• Aucun résultat trouvé

Mullite fabrication from natural kaolin and aluminium slag

N/A
N/A
Protected

Academic year: 2021

Partager "Mullite fabrication from natural kaolin and aluminium slag"

Copied!
9
0
0

Texte intégral

(1)

Pleasecitethisarticleinpressas:F.Chargui,etal.,Mullitefabricationfromnaturalkaolinandaluminiumslag,Bol.Soc.Esp.Cerám.Vidr.(2018), w w w . e l s e v i e r . e s / b s e c v

Mullite

fabrication

from

natural

kaolin

and

aluminium

slag

Fouzia

Chargui

a,b

,

Mohamed

Hamidouche

a,b,∗

,

Hocine

Belhouchet

c,d

,

Yves

Jorand

e

,

Rachida

Doufnoune

a,f

,

Gilbert

Fantozzi

e

aEmergentMaterialsResearchUnit,Setif1University,19000Setif,Algeria

bOpticalandPrecisionMechanicalInstitute,Setif1University,19000Setif,Algeria

cNon-metallicMaterialsLaboratory,OpticalandPrecisionMechanicalInstitute,Setif1University,19000Setif,Algeria

dPhysicalDepartment,FacultyofScience,MohamedBoudiafM’silaUniversity,28000M’Sila,Algeria

eLyonUniversity,INSA-Lyon,MATEISLaboratoryCNRS-UMR5510,69621Villeurbanne,France

fProcessEngineeringDepartment,FacultyofTechnology,Setif1University,19000Setif,Algeria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4August2017 Accepted10January2018 Availableonlinexxx Keywords: Mullite Kaolin Aluminumslag Phasetransformation

a

b

s

t

r

a

c

t

The structuraltransformationsofkaolin–aluminiumslagmixturesduring heatingwere studied using differential thermal analysis (DTA), thermal gravimetric analysis (TGA), Fouriertransforminfrared(FTIR)spectroscopy,X-raydiffractionanalysis(XRD)andscanning electronmicroscopy(SEM).Theamountofformedmulliteincreaseswiththefiring temper-ature.At1500◦C,themullitizationofthemixtureisalmostcomplete.Themorphologyof theformedmulliteisbimodal(primaryandsecondaryphases).Theprimarymullite,formed fromprocessingofkaolinbythegradualcollapseofmetakaolinfrom990◦C,hasashapeof elongatedcrystals.Theotherhand,thesecondarymulliteformedbysolution-precipitation fromtheglassphaseinthepresenceofaluminaparticleshasashapeofaciculargrains.

©2018SECV.PublishedbyElsevierEspa ˜na,S.L.U.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Producción

de

mullita

a

partir

de

caolín

natural

y

escoria

de

aluminio

Palabrasclave: Mullita Caolín Escoriadealuminio Transformacióndefase

r

e

s

u

m

e

n

Seestudiaron lastransformacionesestructuralesdelasmezclasdecaolín yescoria de aluminioduranteelcalentamientomedianteanálisistérmicodiferencial(ATD),análisis ter-mogravimétrico(ATG),espectroscopíainfrarrojaportransformadadeFourier(EITF),análisis por difracciónde rayos X(XRD, por sus siglas eninglés) y microscopiaelectrónica de barrido (MEB). Lacantidadde mullita creadaaumenta conla temperaturade cocción. A 1.500◦C,lamullitizaciónde lamezcla escasi completa. Lamorfologíade lamullita creadaesbimodal(fasesprimariaysecundaria).Lamullitaprimaria,creadaapartirdel

Correspondingauthor.

E-mailaddresses:mhamidouche@univ-setif.dz,mhamidouche@yahoo.fr(M.Hamidouche).

https://doi.org/10.1016/j.bsecv.2018.01.001

0366-3175/©2018SECV.PublishedbyElsevier Espa ˜na,S.L.U.Thisisanopen accessarticleundertheCCBY-NC-NDlicense (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Pleasecitethisarticleinpressas:F.Chargui,etal.,Mullitefabricationfromnaturalkaolinandaluminiumslag,Bol.Soc.Esp.Cerám.Vidr.(2018),

procesamientodelcaolínporlapaulatinadesintegracióndelmetacaolínapartirde990◦C, tieneunaformadecristalesalargados.Además,lamullitasecundariacreadapor disolución-precipitaciónapartirdelafasedevidrioenpresenciadepartículasdealúminatieneuna formadegranosaciculares.

