• Aucun résultat trouvé

Activation of surfaces prior to gaseous nitriding of a 3wt.% Cr carbon iron-based alloy

N/A
N/A
Protected

Academic year: 2021

Partager "Activation of surfaces prior to gaseous nitriding of a 3wt.% Cr carbon iron-based alloy"

Copied!
36
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu

Handle ID: .http://hdl.handle.net/10985/11575

To cite this version :

Sébastien JÉGOU, Benjamin GUILLOT, Laurent BARRALLIER - Activation of surfaces prior to gaseous nitriding of a 3wt.% Cr carbon iron-based alloy - In: Nitriding Symposium 4, Etats-Unis, 2016-11-17 - Proceedings of the 4th Nitriding Symposium - 2016

(2)

Activation  of  surfaces  prior  to  

gaseous  nitriding  of  a  3wt.%  Cr  

carbon  iron-­based  alloy

Speaker:

Sébastien  Jégou,  Associate  Professor

Arts  et  Métiers  ParisTech,  MSMP  Laboratory

France

L.Barrallier,  Professor,  Arts  et  Métiers  ParisTech,  MSMP  Laboratory

B.Guillot,  PhD,  Arts  et  Métiers  ParisTech,  MSMP  Laboratory

(3)

2009 – PhD – Arts et Métiers ParisTech, Aubert & Duval, France

à

Gaseous Nitriding

à

Residual Stresses

2010 – PostDoc – DTU, Denmark

à

Expanded Austenite

à

Nitriding / Carburizing

à

Residual Stresses

2011-­… -­ Associate Professor – Arts et Métiers ParisTech, France

à

Materials Science

à

Surface Engineering

(4)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

AGENDA

1. Introduction

2. Experiments

3. Results

(5)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

Gas

NH

3

H

2

N

2

Iron-­based  alloy

e

limit  

≈  µm

e

adsorption  

≈  nm

TR A N S P O R T

NH

3

NH

2

N

+

N

2

H

2

NH

DI F F USI O N

[N]

courtesy  of  Airbus  Helicopters

(6)

Gas

NH

3

H

2

N

2

e

limit  

≈  µm

e

adsorption  

≈  nm

TR A N S P O R T

NH

3

NH

2

N

+

N

2

H

2

NH

DI F F USI O N

[N]

Ex.:

• Contamination  layer

• Reaction  layer

• Deformed  layer

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

1.  Introduction  -­ Context

(7)

courtesy  of  Bodycote

courtesy  of  Bodycote courtesy  of  Airbus  Helicopters

• Soft  spot

• Lack  of  nitriding

• Heterogeneous  nitriding

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

(8)

Casting / Forging

Heat Treatments

Machining

Gaseous Nitriding

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

(9)

Casting / Forging

Heat Treatments

Machining

Gaseous Nitriding

Quality

risks  of  

LOW

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

1.  Introduction  -­ Context

Uniformity

Repeatability

Surface  hardening

Surface  softening

Residual  stresses

Microstructure  transformations

Surface  residues

(10)

Casting / Forging

Heat Treatments

Machining

Gaseous Nitriding

Surface Preparations

& Controls

Cleaning  baths

Mechanical  preparations

Thermo-­chemical  treatments

SUPERIOR

risks  of  

LOW

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

1.  Introduction  -­ Context

Quality

Uniformity

Repeatability

Surface  hardening

Surface  softening

Residual  stresses

Microstructure  transformations

Surface  residues

(11)

Surface Preparations

& Controls

Cleaning  baths:  residues  from

Machining  oil  (sulphate,  phosphate,  silicon,  …)

Cleaning  baths  (anionic  surfactant  (sulphonates,  sulphates…))

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

(12)

Surface Preparations

& Controls

Cleaning  baths:  residues  from

Machining  oil  (sulphate,  phosphate,  silicon,  …)

Cleaning  baths  (anionic  surfactant  (sulphonates,  sulphates…))

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

1.  Introduction  -­ Context

Mechanical  preparations:  Sandblasting    (sanding)

Passivation/corrosion  layer

(13)

Surface Preparations

& Controls

Cleaning  baths:  residues  from

Machining  oil  (sulphate,  phosphate,  silicon,  …)

