ln(kw)+2ln(1+S2ϕ)− S1ϕ

1+S2ϕ

(3) whereϕisthefractionofwater,kwistheextrapolatedvaluesofkfor ϕ=0(i.e.,pureACN)andSisthesolventstrengthparameterwhich isaconstantforagivencompoundandorganicsolvent[18,19],S1 theslopeforthenon-linearmodels,S2 thecurvaturecoefficient [21].

Grecoetal.reporteddeterminationcoefficientsR2above0.99 for14benzoicacidsusingEq.(2)[14].Inarecentstudy,including severalanalytespossessingdiversephysico-chemicalproperties, wereportedR2

adjustedandQ2-valuesfortheempiricalNeueandKuss (Eq.(3))model,closetothoseofthemixedmodel(Eq.(2))[12]. However,thegradientretentionpredictionsweremuchless accu-rateinHILICthanRPLC,restrictingtheuseofcommercialsoftware packagesrequiringthesimulationoftheretentionofeverypeakin thechromatogram[12].

Theexpressionforthegradientretentionfactorcanbefoundby solvingthefundamentalgradientequation:

t0= tR



−t0

0 dts

k(ϕ) (4)

wheretRandt0arethetotalretentiontimeandthecolumndead time,respectively[20]andtsisthetimeinthestationaryphase. Whereasthemixedmodel(Eq.(2))nolongerhasananalytical solu-tiontothefundamentalgradientequation,itisoneofthevirtues oftheNeueandKuss-model(Eq.(3))thatitiseasilyamenableto ananalyticalsolution,leadingtothefollowingexpressionforthe effectiveretentionfactorkeff=(tR−t0)/t0[21]:

keff=ttD

0+

[0+(1+S20)/S1ln(1+ˇkwS1(t0−tD/k0)exp(−S10/1+S20))]/[1−(S2(1+S20))/S1ln(1+ˇkwS1(t0−tD/k0)exp(−S10/1+S20))]−0

ˇt0

(5) where tD is thedwell time, ˇis the gradientslope, defined as

(ϕe−ϕ0)/tGandk0istheisocraticretentionfactoratthestartof thegradient,i.e.forϕ=ϕ0.

Inapreviousstudy,involvingsampleswithpteridines,sugars andadrugmixtureofvenlafaxine,tramadolandtheirmetabolites inHILICweobservedstronglynon-linearretentionrelationships, thatweresocomplexthattheycouldnotbemodeledusingany oftheexistingnon-linearretentionmodels.Asaconsequence,the traditionalretentionmodelingapproach[22]thatissosuccessful andwidespreadusedinRPLC,couldnotbeappliedand wehad toswitchtoamodel-guidedsearchapproach(so-calledPEWS2 -technique[11,12]).Forasamplecontainingcompoundsbehaving more“nicely”,individualretentionmodelingusinganon-linear 3-parametermodel(mixedmodelandtheempiricalmodelfromNeue andKuss)couldbeusedtooptimizethegradientconditions.

Inthepresentcontribution,wereportontheoptimizationofa HILICseparationoftwelvenucleobasesandnucleosidesusingthis individualretentionmodelingandthecouplingofcolumns(with differentstationaryphases).IntheadoptedMDworkflow,three differentcolumnchemistriesandtwomobilephasepHweretested. Theseparationofnucleicacidsandanalogsareofgreat inter-estinpharmaceuticalsciences,genomics,geneticsandothers[23]. Massoliniandcoworkersusednarrowborecolumnswith gradi-entelution(ZIC-HILIC,150mm×2.1mm,5␮m)toseparatethe 12nucleobasesandnucleosidesincludedinthisstudyin55min. Nikitasetal.usedreversed-phaseliquidchromatography (with-outionparingreagent)toseparate16nucleobasesandnucleosides usingtwo-segmentgradientprofiles[24].Thelinearlog-log reten-tionrelationshipshowedbetterpredictionaccuracycomparedto thesemi-logretentionrelationship(Eq.(1)),bothforsimplelinear andmulti-lineargradientprofiles.Jinetal.[15]reportedR2-values around0.999andisocratic predictionerrors smallerthan 5%at

95%ACNforeightnucleosidesonsixdifferentcolumns,usingEq. (2).However,nogradientpredictionswereevermadeusingthis mixedmodel.Pappa-Louisiandcoworkersreportedonthegradient retentiontimepredictionsofaminoacidsinHILICusingthe LSS-model(Eq.(1))forlinear,multi-linearandcurvedelutionprofiles withthesamestartingconcentration.