©2018SECV.PublicadoporElsevierEspa ˜na,S.L.U.Esteesunart´ıculoOpenAccessbajo lalicenciaCCBY-NC-ND(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Mullite, whose chemical composition is found between 3Al2O3-2SiO2and2Al2O3-SiO2,isoneofthemoststudiedand

usedceramics.Itsapplicationsareverydiverseandcoverfrom refractoryfieldtotechnicalapplications[1–3].Inairandunder atmosphericpressure,it isthermally andchemicallystable fromroomtemperaturetomeltingone[4].Ithasverygood thermo-mechanicalproperties,whichallowsustouseit as structuralelementssuchasthermalengines.Indeed, sensitiv-itytocreepisverylimited[5].Itsthermalexpansioncoefficient isrelativelylowleadingtoagoodthermalshockresistance[6]. Weuse different precursors and methodsto synthesize mullite.Wemanufactureitthroughseveralreactiveprocesses atdifferent temperatures [7]. Eachfabrication method has specificfeaturesdepending on thewanted applicationand productperformance.Solidphasereaction oxides alumina-silicamixturesathightemperature,generallyabove1400◦C

[8],canleadtomulliteformation.Bysol–gelmethods[9],or co-precipitationofmixturesofsaltsinsolutionbasedonsilicon andaluminium,wesynthesizelow-temperaturemullite[11]. Onthecontrary,whenthe precursorsare natural alumino-silicateclays,weformthemullitebythermalprocesseslower than1300◦C[12].

Kaolin, whose main constituent is kaolinite (Al2Si2O5

(OH)4), undergoessuccessivestructuraland microstructural

transformationsduringits firing[13].Thedecompositionof kaolinite in metakaolinite takes place between 400◦C and 630◦C. The gradual collapse of metakaolin promotes the formationofnanoscalecrystalsofmullite,inadditionto for-mationoffreeamorphoussilica.At1200◦C,thecrystallization ofcristobaliteistriggeredfromamorphoussilica,anda con-siderableamountofmullitecrystalsisdeveloped[14].Thelast transformationstepistheverificationofcristobalite,which occursatatemperaturegenerallyabove1400◦C.Thepresence ofsomeimpurities,suchasCaO,Na2OandK2O,intheinitial

kaolinfavoursvitrificationofcristobaliteatlower tempera-tures.Toobtainasecondarymullite,thissilicaglasscanbe ‘mullitized’byaddingalumina,aluminiumhydroxidesor alu-miniumslag[15].Secondarymulliteisdifferenttotheprimary onebythemorphology andgrainsize[16].Primarymullite formsneedles,duetothepresenceofthevitreousphase[17]. Whilesecondarymulliteisintheformofaggregatesof needle-likesmallgrains[18],weformitbyasolution-precipitation oftheglassphaseincontactwiththeparticlesofalumina. According toPascual et al., addition of 1–3wt% ofMgO to thekaolin-aluminamixturepromotesgraingrowthofprimary andsecondarymullite,andtheadditionof1–5%Y2O3inhibits

graingrowthofthesecondarymullite[19].Wedetectno dif-ferenceintheX-raydiffractionspectraofthetwomullites.

However,weobservedifferencesbetweeninfraredabsorption spectra.

The aim of the present work is the mullitization of two types of Algerian kaolin by adding aluminium slag. We have sintered stoichiometric mixturesat temperatures between1000◦Cand1500◦Cfor2h.Inordertounderstand microstructuraltransformationsandchemicalreactions,we performeddifferentialthermalanalysiscoupledwiththermal gravimetricanalysis(DTA/TGA).Wehaveanalysed,byX-ray diffraction(XRD),thephasetransformationsduringthe var-iousthermaltreatments.Wedeterminedthemorphologyof mullite byscanning electronmicroscopy(SEM).Westudied thechemicalbondsofthephasesformedduringthefiringof aluminiumkaolin-slagmixturesatdifferenttemperaturesby Fouriertransforminfrared(FTIR)spectroscopy.

Experimental

procedure

Wehaveusedtwonaturalkaolinextractedfromtwovarious sitesofDjebelDebbaghnearGuelma(North-EastofAlgeria). Theamountofaluminaintheircompositionandcolour dif-ferentiate the twokaolin.Thefirst compositionnotedDD1 iswhitecolouredwhereasthesecondone(DD3)ingreyish coloured.Thedifferenceintheircoloursisduetothekindof theircontainingimpurities.

Their absolute densities, measured with a helium pyc-nometer apparatusare respectively2.63g/cm3 forDD1and

2.61g/cm3forDD3.Theusedaluminiumslag,waste of

alu-miniumindustry,isprovidedbyALGALcompany(Algeria).It iswhitecolouredandcomposedby87%(inmass)ofalumina, itsabsolutedensityisabout4.03g/cm3.

Tabla 1representsthechemical compositionsof respec-tivelybothkaolinandaluminiumslag.

Toobtainmulliteweprepared,withastoichiometric com-position,twomixturesofDD1andDD3withaluminiumslag, theyarerespectivelynotedMDD1andMDD3.

Wemilledthemixtureswithaplanetaryballmilling appa-ratusduring5h;withareportpowder/ballsequalto(50/200) gin80mlwater.