Cleaning  baths  (anionic  surfactant  (sulphonates,  sulphates…))

Surface  homogeneity  visual  control

Protection  from  (heterogeneous)  surface  reactions

Activation  of  the  NH

3

decomposition

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

1.  Introduction  -­ Context

Mechanical  preparations:  Sandblasting    (sanding)

Passivation/corrosion  layer

Heterogeneous  metallurgy/microstructure

Thermo-­chemical  treatments:  controlled layer  (nature,  thickness)

Oxidization

Phosphating  (Zn,  Mn)

(14)

1.  Introduction  -­ Context

Surface Preparations

& Controls

Thermo-­chemical  treatments:  controlled layer  (nature,  thickness)

Oxidization  (NH

3

decomposition  catalyst)

Phosphating  (Zn,  Mn)

Surface  homogeneity  visual  control

Protection from  (heterogeneous)  surface  reactions

Activation of  the  NH

3

decomposition

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

(15)

1.  Introduction  -­ Context

Surface Preparations

& Controls

Thermo-­chemical  treatments:  controlled layer  (nature,  thickness)

Oxidization  (NH

3

decomposition  catalyst)

Phosphating  (Zn,  Mn)

Oxidization  :  oxygen  reactivity  with  contaminants

Urea

NH

4

Cl

Surface  homogeneity  visual  control

Protection from  (heterogeneous)  surface  reactions

Activation of  the  NH

3

decomposition

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

Better  Process  Flexibility: In-­situ  pre-­treatments

cleaning

activation

(16)

2.  Experiments

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

Material:  33CrMoV12-­9

17  x  13  x  5  mm

3

Austenitized  @  920  °C,  90  min

Oil  quenched

Tempered  @  640  °C,  1  h

Sample  preparation:

Degreased

Rinsed  in  water

Dried  in  alcohol

Composition (wt.%)

C

Cr

Mo

V

Mn

Fe

0.32

2.97

0.84

0.28

0.55

bal.

Gaseous  Nitriding:

Thermogravimetric  analyser  (Setsys  Evo.)

Vacuum  Stages

Heating/Cooling  @  10  °C.min

-­1

under  N

2

Surface  contamination:

Water-­dissolved  machining  oil

1  to  100  vol.%

1  min  dipping

Droplets  removed  

In-­situ  treatments:  350-­400  °C,  1  h

Vacuum  Stages

Oxidization  (O

2

)

Urea  /  NH

4

Cl

200  mg

Neutral  atmosphere

(17)

3.  Results

0.  The  reference

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

Reference

Compound  layer 10  µm 0 50 100 150 200 250 300 300 400 500 600 700 800 900 1000 depth (μm) H V0 .2 Reference Effective depth 135 μm 0 60 120 180 240 300 0 2 4 6 8 10 12 time (min) Ma ss g a in (mg ) Reference Compound layer 10 μm / 105 min / 6.7 mg

(18)

3.  Results

a.  Influence  of  water-­dissolved  oil  contaminations

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

Sample

Mass gain after

nitriding (mg)

Reference

10.89 ± 0.33

Oil 1 vol.% - a

5.39 (49.5 %)

Oil 1 vol.% - b

5.98 (54.9 %)

Oil 1 vol.% - c

4.16 (38.2 %)

Oil 5 vol.% - a

1.07 (9.8 %)

Oil 5 vol.% - b

5.51 (50.6 %)

0 60 120 180 240 300 0 2 4 6 8 10 12 Ma ss g a in (mg ) Reference Oil - 1 vol.% - a Oil - 1 vol.% - b Oil - 1 vol.% - c Oil - 5 vol.% - a

(19)

3.  Results

a.  Influence  of  water-­dissolved  oil  contaminations

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

Oil 1 vol.%

Oil 5 vol.%

Reference

Sample

Mass gain after

nitriding (mg)

Reference

10.89 ± 0.33

Oil 1 vol.% - a

5.39 (49.5 %)

Oil 5 vol.% - a

1.07 (9.8 %)

(20)