2. Experimental

WaterwasobtainedfromaMilli-Qwaterpurificationsystem fromMillipore(Bedford,MA,USA).Acetonitrile(ACN),methanol (MeOH)andformicacidwereofULC-MSgradeandpurchasedfrom Biosolve(Valkenswaald,Netherlands).Ammoniumacetate(>98%, Sigma–Aldrich,Belgium)buffer10mMwaspreparedby weigh-ingadequatemassofammoniumacetate.ThepHwasadjusted to 3.0 or 6.0 with formic acid (FA). All compounds (thymine, uridine, inosine,adenine,uracil, hypoxanthine,cytidine, thymi-dine,adenosine,cytosine,guanineandguanosine)werepurchased fromSigma–Aldrich.Stocksolutionsof1000ppmwereprepared in MeOH except for guanosine and guanine (0.1%FA and KOH solutions,respectively).ThesamplesweredilutedinACN+0.1% FAand injectedat100ppm.Theinjectionvolumewas1␮L.All experimentswereperformedonanAgilentInfinity1290system withadwellvolumeof112␮L.ThecolumnswereSupelcoHILIC and SupelcoOH5, i.e., baresilica and pentahydroxy functional-ized silicarespectively (100mm×2.1mm, 2.7␮m), and Waters AcquityAmide,i.e.,amidefunctionalizedsilica(100mm×2.1mm, 1.7␮m).Thedeadtimesweremeasuredat70%ACN:0.419,0.381 and0.422minonthebaresilica,thepentahydroxyandtheamide stationary phase, respectively. The flow rate was 0.5mL/min.

Temperaturewasset25◦C.UV-detectionwassetat254nm.The isocraticscoutingrunswereperformedusingdifferentsubgroups (seedifferentcolorsinFig.3),toavoidoverlappingpeaksandensure accurateretentiontimedetermination.

2.1. Dataanalysis

Matlabsoftware(2009)wasusedfortheestimationofthemodel parametersandthecalculationoftheoptimalgradientconditions viaanin-housewrittenMatlabcode.Theretentionfactorsofthe isocraticscoutingrunswereusedtoobtainthemodelparameters (Eqs.(2)and(3))vialeastsquaresfittingusingtheMatlab® rou-tinelsqcurvefit.Gradientretentiontimeswereeitherpredictedby implementingtheanalyticalexpression(Eq.(5),fortheNeue–Kuss model)inMatlab-softwareor,fortheothernon-linearmodel(Eq. (2)),vianumericalintegrationofthefundamentalgradient equa-tionviaanin-housewrittenMatlabroutinebasedonthetrapezoid rule. t0=



tR−t0 0 dts k(ϕ)= tD k0 + 1 ˇ



ϕelution ϕ0 dϕ k(ϕ)⇔ˇ·



t0−tD k0



=



ϕelution ϕ0 dϕ k(ϕ)=I (6)

ThepercentageofACNatelutionϕelutionisobtainedby minimiz-ingI−ˇ*(t0−tD/k0).Fromϕelution,theeffectiveretentionfactorkeff canbecalculatedvia:

keff =tR−t0 t0 = tD t0 + elution−0 ˇt0 (7)

(3)

Table1

R2

adjustedandQ2valuesandtheretentionparameterskw,S1andS2forthe12nucleobasesandnucleosidesonthepentahydroxystationaryphasecolumnpH=6.

Eq.(3) Eq.(2) R2 Q2 ln(k w) S1 S2 R2 Q2 ln(kw) S1 S2 Thymine 1.0000 0.9998 1.96 21.2 2.4 0.9988 0.9911 −0.45 −3.3 −0.6 Uracil 0.9998 0.9996 3.12 39.3 4.2 0.9989 0.9922 −1.54 −1.0 −1.2 Thymidine 0.9991 0.9935 2.88 31.7 3.3 0.9993 0.9985 −0.95 −2.7 −1.0 Uridine 1.0000 1.0000 3.09 42.4 4.7 0.9989 0.9918 −1.84 −0.3 −1.2 Inosine 0.9999 0.9991 3.66 36.7 3.5 0.9994 0.9960 −0.85 −2.9 −1.2 Adenosine 1.0000 0.9999 3.93 50.0 5.0 0.9990 0.9925 −1.93 −0.3 −1.5 Hypoxanthine 0.9999 0.9997 4.30 44.0 4.0 0.9992 0.9938 −1.14 −2.4 −1.4 Cytosine 0.9994 0.9968 1.96 21.2 2.4 0.9998 0.9991 −0.45 −3.3 −0.6 Adenine 1.0000 0.9999 0.93 18.5 2.7 0.9990 0.9929 −1.11 −1.5 −0.5 Cytidine 0.9999 0.9992 1.36 21.7 2.7 0.9994 0.9958 −1.12 −2.4 −0.6 Guanine 0.9994 0.9984 5.08 72.0 6.4 0.9993 0.9987 −2.27 −0.6 −1.7 Guanosine 0.9994 0.9986 5.23 62.9 5.3 0.9989 0.9979 −1.43 −2.9 −1.6