We driedthe mixturesat 110◦C and then crushed and sievedto45␮mmeshes.Thesampleswereuniaxialpressedat 100MPaforobtainingbarsshaped(40mm×10mm×10mm), afterthattheywereheatedupto600◦Catarateof1◦C/min for 1h to avoid cracking. Then we sintered the samples between 1000◦C and 1500◦C for2h, withaheatingrateof 5◦C/min.WesubjectedpowdersmixturesMDD1andMDD3 todifferentialthermalanalysis(DTA)andthermogravimetric analysis (TGA) using Setaram Setsys 16/18 simultaneous TG/DTAanalyzerwith␣-aluminaasthereferencematerial. Weconductedthetest betweentheroomtemperature and

(3)

Pleasecitethisarticleinpressas:F.Chargui,etal.,Mullitefabricationfromnaturalkaolinandaluminiumslag,Bol.Soc.Esp.Cerám.Vidr.(2018), Tabla1–Chemicalcompositionsofkaolinandaluminiumslag.

Oxides SiO2 Al2O3 Fe2O3 CaO MgO TiO2 Na2O K2O Fireloss(%)

KaolinDD1 44.9 37.49 0.12 0.26 0.13 0.1 0.19 0.01 17%

KaolinDD3 43 39.9 1.9 0.20 0 0 0.06 0.10 15%

Aluminiumslag 2.5 87 0.15 0.12 0.21 0.2 0.2 0.1 9.52%

1400◦Cinairatmospherewithaheatingrateof5◦C/min.We haveusedaheliumpycnometer(AccuPycII1340)todetermine theabsolutedensityofcalcinedkaolin,aluminiumslagand there mixtures at different temperatures. We studied the evolution of the crystalline phases, according to the tem-peraturestreatment,bytheX-raysdiffraction(BrückerAXS). Wecalculatedtherateofmulliteformation,asafunctionof thermaltreatment,usingtheinternalstandardmethodand theI/IcorrelationpresentedintheJCPDSstandardcards.

Weanalysed,by Fouriertransform infrared (FTIR) spec-troscopy,thepresenceofspecificatomicgroupingsandthe characteristicvibrationsofthechemicalbands.Wemadethe testsontranslucentpastillesobtainedbythemixtureof99% mgfrom thematerialtobeanalysedcrushed wellwith1% mgofKbrbymeansofadeviceoftypePerkin-Elmes700.The sampleswerepolishedandthermallyetchedtoobservethe microstructurebyusingascanningelectronmicroscope(SEM) (ZeissSUPRA55VPtype).

Results

and

discussion

TheX-raydiffractionanalysis spectra(Fig.1)revealed that both the used kaolins contain essentially kaolinite (Index JCPDS80-0886)andhalloysite(JCPDS29-1489).

Thealuminiumslagistotallytransformedinto␣-alumina afterathermaltreatmentat1400◦Cwhereitsabsolutedensity isequalto3.41g/cm3(Fig.2).

TheobservationofkaolinpowdersbySEM(Fig.3)revealeda structurecomposedofagglomeratesofleaveslengthenedand orientedinalldirections.Thesecases,randomlyentangled, havefavouredanimportantporosity.

TheobservationofaluminiumslagbySEMshoweda struc-turecomposedofagglomeratesofsphericalgrains.

InFig.4,wepresenteddifferentialthermalanalysescurves ofDD1,DD3kaolinandaluminiumslag.TheDTA/TGcurves ofbothkaolinshowthepresenceoftwoendothermicpeaks.

DD1 DD3 10 20 30 40 50 60 70 80 90 100 H H H H H H H K K K K K K K K K K H H 2 Theta (°) Inte n sity (a.u)

Fig.1–XRDspectraoftheusednaturalkaolin,K:kaolinite; H:halloysite. 20 40 60 80 1400°C 1200°C 1000°C 800°C 600°C Raw α α α α α α α α α α α α α δ θ δ δ θ γ γ B G G G Inte n sity (a.u) 2 Theta (°) G B θ

Fig.2–XRDspectraofthealuminiumslagofthethermal treatmentatdifferenttemperatures(␣:alphaalumina;␥:

gammaalumina;␪:thetaalumina;␦:deltaalumina;B: boehmite;G:gibbsite).

Thefirstoneisveryintense,hasamaximumlocatedat86◦C, it isduetothe departureofthesurface water.Thesecond oneappearedat532◦C.Itisrelatedtothedepartureof con-stitution water (dehydration ofkaolin toform metakaolin) andassociatedtoamasslossof(12.5%forDD3and12.75% forDD1),between400◦Cand 600◦C.Furthermore,theDTA curvespresentanexothermicpeakoflowintensityat988◦C; correspondingtothemullitecrystallizationformedfromthe kaolinitetransformation.