3.  Results

a.  Influence  of  water-­dissolved  oil  contaminations

i.  Oil  1  vol.%

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

500 600 700 800 900 1000 H V0 .2 Reference P01 P02 P03 0 50 100 150 200 250 300 0.0 0.2 0.4 0.6 0.8 1.0 1.2 depth (μm) wt.% N Reference B A

(21)

3.  Results

a.  Influence  of  water-­dissolved  oil  contaminations

ii.  Oil  5  vol.%

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

Compound  layer

0 50 100 150 200 250 300 300 400 500 600 700 800 900 1000 depth (μm) H V0 .2 Reference Oil - 5 vol.%

(22)

3.  Results

b.  Influence  of  pre-­oxidization  (O

2

,  350  °C,  1h)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

0 60 120 180 240 300 0 2 4 6 8 10 12 Ma ss g a in (mg ) Reference Pre-Ox. « Compound  layer »

(23)

3.  Results

b.  Influence  of  pre-­oxidization  (O

2

,  350  °C,  1h)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

0 60 120 180 240 300 0 2 4 6 8 10 12 time (min) Ma ss g a in (mg ) Reference Oil - 1 vol.% - a Oil - 1 vol.% - b Oil - 1 vol.% - c Oil - 1 vol.% - Pre-Ox

(24)

0 60 120 180 240 300 0 2 4 6 8 10 12 Ma ss g a in (mg ) Reference

Oil - 5 vol.% (test a) Oil - 5 vol.% (test b) Oil - 5 vol.% - Pre-Ox

3.  Results

b.  Influence  of  pre-­oxidization  (O

2

,  350  °C,  1h)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

(25)

3.  Results

b.  Influence  of  pre-­oxidization  (O

2

,  350  °C,  1h)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

1 vol.% - Pre-Ox.

1 vol.%

Reference

5 vol.% - Pre-Ox.

5 vol.%

Reference

0 50 100 150 200 250 300 300 400 500 600 700 800 900 1000 depth (μm) H V0 .2 Reference Oil - 1 vol.% (P03) 1 vol.% - Pre-Ox. 0 50 100 150 200 250 300 300 400 500 600 700 800 900 1000 depth (μm) H V0 .2 Reference Oil - 5 vol.% 5 vol.% - Pre-Ox.

(26)

0 60 120 180 240 300 0 2 4 6 8 10 12 time (min) Ma ss g a in (mg ) Reference 1 vol.% - Pre-Ox. 5 vol.% - Pre-Ox. 25 vol.% - Pre-Ox. 100 vol.% - Pre-Ox.

3.  Results

b.  Influence  of  pre-­oxidization  (O

2

,  350  °C,  1h)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

0 2 4 6 8 10 12 Reference 1-vol.% 5-vol.% 25-vol.% 100-vol.% Final-mass-gain-(mg) Pre=Ox. As-nitrided « Compound  layer »

(27)

3.  Results

c.  Influence  of  urea

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

0 60 120 180 240 300 0 2 4 6 8 10 12 time (min) Ma ss g a in (mg ) Reference 1 vol.% 1 vol.% - Urea 5 vol.% 5 vol.% - Urea 20 vol.% - Urea 0 2 4 6 8 10 12 Reference 1-vol.% 5-vol.% 20-vol.% Final-mass-gain-(mg) Urea As-nitrided « Compound  layer »

(28)

3.  Results

c.  Influence  of  urea

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

0 50 100 150 200 250 300 300 400 500 600 700 800 900 1000 depth (μm) H V0 .2 Reference 1 vol.% - Urea 5 vol.% - Urea 20 vol.% - Urea 0 60 120 180 240 300 0 2 4 6 8 10 12 time (min) Ma ss g a in (mg ) Reference 1 vol.% 1 vol.% - Urea 5 vol.% 5 vol.% - Urea

(29)

3.  Results

d.  Influence  of  NH

4

Cl

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

0 60 120 180 240 300 0 2 4 6 8 10 12 time (min) Ma ss g a in (mg ) Reference 1 vol.% 5 vol.% 5 vol.% - NH4Cl 20 vol.% - NH4Cl 0 2 4 6 8 10 12 Reference 1-vol.% 5-vol.% 20-vol.% Final-mass-gain-(mg) NH4Cl As-nitrided « Compound  layer »