The prediction errors were calculated as (tR,experiment− tR,predicted)/tR,experimentwithtR=t0*(1+keff).

Thegradientoptimizationstrategyconsistsofagridsearch, scan-ningthroughallcombinationsofϕ0andˇ(100×100conditions withln(ˇ)equallyspacedbetween0.001and0.5andϕ0between 0.05and0.35).Forallcompounds,theretentiontimetRispredicted andtheresolutionRs(Eq.(8))estimatedunderallthecombinations ofϕ0andˇ. Rs= √ N 4 k 1+kelution (8) wherekelutionistheaverageretentionfactorofthetwocompounds whenelutingfromthecolumn,i.e.forϕ=ϕelution.Thebestgradient conditionscorrespondtobaseline separation(Rs,crit=1.6)within theshortestpossibleanalysistime(tR,analysis=tR,lastcompound).When multiple good solutions are found, these solutions are ranked, accordingtotheirrespectiveanalysistimes.

Forthecoupledcolumnswithdifferentstationaryphases,the sameapproachcanbefollowed,usingtheanalyticalexpressions fora coupledcolumnsystem(Eqs. (9)–(12)).In Eq.(8) the iso-craticplatenumberNisthesumoftheindividualplatenumbers (Ncolumn1+Ncolumn2)and kelution is theretentionfactor atelution fromthesecondcolumn.

Notethatotherqualitycriterions,suchastheScriterion[25], couldbeusedintheoptimization.

3. Resultsanddiscussion

3.1. Retentionmodeling

Inafirststep,theisocraticretentionrelationshipsforthetwelve nucleobasesandnucleosidesinHILICmodewereestablishedby performing10isocraticmeasurements(95,94,93,92,91,90,88, 85,80and70%ACN),onthreedifferentstationaryphasechemistries at twodifferentpH-values. Subsequently,we performeda least squaresfitting of the obtainedisocratic retention factors,using Eqs.(2)and(3),toestimatetheretentionparameters.Thehigh numberof isocraticrunswasbasedonourpreviousexperience withpteridines,sugarsandthedrugmixtureofvenlafaxine, tra-madolandtheirmetabolites,showingthatverystrongcomplex non-linearitiescanoccurinHILIC.

InFig.1,theestablishedmodelsforallcompoundsontwo sta-tionaryphasechemistriesaregiven(pH=6).Thebaresilicashowed lessretentionforallcompoundscomparedtothepentahydroxy column.Bothretentionmodels(Eqs.(2)and(3),resp.redandblue curvesinFig.1)wereabletodescribetheisocraticretentiondata

Fig.1.Isocraticmeasurementsandestablishedretentionmodels(kvs.fractionofACNϕ)foralltwelvenucleobasesandnucleosidesonthepentahydroxyandthebaresilica

(4)

Table2

Averagegradientpredictionerrorsfor12nucleobasesandnucleosidesandfour

gradientruns(95–85%ACNin2and6min,92–85%ACNin2and6min).

Eq.(2) Eq.(3) Pentahydroxy pH3 2.8% 3.0% pH6 3.0% 3.5% Baresilica pH3 3.6% 3.2% pH6 2.1% 1.8% Amide pH6 3.5% 3.6%

veryaccuratelyandthedifferencebetweenbothretentionmodels wasverysmall(Fig.1).InTable1,theR2

adjustedandQ

2valuesand theobtainedretentionparametersareprovidedforallcompounds onthepentahydroxycolumn.