TheDTAcurveofthealuminiumslagshowsan endother-micpeakofaverymarkedintensity towards119◦C,linked to moisture water. Endothermic peak at 270◦C introduces thedehydrationofthetri-hydrateoxidetomono-hydroxide (boehmite). We noticed a mass loss of 6.5%, with these transformations.Therefore,inadditiontotheseendothermic peaks,theTDAcurvepresentsotherexothermiceffects.We attributedthefirstexothermicpeak,whichappearsbetween 400◦Cand600◦Ccentredat449◦C,toarapidtransition reac-tiontriggeredbythebeginningofchangesintheslagcrystal structure,whichisaccompaniedbyalossmassof2%.Raw aluminiumslagisgloballyamorphouswiththepresenceof gibbsiteandboehmite(Fig.2).Thegibbsite–boehmitephase transformationtakesplacearound270◦C(seeDTAcurvein

Fig.4).Between400◦C and550◦C,boehmiteistransformed intogammaalumina.Thistransitionaluminathenleadsto aluminadeltaandthetabetween800◦Cand1200◦C.Above 1200◦C,theformationofthestablealpha-aluminaphasetakes place.Thesetransformationsofhydratedaluminaphasesto transitionsaluminaandthento␣-aluminahavebeendetailed inourpreviousworks[20–24].

WerepresentedinFig. 5the evolutionofthe crystalline structureforthetwokaolinusingXRD.From600◦Cto800◦C, thestructureisamorphousforthetwokaolinsDD1andDD3.

(4)

Pleasecitethisarticleinpressas:F.Chargui,etal.,Mullitefabricationfromnaturalkaolinandaluminiumslag,Bol.Soc.Esp.Cerám.Vidr.(2018),

Fig.3–Microstructureofkaolinandaluminiumslagused; (a)DD1,(b)DD3and(c)aluminiumslag.

Inthecaseofthesekaolins,theformationofmullitebeginsat 1000◦C.At1200◦C,thepeaksoflowintensitiescorrespondto thegerminationofthemulliteforDD1.

ThemullitephasebecomesimportantinthecaseofDD3 kaolinbeyond1200◦C.Alsothat, startingfrom 1200◦C,the excessofsilicaleadstothecrystallizationofthecristobalite. At1500◦C,wenoticedforbothkaolins,theincreasesofthe peaksintensitiescausedbytheincreaseofmullitequantity. Ontheotherhand,atthistemperature,thepeakofthe cristo-balitedisappearsbecauseofitstransformationintovitreous phase.

TheDTA/TGcurvesofMDD1andMDD3mixtures(Fig.6) showtwoendothermicpeaks.Thefirstoneisveryintense, hasamaximumlocatedat100◦C,itiscausedbythedeparture ofthesurfacewater. Thislastisassociatedtoa massloss between20◦Cand400◦C.Thesecondoneappearedat537◦C forMDD3andat532◦CforMDD1.Itcorrespondstothe

depar-Temperature (°C) 400 600 800 1000 1200 1400 1600 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 Weigh t lo s s (%) -4 -2 0 2 4 6 8 10 12 14 16 18 20 3% 1, 2 5% 12, 75% 86 528 988 Heat f low (µ v/ m g) DD1 e nd o e xo 0 200 400 600 800 1000 1200 1400 1600 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 Temperature (°C) -14 -12 -10 -8 -6 -4 -2 0 2 4 Weigh t lo ss (% ) 2% 6, 5% 270 449 He at f low (µ v/ m g) end o e xo Aluminum slag 888 1210 1% H ea t f low ( µ v /m g) Temperature (°C) 200 400 600 800 1000 1200 1400 1600 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 6 -2 0 2 4 6 8 10 12 14 16 18 2, 5% 12, 5% DD3 We ig ht l o ss (% ) 86 53 2 98 8 e nd o e xo

Fig.4–Differentialthermalanalysisandthermo

gravimetricbehaviourofkaolinDD3,DD1andaluminium slag.

tureofconstitutionwater(dehydrationofkaolin),associated with a low mass loss between 375◦C and 600◦C. Besides, thesetwoendothermicpeaks,theDTAcurvepresentsother exothermiceffectsoflowintensities,whicharenotassociated withanylossofmass.AccordingtoGononetal.[15],thefirst exothermicpeakinneighbourhoodof1000◦Ccorrespondsto thecrystallizationofthemullitefrommetakaolin.Thesecond lessintenseexothermicpeak,observedintheneighbourhood of1194◦CfortheMDD3and1220◦CfortheMDD1,is associ-atedtotheformationofthesecondarymullitebyreactionof thealuminaresultingfromaluminiumslagwiththeexcess ofsilicaofthekaolin[20,25].Fortheclay;thephase,which

(5)

Pleasecitethisarticleinpressas:F.Chargui,etal.,Mullitefabricationfromnaturalkaolinandaluminiumslag,Bol.Soc.Esp.Cerám.Vidr.(2018), 10 20 30 40 50 60 70 80 90 100 M M M MM M M MM M M Cr 1500°C Brut 600°C 800°C 1000°C 1200°C 1400°C DD1 2Theta (°) In te ns it y (a. u ) 10 20 30 40 50 60 70 80 90 100 M M M M M M M M M M 1500°C 1400°C 1200°C 1000°C 800°C 600°C Brut DD3 Cr In te ns it y (a. u ) 2 Theta (°)

Fig.5–XRDofthekaolintreatedatdifferenttemperatures. M:mullite;Cr:cristobalite.

crystallized from 850◦C can melt [26]. Its melting occurs between1100◦Cand1300◦C[27].Increasingironcontentinto thevarious startingkaolinsleads tothe secondarymullite formationtowardslowertemperatures[27].