(30)

3.  Results

d.  Influence  of  NH

4

Cl

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

0 50 100 150 200 250 300 300 400 500 600 700 800 900 1000 depth (μm) H V0 .2 Reference NH4Cl 5 vol.% - Urea 20 vol.% - Urea 0 60 120 180 240 300 0 2 4 6 8 10 12 time (min) Ma ss g a in (mg ) Reference 1 vol.% 5 vol.% 5 vol.% - NH4Cl 20 vol.% - NH4Cl « Compound  layer »

(31)

3.  Results

e.  Pre-­treatments  &  residual  stresses

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

0 50 100 150 200 250 300 350 400 450 500 –1200 –1000 –800 –600 –400 –200 0 depth (μm) me a n st re ss (MPa ) Reference Pre-Ox. NH4Cl

(32)

0 50 100 150 200 250 300 350 400 450 500 –1200 –1000 –800 –600 –400 –200 0 me a n st re ss (MPa ) Reference Oil - 5 vol.% 5 vol.% - Urea 5 vol.% - Pre-Ox. 5 vol.% - NH4Cl

3.  Results

e.  Pre-­treatments  &  residual  stresses

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

(33)

0 50 100 150 200 250 300 350 400 450 500 –1200 –1000 –800 –600 –400 –200 0 depth (μm) me a n st re ss (MPa ) Reference Oil - 5 vol.% 20 vol.% - NH4Cl

3.  Results

e.  Pre-­treatments  &  residual  stresses

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

(34)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

4.  Conclusion  

(nitriding  520  °C,  5  h,  K

N

3,7  atm

-­1/2

)

0

5

10

15

20

0

2

4

6

8

10

12

ma

ss

g

a

in

(mg

)

Reference

As nitrided

NH

4

Cl

Pre-Ox.

Urea

Industry

(35)

4.  Conclusion  

(nitriding  520  °C,  5  h,  K

N

3,7  atm

-­1/2

)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

0 200 400 600 800 1000 Reference 1-vol.% 5-vol.% 25-vol.% HV0.2-6 50-µm 0 50 100 150 Reference 1*vol.% 5*vol.% 25*vol.% Effective*depth*(µm) 0 2 4 6 8 10 12 Reference 1-vol.% 5-vol.% 25-vol.% 100-vol.% Final-mass-gain-(mg)

0

2

4

6

8

10

12

Reference

1-vol.%

5-vol.%

25-vol.%

100-vol.%

NH4Cl

Urea

PreAOx.

As-nitrided

In-­situ  pre-­treatment:  

Urea

Oxidization  (thickness  layer  dependence)

NH

4

Cl

Advantage:  

In-­situ  (during  the  heating  stage)

NH

4

Cl

Decomposition  into  NH3  

Acidic  cleaning/sanding

efficiency

(36)

Activation  of  surfaces  prior  to  gaseous  

nitriding  of  a  3wt.%  Cr  carbon  iron-­based  alloy

Thank  you  for  your  

attention  !

B.Guillot, S.Jégou, L.Barrallier, Degradation of gaseous nitriding of steel by lubricant contamination -­ Effect of

Références

Documents relatifs

All this was the result of the negative stereotypical portrayal of American writings on the Arab and Islamic East since the end of the Second World War - albeit historically

Based on the experiment result, we examine the effect of the forced convection driven by a travelling magnetic field on the solidification process in terms of

For a representative sample of 26 genotypes (corresponding to the 18 genotypes already used as controls with eight other genotypes without seedless cultivars, maximising together

Unite´ de recherche INRIA Lorraine, Technopoˆle de Nancy-Brabois, Campus scientifique, 615 rue du Jardin Botanique, BP 101, 54600 VILLERS LE`S NANCY Unite´ de recherche INRIA

[r]

The structure is a substrate of low conductivity: (CFRP), protected by a metallic mesh (LSP) used to divert lightning from CFRP and thus vaporize with lightning current,

Le supercodage que nous aurions aimé développer à partir du code de Freeman nous aurait conduit à une représentation vectorielle du contour d’une forme, et donc à une

fais l’expérience dans ma relation à autrui, c’est d’être vulnérable à son existence, affecté par ce