Sinceusingalltenisocraticrunstoestablishtheretention mod-elsforgradientoptimizationpurposeswouldbetoomuchwork inapracticalapplication,weinvestigatedwhethertheretention modelscouldalsobeestablishedusingasmallernumberof scout-ingruns.Forthispurpose,fourscoutingisocraticruns(95,90,85 and80%ACN)wereusedtoinvestigatethepossibilitiesof gradi-entretentiontimemodeling.Subsequently,theretentionmodel parametersobtainedfromtheseisocraticrunswereusedtopredict theretentionunderfourdifferentgradientswithvariousgradient timestGanddifferentstartingcompositionsϕ0(95–85%ACNin2 and6min,92–85%ACNin2and6min).Theexperimentalgradient retentionfactorswerecomparedwiththepredictedonesandthe percentageerrorswerecalculated.

Allabsolutegradientpredictionserrorsweresmallerthan5% withanaverageofaround3%forallpHsandcolumns(seeTable2). Nosignificantdifferenceinpredictionerrorswasobservedbetween thedifferentgradientrunsandbetweenthemixedmodelandthe empiricalmodelfromNeueandKuss.Fig.2showsthecorrelation plotforkpredicted vs.kexperiment usingthesefourisocraticscouting runs.

3.2. Separationoptimization 3.2.1. Individualcolumns

AsshowninSection3.1boththeempiricalNeueandKuss-model andthemixedmodelgavesimilargradientpredictionerrors. How-ever,sincethecalculationtimeusingtheanalyticalexpression(Eq.

Fig.2.Correlationplotforkpredictedvs.kexperimentfor12nucleobasesandnucleosides

includingfourdifferentgradients(95–85%ACNin2and6min,92–85%ACNin2

and6min)onthepentahydroxystationaryphaseatpH=6.Retentionparameters

obtainedusingfourisocraticscoutingruns(95,90,85and80%ACN).

Table3

Retentiontimepredictions(min)onthepentahydroxystationaryphaseatpH=6.

Gradientconditions:94–90.6%ACNin3.36min.

tR,predicted (min) tR,experiment (min) %error (Eq.(3)) %error (Eq.(1)) Thymine 0.819 0.819 −0.02% −3.80% Uracil 0.881 0.874 0.79% −2.70% Thymidine 1.024 1.024 0.03% −4.40% Uridine 1.497 1.480 1.17% −3.30% Inosine 2.067 2.069 −0.11% −7.30% Adenosine 2.147 2.130 0.79% −5.00% Hypoxanthine 2.212 2.200 0.54% −6.10% Cytosine 2.962 2.987 −0.02% −3.80% Adenine 3.151 3.119 0.79% −2.70% Cytidine 3.967 3.931 0.03% −4.40% Guanine 3.828 3.891 −1.62% −3.56% Guanosine 4.627 4.655 −0.60% 0.60%

(8))viatheNeueandKussisocraticretentionrelationshipis sig-nificantlyreducedcomparedtothenumericalintegrationviathe mixedmodel,gradientoptimizationwasperformedwiththeNeue andKussretentionparameters.Becausethemodelingshowedto bereasonablyaccurate(consistently<5%),allpeakswere individ-uallymodeledintheMDstrategy.Thisisanalternativegradient optimizationapproachcomparedtothePEWS2strategywhichhas alreadybeensuccessfullyappliedforthegradientoptimizationin theHILICmode[12],whentheretentionmechanismofthe com-poundsistoocomplextobeaccuratelydescribedbythesimple modelfromNeueandKuss.Firsttheretentiontimeandpeakwidth ofeverypeakinthemixtureissimulatedundervariousgradient conditions.Then,thecorrespondingresolutionmapRs(Eq.(8))is constructedfromwhichtheoptimalgradientconditionscanbe obtained.Theoptimalconditioncorrespondstothecasewherethe criticalresolutionRs,critwasmaximal,similartotheresolutionmaps constructedincommercialRPLCmodelingsoftwarebasedonthe linearsolventstrength(LSS)model(Eq.(1)).Asanexample,the bestpossibleseparationonthepentahydroxystationaryphaseis providedinFig.3.Therelativelyhighconcentrations(100ppm), commonforUV-detection,andaninjectedvolumeof1␮Lresulted ingoodchromatogramswithahighsignal-to-noiseratio.Asthe injectedmass(100ng)wasquitelow,noproblemsof overload-ingoccurred.Moreover,sincethereisnoirreversibleadsorptionof thecompoundsatthesurfaceofthestationaryphase,theretention timeswerereliableandidenticalforboththeindividualcompounds andthemixturecompounds.Notethattheseconcentrationsare notcriticalfortheestimationoftheretentionmodelparameters. Incasemoreexpensiveorscarcecompoundswouldbeused,lower concentrationscouldbeobviouslyconsideredduringthescouting runs.Accurateretentiontimepredictions(maximalerrorof1.6%) werefoundforallcompounds(Table2).Comparingtheprediction errorsusingthenon-linearmodelandtheLSS-model,itisclear thatthepredictionaccuracycanbesignificantlyimproved. More-over,thepredictionerrorsusingthenon-linearmodelinTable3 weremuchbettercomparedtotheaveragepredictionerrorsin Table2.Thelattercouldbeexplainedbythedifferenceingradient rangebetweenthebestpossiblesolution(94–90.6%ACN)andthe gradienttestruns(95–85and92–85%ACN).