Fig.7representsthe XRDdiagrams ofMDD1and MDD3 mixturesfiredatdifferenttemperatures.

At 1000◦C, the beginning of the crystallization of the primarymulliteformedfrom thekaolin.Atthe same tem-perature, we observeda peak relating to the formation of ␥-alumina at 2Â=65◦. The XRD curves of samples fired at 1100◦C and at 1200◦C show the same formed crystalline phases,namelythealumina␥andtheprimarymullite.We noticedthenon-appearanceofthecristobalitepeak,formed atthistemperatureinthecaseofthekaolinDD3alone.We explainedthis,bytheformationofthesecondarymullitedue tothereactionofthe␥-aluminafromtheslagwiththeexcess ofsilicafromthekaolinbeforethecrystallizationofthelatter intocristobalite.

Thefiring ofMDD1 and MDD3 mixtures at1300◦C and 1400◦Cleadstotheaccelerationoftheformationofthe sec-ondarymullite.At1500◦C,practicallyalmostcompletemullite formationofmixtures.Thepresentimpuritiesinthe precur-sors(slagandkaolin)withonepartofthesilicaformaglassy

200 400 600 800 1000 1200 1400 1600 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 Temperature (°C) -12 -10 -8 -6 -4 -2 0 2 4 6 Heat f low ( µv /m g) 53 7 We ig ht lo ss ( %) 119 4 15% 4, 5% 4, 5% MDD3 99 3 e nd o e xo 10 0 200 400 600 800 1000 1200 1400 19% 6% 2% 5% Temperature (°C) 53 2 99 8 122 0 MDD1 e nd o e xo -12 -8 -6 -4 -2 0 2 4 6 -30 -25 -20 -15 -10 -5 0 5 10 0 Hea t f low (µ v/ m g) We ig h t lo ss (% ) -10 1600

Fig.6– DTA/TGofmixturesMDD1andMDD3.

1000°C 1300°C 1200°C 1100°C 1400°C 1500°C M M M M M M M M M M MDD3 In tens it y (a. u ) 2 Theta(°) 10 20 30 40 50 60 70 80 Raw M M M M M M 90 100 M MMM M γ 10 20 30 40 50 60 70 80 90 100 M M M M M M M M M M M M M M M M M MDD1 Raw 1000°C 1500°C 1300°C 1200°C 1100°C 1400°C 2 Theta (°) In tens it y (a. u ) γ

Fig.7–DiffractogramsofMDD1andMDD3mixturesat differentstagesofthethermaltreatment(M:mullite;␥: gammaalumina).

(6)

Pleasecitethisarticleinpressas:F.Chargui,etal.,Mullitefabricationfromnaturalkaolinandaluminiumslag,Bol.Soc.Esp.Cerám.Vidr.(2018), 1000 1100 1200 1300 1400 1500 20 30 40 50 60 70 80 90 Rat e of cry s ta lli nit y ( %) Temperature (°C) MDD1 MDD3

Fig.8–VariationofthecrystallinityrateofMDD1and MDD3mixturesasafunctionoftemperaturetreatment.

120 0 1300 1400 1500 3, 08 3, 09 3, 10 3, 11 3, 12 3, 13 3, 14 3, 15 3, 16 3, 17 3, 18 3, 19 3, 20 Temperature (°C) MDD3 MDD1 Ab so lut e de ns it y ( g /c m 3)

Fig.9–EvolutionoftheabsolutedensityofMDD1and MDD3mixturesafunctionofthetemperature.

phase.ThedifferencebetweentheDRXspectraofthemixtures MDD1andMDD3residesinthequantityofmulliteformed.

Accordingtothecalculationoftheintensitiesofrays char-acterizingthemullite(Fig.8),thecrystallizationrateofthe mullitephaseincreaseswiththeincreaseinthetemperature oftheheattreatment.

Thisratereachespractically94%forthemixtureMDD1and 89%forthe mixtureMDD3forsamplesfiring during2hat 1500◦C.Weexplainedthisdifferencebetweenbothmixtures bythehighrateofSiO2inDD1kaolin.

ThequantityoftheformedmulliteisimportantinMDD1 mixture,ofthefactthatthehighcontentofsilicainitsraw material(DD1).Thisnecessitytoanadditionofaluminium slagismoreimportant.