We also compared the calculated (experimental) Rs=(tR,2−tR,1)/(w1+w2)andthepredictedRsusingEq.(8)(Fig.4). A similar trend in experimental and predicted Rs was found, immediatelyindicating the critical pairs,although the absolute valuesdifferedsignificantlyforthelaterelutingcompounds.

3.2.2. Coupledcolumns

Sincenoneoftheconsideredcolumnscouldprovidesufficient separationofallcompounds,weinvestigatedthepossibilitiesto

(5)

Fig.3.Overlaychromatogramof12nucleobasesandnucleosidesonthepentahydroxystationaryphaseatpH=6.Gradientconditions:94–90.6%ACNin3.36min.

Fig.4. ExperimentalandpredictedRsusingEq.(8)forchromatograminFig.3.

performgradientpredictionusingcoupledcolumnswithdifferent stationaryphasechemistriestooptimizetheseparation.

Usingacoupled-columnsystem,gradientelutionretentiontime predictionscanstillbedoneusinganalyticalexpressions.The fun-damentalgradientequationisnowasumoftwointegrals,using bothretentionmodels:

t0 =



tR−t0 0 dts k(ϕ)=



ϕelution,column1 ϕ0,column1 dϕ kcolumn1(ϕ) +



ϕelution,column2 ϕ0,column2=ϕelution,column1 dϕ kcolumn2(ϕ) (9)

wherethefirstandthesecondintegralsdescribethepartofthe gradientfeltbythecompoundinthefirstandthesecondcolumn, respectively.Thefirstintegralincludesthedwelltimeofthe sys-temtD,thecolumndeadtimet0andtheretentionparameterskw ,S1 andS2fromthefirstcolumntocalculatethefractionofACNat elu-tionfromthefirstcolumnϕelution,column1.Thesecondintegraluses ϕelution,column1asthestartofthegradient(ϕ0,column2=ϕelution,column1) andincludesazerodwelltime,thecolumndeadtimet0andthe retentionparameterskw,S1andS2fromthesecondcolumn.The expressionforϕelutionis:

elution= 0+

[1+S20]/S1ln(1+ˇkwS1(t0−tD/k0)exp(−S10/(1+S20)))

1−[S2(1+S20)]/S1ln(1+ˇkwS1(t0−tD/k0)exp(−S10/1+S20))

(10) whereϕ0isrespectivelyϕ0,column1andϕ0,column2.Fromϕelutionthe retentiontimetRinbothcolumnscanbecalculated:

elution=0+ˇ(tS−tD)=0+ˇ(tR−t0−tD)⇔tR=tD+t0+elution−0

ˇ (11)

Then, thetotal retention time is thesumof both individual retentiontimes.Theresultinganalyticalexpressionforthegradient retentionfactoris:

keff=

(tR,column1+tR,column1)−(t0,column1+t0,column2) (t0,column1+t0,column2)

(12) Thecomputer gridsearchwasextended tothe coupled col-umnsystemsandacombinationoftheamideandthebaresilica stationaryphaseswasproposedbythealgorithm,astheelution order wassimilaronbothcolumns(elution order ofadenosine and hypoxanthinewasreversed comparedtothepentahydroxy column,seeFig.1)directingtowardbetterseparationwhen cou-plingbothcolumnsinseriescomparedtothesinglecolumnsystem. Almostbaseline separation wasobtainedfor the twelve nucle-obasesandnucleosidesinlessthan7min(comparedto55minfrom Massoliniandcoworkers[22]).Itmustbenotedthatfullbaseline separationcouldpossiblybeobtainedbyincreasingthecolumn length(andthecorrespondinganalysistime).

Thepredictionerrorsusingthecoupledcolumnswere some-whatworsethanforthesingle-columnsystem(Table4),which maybeduetothetubingthatwasusedtocouplethecolumns, but(almost)baselineseparationwasobtainedforalltwelve com-pounds(Fig.5).Theworstpredictedcompoundsfortheoptimized gradientonthecoupledcolumnsystemwerehypoxanthineand adenosine.However,nogoodreasonwasfoundforthisbehavioras noneofthesetwocompoundsisthemostionizedandthenumber ofH-bonddonororacceptorgroupsisnotlargerthanfortheother testmolecules.Therefore,nostrongerinteractionsexistbetween thesetwocompoundsandthestationaryphasethanfortheother compounds.

Alsoforthecoupledcolumns,wecomparedtheexperimental andthepredictedRs(Eq.(8)).Asforthesinglecolumnsystem,a

Table4

Retentiontimepredictions(min)usingtwocoupledcolumns(amideandbaresilica

stationaryphase).Gradientconditions:95–85%ACNin6min.

tR,predicted(min) tR,experiment(min) %error

Thymine 1.773 1.804 −1.7% Uracil 1.944 1.971 −1.4% Thymidine 2.177 2.212 −1.6% Uridine 3.185 3.205 −0.6% Inosine 3.693 3.774 −2.2% Hypoxanthine 3.761 3.918 −4.0% Adenosine 3.854 4.071 −5.3% Cytosine 4.764 4.731 0.7% Adenine 4.944 4.921 0.5% Guanine 5.284 5.354 −1.3% Cytidine 5.628 5.673 −0.8% Guanosine 6.177 6.271 −1.5%

(6)

Fig.5. Separation oftwelve nucleobases and nucleosidesusing twocoupled columns(amideandbaresilicastationaryphase).Gradientconditions:95–85%ACN in6min.

Fig.6.ExperimentalandpredictedRsusingEq.(8)forchromatograminFig.5.

similartrendinRswasfoundforallpeaks,indicatingthecritical pairs(Fig.6).Thisagainverifiestheuseofindividualpeak model-ing,includingretentiontimeandresolution,usingcoupledcolumn systems to optimize the gradient conditions for HILIC separa-tions.However,theabsolutepredictionerrorswerestillsignificant. Therefore,attemptstoincludetheseRspredictionswillbeincluded infutureresearch.

Theinfluenceofthecolumnsorderwasalsoinvestigatedandno significantdifferenceinselectivityandRs,critwasobservedinthis case.

4. Conclusions

Inthisstudy,theseparationoftwelvenucleobasesand nucleo-sideswasoptimizedviachromatogramsimulation,i.e.,prediction ofindividualretentiontimesandestimationofthepeakwidths, withtheuseoftheempirical(reversed-phase)non-linearmodel proposed by Neue and Kuss [21]. As none of the tested sin-glecolumnscouldresolveallpeaks,themodelingwasextended to coupled-column systems (with different stationary phase chemistries)and analytical expressions werederived. The opti-mizedgradientusingacombinationofanamideandabaresilica stationary phase and obtained via the adopted modeling and computer-optimizationapproachresultedinalmostbaseline sep-arationofthetwelvenucleobasesandnucleosideswithananalysis timeoflessthan7min.Theoptimizedseparationconditionswere obtainedinlessthan4hofinstrumenttime(including equilibra-tiontimesof4mincorrespondingtoroughly20columnvolumes). Assuch,thisstudyprovidesanexampleofacasewhere individ-ualretentionmodelingandcomputer-optimizationcanbeusedas awaytooptimizethegradientconditionsintheHILICmode pro-videdanon-linearmodelsuchastheNeueandKussmodelcanbe

used.Forcompoundswhoseretentionmechanismismorecomplex thanthatofthepresentlystudiedset,searchapproachesdepending lessstronglyonanaccurateretentionmodeling,suchasthe pre-dictiveelutionwindowshiftingandstretching(PEWS2)method, shouldbepreferredtooptimizethegradientconditionsintheHILIC separationmode[11,12].

Limitationsoftheindividualpeakmodelingapproachinclude theretentiontimerobustnessduetophaseaging,inter-/intra-day methodreproducibilityandsamplematrixeffects.Inworstcase, thismayrequirethepredictiontoberedoneinsomecases(e.g. batch-batchreproducibilityofcolumnswillneedconsideration). Ontheotherhand,theproposedoptimizationalgorithmforHILIC separationscaneasilybeintegratedincommercialreversed-phase softwaresuchasDrylab[26],includingarobustnessmodule,to determinebywhich factorsthecriticalresolution Rs,critis influ-encedmostly.