Wemeasuredabsolutedensitiesofmixtures(slag+kaolin), curedbetween 1200◦C and 1600◦C,byheliumpycnometry. WegatheredtheresultsinFig.9.Morethefiringtemperature increase,theabsolutedensitiesofmixturesalsoincrease.At 1600◦C,theyalmostreachthetheoreticalvalueofthemullite density(3.17g/cm3).

Fig. 10 shows FTIR ofMDD1 and MDD3 mixturescured atdifferenttemperatures. Inits naturalstate; intherange 4000–3000cm−1 thespectraare characterizedbytwobands locatedat3701cm−1and3630cm−1,andawidebandcentred at3449cm−1forMDD1,andforMDD3bandsarerespectively locatedat3698cm−1,3618cm−1and3453cm−1,thesebands areduetostretchingvibrationhydroxyls.

3500 Wave number (cm-1) 36 98 36 18 10 87 10 34 908 75 5 69 1 53 6 46 7 1200°C 11 65 94 1 59 5 44 7 73 7

Transmittance (a.u) Raw

1300°C 89 5 10 13 69 0 432 46 9 54 3 1400°C 10 86 80 2 45 4 54 1 60 5 1500°C 34 53 16 28 3000 2500 2000 1500 1000 500 MDD3 Wave number (cm-1) T ran smi tt an ce ( a .u) 1200°C 112 8 84 8 99 9 72 6 55 7 44 6 61 4 1400°C Raw 370 1 108 7 363 0 162 8 103 4 75 5 91 2 69 1 46 7 53 6 43 5 344 9 1500°C 55 7 1300°C 45 2 64 4 45 2 10 92 3500 3000 2500 2000 1500 1000 500 MDD1

Fig.10–FTIRspectraofmixturestreatedatdifferent temperatures.

Weassignedthebandslocatedat3701cm−1and3698cm−1 to the hydroxyls ofthe edges ofleaves. Bands situatedat 3630cm−1and3618cm−1are forthe hydroxylsofsurfaceof thelayeroctahedralininteractionwithbasicoxygen ofthe tetrahedraladjacentlayer.Finally,thebandsat3449cm−1and 3453cm−1arecausedbytheinternalhydroxylslinkedtothe aluminium.

Thebandsthatappearedat1087cm−1and1034cm−1was assigned toSi O Sistretchingvibration. Weattributedthe bandsat912cm−1and908cm−1forMDD1andMDD3 respec-tivelytovibrationsoflinksAl OH.

Si O AlVI [12] and Si O AlIV stretching vibrations are

respectivelycharacterizedbybandsat536cm−1and755cm−1. WeobservedthebandassociatedwithAl O Alstretching forthetwomixturesat691cm−1[12].Ontheotherhand,the deformationoflinksSi Oischaracterizedbythepresenceof bandsat467cm−1and435cm−1.

ForathermaltreatmentofMDD1at1200◦C,bandslocated respectivelyat1087cm−1and1134cm−1aretransformedata broaderbandconstitutedbytwobands:thefirstoneiscentred at1128cm−1andthesecondtowards999cm−1.

The bands located towards 755cm−1 and 691cm−1 are transformedintwowidebands.Thefirstoneindicates the formationofspinelSi Alandthesecondindicatesthe crys-tallizationofAl2O3[10].

(7)

Pleasecitethisarticleinpressas:F.Chargui,etal.,Mullitefabricationfromnaturalkaolinandaluminiumslag,Bol.Soc.Esp.Cerám.Vidr.(2018),

Inaddition,boththecharacteristicbandscorrespondingto Si Ostretchingvibrationaretransformedtothesingleband ofweak intensity centredat 446cm−1, which explainsthe decreaseofthequantityofSiO2.

Theappearanceofawidebandintheregion920–770cm−1 centredtowards848cm−1assignedtoAl OHstretching vibra-tion, is attributed to the crystallization of the secondary mullite[13].

On the other hand, the spectrum of mixture MDD3 at 1200◦Cshowsthe appearanceofawideband intheregion 1200–600cm−1centredrespectivelyat1165,941and737cm−1, compared with the spectrum of MDD1. This wide band explainsthetrainingofamoreimportantquantityofmullite. Foratreatmentat1300◦C,thebandcorrespondingtothe trainingofthemullitehasbecomewider.Thiswidebandis composedoftwobandscentredrespectivelytowards1104and 1028cm−1,whatcanbeexplainedbythetrainingofaddition allinksofSi O Alincrystalsofmullite.

Also, the wide band located at 848cm−1 for the MDD1 mixtureis replacedby awide shoulder, and the spectrum ofmixtureMDD3show the appearanceoftwonew bands, onelocatedat895cm−1andtheotherat690cm−1,andaless intenseshoulderthanthatobservedintheMDD1spectrum. Thethermaltreatmentat1500◦Cleadstotheincreaseofthe intensityofthebandlocatedat1013cm−1.

The SEM results reveal that the morphology of micro-structuresofMDD1andMDD3doesnotpresentasignificant differencebetweenbothmixturesafterfiredat1400◦Cduring 2h(Figs.11and12).

Weobservedtheexistencesofbigcrystalsofmullitewith arandomdistribution.Theprimarymullitehasalong nee-dleshape.Theglassymatrixsurroundedthesmallestcrystals

ofsecondarymullitewhicharenucleatedinthetransitional liquid bydissolution ofthealumina[16]. Thegrainsofthe secondarymullitepresentadifferentstructure(acicular)and grainssizesmallerthanthatoftheprimarymullite.The struc-tureofthesampleMDD3showsthepresenceofmanypores withbiggerdimensions.

Theneedle-likemullitegrainsobservedforsampleMDD3 treatedat1400◦CislargerthanthatobservedforMDD1 sin-tered atthesametemperature, thisdifferenceiscausedby thehighironcontentinMDD3.AccordingtoLecomte[28],the heattreatmentat1400◦C,performedoniron-enriched sam-ples giverise tothe formation oflarge needle-like mullite grains,widelyseparatedfromeachotherbyaglassyphase. Also,thepresenceofironoxide(Fe2O3)impuritiescontributes

toreducetheliquidphaseformationtemperature.This pro-motesanincreaseinthealuminadissolutionrate(Al2O3)in

theliquidphase,inwhichAlionsreactinhigherproportions withSiions[29].Accordingtotheliterature[29,30]intheclay mineralsormixturesofclayminerals,thealkalis,ironoxide (Fe2O3)andotherimpuritiesalterthecompositionoftheliquid

anditsperformancedirectlyinfluencestherecrystallization mechanisms.So,highalkalineoxidecontentfavourscrystal growth[30].

Fortheiron-richkaolinicmaterials,atabout1400◦C,the interactionsbetweenthedifferentphasesinequilibriumlead totheformationofgreatamountofglassyphase.Theiron compoundspresentinthesamplesmayleadtotheformation ofeutecticliquidsbetween1300and1400◦C[28].Indeed,this greatamountofglassyphaseisalsorelatedtoother impuri-ties.ThepresenceofNa2O3andK2Opromotestheformation

of vitreousphase at a low melting point during the firing

[31].

(8)

Pleasecitethisarticleinpressas:F.Chargui,etal.,Mullitefabricationfromnaturalkaolinandaluminiumslag,Bol.Soc.Esp.Cerám.Vidr.(2018),

Fig.12–MicrostructuresobtainedbySEMformixturesfiredat1500◦Cduring2h.(c)MDD3,(d)MDD1,P:primarymullite,S: secondarymullite.

Thefiringat1500◦Cleadstoastructurewithabimodal morphology.Thesizeoftheprimarymullitecrystalsisbigger, comparedtothatobtainedat1400◦C.Athightemperature,we observedagrainsgrowthsizeofthemullitecrystalsandthe formationofmoresecondarymullitecrystals[16].

Weknowthatmullitegrainsgrowthmechanismforhigh temperature in clays is a dissolution-precipitation process

[32].During heat treatment, dissolutionrate ofAl2O3 in to

liquidphaseincreases,whichpromotesthemullitecrystals growth[33].

At1500◦C,the mullitegrains sizeof crystalsformed in MDD1mixtureisgreaterthanthatformedatMDD3one.We explainedthisobservationbytheratioAl2O3/SiO2,whichis

equalfor1.45toMDD1and1.22forMDD3.

Conclusion

Theobtainedresultsshowthe possibilityofusing the alu-minium slag asan addition (in replacementof ␣-alumina) fortheelaborationofthemullitefromkaolin.Thecurvesof differentialthermalanalysisandthermogravimetricanalysis (DTA/TG)showthatthereareseveralphasetransformations duringfiring. Themicrostructuralanalysis ofsamples sin-teredat1500◦Cshowsthe presenceoftheprimarymullite in the form of lengthened needles and small crystals of secondary mullite, which are nucleated in the transient liquid.Thetransformationofthemetakaoliniteformedtothe primarymullite,whilethesecondarymulliteresultsfromthe reactionofthealuminaofslagandfromtheexcessofsilica ofthekaolin.Throughthisstudy,byreactivefiringadense

mullite fromnatural kaolinand aluminiumslag,this isan industrialobtainedwaste.

r

e

f

e

r

e

n

c

e

s

[1]T.Huang,M.N.Rahaman,T.I.Mah,A.Triplicane,A. Parthasarathay,Anisotropicgraingrowthand

microstructuralevolutionofdensemulliteabove1550◦C,J. Am.Ceram.Soc.83(1)(2000)204–210.