Acknowledgments

DaveBellisgratefullyacknowledgedforprovidingtheSupelco columns.Theauthorsacknowledgethefinancialsupportfromthe ResearchFoundationFlanders(FWO-Vlaanderen).E.T.isthe recip-ientofaPhD-fellowship(FWO-Vlaanderen).

References

[1]T.Jupille,L.Snyder,MolnarFI.,Optimizingmulti-lineargradientsinHPLC, LC-GCEurope(2002)596–601.

[2]V.Concha-Herrara,G.Vivó-Truyols,J.R.Torres-Lapasio,M.C. García-Alvarez-Coque,Limitsofmulti-lineargradientoptimizationinreversed-phaseliquid chromatography,J.Chromatogr.A1063(2005)79–88.

[3]P.Nikitas,A.Pappa-Louisi,K.Papachristos,Optimisationtechniqueforstepwise gradientelutioninreversed-phaseliquidchromatography,J.Chromatogr.A 1033(2004)283–289.

[4]M.DeBeer,F.Lynen,M.Hanna-Brown,P.Sandra,Multiplestepgradient anal-ysisinstationaryphaseoptimisedselectivityLCfortheanalysisofcomplex mixtures,Chromatographia69(2009)609–614.

[5]P.Jandera,J.Churacek,Gradientelutionincolumnliquidchromatography: theoryandpractice,J.Chromatogr.170(1979)1–10.

[6]Y.Shan,Z.Weibing,A.Seidel-Morgenstern,R.Zhao,Y.Zhang,Multi-segment lineargradientoptimizationstrategybasedonresolutionmapinHPLC,Sci. ChinaSer.B:Chem.46(2006)315–325.

[7]J.C.Berridge, Simplexoptimizationof high-performanceliquid chromato-graphicseparations,J.Chromatogr.485(1989)3–14.

[8]M.Lämmerhofer,P.D.DiEugenio,I.Molnar,W.Lindner,Computerized opti-mizationofthehigh-performanceliquidchromatographicenantioseparation of a mixture of 4-dinitrophenyl amino acids on a quinine carbamate-type chiral stationary phaseusing Drylab, J. Chromatogr. B 689 (1997) 123–135.

[9]E.F. Hewitt, P. Lukulay, S. Galushko, Implementation of a rapid and automatedhighperformanceliquidchromatographymethoddevelopment strategyforpharmaceuticaldrugcandidates,J.Chromatogr.A1107(2006) 79–87.

[10]B. Debrus, P. Lebrun, E. Rozet, T. Schofield, J.K. Mbinze, R.D. Marini, S. Rudaz, B. Boulanger, Ph. Hubert, A new method for quality by design robust methodoptimizationin liquidchromatography,LC-GC Europe 26 (2013)370–375.

[11]E.Tyteca,A.Liekens,D.Clicq,A.Fanigliulo,B.Debrus,S.Rudaz,D.Guillarme,G. Desmet,Predictiveelutionwindowshiftingandstretchingasagenericsearch strategyforautomatedmethoddevelopmentforliquidchromatography,Anal. Chem.84(2012)7823–7830.

[12]E.Tyteca,A.Periat,S.Rudaz,G.Desmet,D.Guillarme,Retentionmodeling andmethoddevelopmentinhydrophilicinteractionchromatography,J. Chro-matogr.A1337(2014)116–127.

[13]D.McCalley,Studyoftheselectivity,retentionmechanismsandperformance ofalternativesilica-basedstationaryphasesforseparationofionisedsolutes in hydrophilicinteractionchromatography,J.Chromatogr. A1217(2010) 3408–3417.

[14]G.Greco,S.Grosse,T.Letzel,Studyoftheretentionbehaviorinzwitterionic hydrophilicinteractionchromatographyofisomerichydroxy-and aminoben-zoicacids,J.Chromatogr.A1235(2012)60–67.

[15]G. Jin, Z.Guo, F.Zhang,X. Xue,Y. Jin, X.Liang,Study onthe retention equationinhydrophilicinteractionliquidchromatography,Talanta76(2008) 522–527.

[16]A.Karatapanis,Y.C.Fiamegos,C.D.Stalikas,Arevisittotheretention mech-anismofhydrophilicinteractionliquidchromatographyusingmodelorganic compounds,J.Chromatogr.A1218(2008)2871–2879.

(7)

[17]P.Jandera,T.Hájek,Utilizationofdualretentionmechanismoncolumnswith bondedPEGanddiolstationaryphasesforadjustingtheseparationselectivity ofphenolicandflavonenaturalantioxidants,J.Sep.Sci.32(2009)3603–3619.

[18]J.W.Dolan,D.C.Lommen,L.R.Snyder,High-performanceliquid chromato-graphiccomputersimulationbasedonarestrictedmulti-parameterapproach: I.Theoryandverification,J.Chromatogr.535(1990)55–74.

[19]P.Jandera,Canthetheoryofgradientliquidchromatographybeusefulin solv-ingpracticalproblems?J.Chromatogr.A1126(2006)195–218.

[20]P.Nikitas,A.Pappa-Louisi,Newapproachestolineargradientelutionused foroptimizationinreversed-phaseliquidchromatography,J.Liq.Chromatogr. Relat.Technol.32(2009)1527–1576.

[21]U.D.Neue,H.-J.Kuss,Improvedreversed-phasegradientretentionmodeling,J. Chromatogr.A1217(2010)3794–3803.

[22]L.R.Snyder,D.L.Saunders,Optimizedsolventprogrammingforseparationsof complexsamplesbyliquid–solidadsorptionchromatographyincolumns,J. Chromatogr.Sci.7(1969)195–208.

[23]G.Marrubini,B.E.CastilloMendoza,G.Massolini,Separationofpurineand pyrimidinebasesandnucleosidesbyhydrophilicinteractionchromatography, J.Sep.Sci.33(2010)803–816.

[24]P. Nikitas, A. Pappa-Louisi, P.Agrafiotou, A. Mansour, Multilinear gradi-entelutionoptimization in reversed-phase liquidchromatography based on logarithmic retention models: application to separation of a set of pyrines, pyrimidines and nucleosides, J. Chromatogr. A 1218 (2011) 5658–5663.

[25]B.Debrus,P.Lebruna,A.Ceccat,G.Caliaroc,E.Rozet,I.Nistor,R.Opreand,F.J. Rupérez,C.Barbas,B.Boulanger,P.Hubert,Applicationofnewmethodologies basedondesignofexperiments,independentcomponentanalysisanddesign spaceforrobustoptimizationinliquidchromatography,Anal.Chim.Acta691 (2011)33–42.

[26]A.H.Schmidt,I.Molnar,Usinganinnovativequality-by-designapproachfor developmentofastabilityindicatingUHPLCmethodforebastineintheAPI andpharmaceuticalformulations,J.Chromatogr.A78–79(2013)65–74.

Figure

Fig. 1. Isocratic measurements and established retention models (k vs. fraction of ACN ϕ) for all twelve nucleobases and nucleosides on the pentahydroxy and the bare silica stationary phases
Fig. 2. Correlation plot for k predicted vs. k experiment for 12 nucleobases and nucleosides including four different gradients (95–85%ACN in 2 and 6 min, 92–85%ACN in 2 and 6 min) on the pentahydroxy stationary phase at pH = 6
Fig. 3. Overlay chromatogram of 12 nucleobases and nucleosides on the pentahydroxy stationary phase at pH = 6
Fig. 5. Separation of twelve nucleobases and nucleosides using two coupled columns (amide and bare silica stationary phase)

Références

Documents relatifs

Gireg Desmeulles, Fabrice Harrouet, Dominique Thuault, Véronique Huchet, Pascal Redou, Laurent Gaubert, Guillaume Longelin Péron, Pascal Ballet,.

A novel Bayesian approach to effectively model simultaneously and effectively two of the sources of potential bias in forest genetic trials - the genetic and environmental

By leveraging our previous results on model element versioning and the state-of-the-art time series compression algorithms, we enable models@run.time to handle millions of volatile

Dual-task methodology was used to study the effects of viewing irrelevant pictures and of tapping a pattern on each of two tasks, one involving the generation of mental visual

De son côté, la princesse Wittgenstein a tout mis en œuvre pour faire revêtir sa dépouille de l’habit qu’il avait tant aimé et pour la transporter à Budapest, précisément

[r]

Corrigendum: a mixed Boolean and deposit model for the modeling of metal pigments in paint layers.. Enguerrand Couka, François Willot,

PARTICLES SIZE AND ORIENTATION In the following, we model aluminium particles as cylinders and measure the distribution of lengths along the principal direction of the particles