[2]M.Sardy,A.Arib,K.Abbassi,R.Moussa,M.Gomina, Elaborationandcharacterizationofmulliterefractory productsfromMoroccanandalusite,NewJ.GlassCeram.2 (2012)121–125.

[3]I.A.Aksay,D.M.Dabbs,M.Sarikaya,Mulliteforstructural, electronic,andopticalapplications,J.Am.Ceram.Soc.74 (10)(1991)2341–2721.

[4]H.-J.Kleebe,F.Siegelin,T.Straubinger,G.Ziegler,Conversion ofAl2O3–SiO2powdermixturesto3:2mullitefollowingthe stableormetastablephasediagram,J.Eur.Ceram.Soc.21 (2001)2521–2533.

[5]H.Rhanim,C.Olagnon,G.Fantozzi,R.Torrecillas, Experimentalcharacterisationofhightemperaturecreep resistanceofmullite,Ceram.Int.23(6)(1997)497–507.

[6]M.Hamidouche,N.Bouaouadja,C.Olagnon,G.Fantozzi, Thermalshockbehaviourofmulliteceramic,Ceram.Int.29 (2003)599–609.

[7]T.Abdezadeh,Formationofmullitefromprecursorpowders: sintering,microstructureandmechanicalproperties,Mater. Sci.Eng.A355(1–2)(2003)56–61.

[8]L.B.Kong,T.S.Zhang,Y.Z.Chen,J.Ma,F.Boey,H.Huang, Microstructuralcompositemullitederivedfromoxidesviaa high-energyballmillingprocess,Ceram.Int.30(2004) 1313–1317.

(9)

Pleasecitethisarticleinpressas:F.Chargui,etal.,Mullitefabricationfromnaturalkaolinandaluminiumslag,Bol.Soc.Esp.Cerám.Vidr.(2018),

[9]H.-J.Kleebe,F.Siegelin,T.Straubinger,G.Ziegler,Conversion ofAl2O3–SiO2powdermixturesto3:2mullitefollowingthe stableormetastablephasediagram,J.Eur.Ceram.Soc.21 (2001)2521–25337.

[10]J.Roy,S.Maitra,Synthesisandcharacterizationof sol–gel-derivedchemicalmullite,J.Ceram.Sci.Technol.5 (01)(2014)57–62.

[11]R.Septawendar,B.S.Purwasasmita,L.Nurdiwijayanto,A newsynthesisrouteofnanomullitebycalciningpulp precursors,J.Aust.Ceram.Soc.47(1)(2011)42–47.

[12]M.A.Sainz,F.J.Serrano,J.M.Amigob,J.Bastida,A.Caballero, XRDmicrostructuralanalysisofmullitesobtainedfrom kaoliniteandaluminamixture,J.Eur.Ceram.Soc.20(2000) 403–412.

[13]L.Andrini,M.R.Gauna,M.S.Conconi,G.Suarez,F.G.Requejo, E.F.Agleitti,N.M.Rendtorff,Extendedandlocalstructural descriptionofakaoliniticclay,itsfiredceramicsand intermediates:anXRDandXANESanalysis,J.Appl.ClaySci. 124–125(2016)39–45.

[14]Y.-F.Chena,M.-C.Wang,M.H.Hona,Phasetransformation andgrowthofmulliteinkaolinceramics,J.Eur.Ceram.Soc. 24(2004)2389–2397.

[15]M.Gonon,G.Fantozzi,H.Osmani,M.Hamidouche,M.A. Madjoubi,N.Bouaouadja,K.Loucif,Etudedela

transformationdetroisnuancesdekaolinenfonctiondela température,Silic.Ind.Cera.Sci.Tech.65(11–12)(2000) 119–124.

[16]T.J.Mackenzie,J.D.Schurcker,H.Schneider,J.Mcmanus,S. Wimperis,Phaseevolutioninmechanicallytreatedmixtures ofkaoliniteandaluminahydrates(gibbsiteandboehmite),J. Eur.Ceram.Soc.20(2000)413–421.

[17]Y.F.Chen,M.C.Wang,M.H.Hon,Secondarymulliteformation inkaolin–Al2O3ceramics,J.Mater.Res.18(2003)1355.

[18]M.Ohashi,Y.Iida,Hotforgingofmullite-basedceramics preparedfromkaolin-alumina,J.Am.Ceram.Soc.83(7) (2000)1825–1827.

[19]J.Pascual,J.Zapatero,M.C.JimenezdeHaro,I.Varona,A. Justo,J.L.Perez-Rodriguez,P.J.Sanchez-Soto,Porousmullite andmullite-basedcompositesbychemicalprocessingof kaoliniteandaluminummetalwastes,J.Mater.Chem.10 (2000)1409–1414.

[20]H.Belhouchet,M.Hamidouche,N.Bouaouadja,V.Garnier,G. Fantozzi,Crystallizationkineticsof␣-aluminaand

mullite-zirconiainboehmiteandzirconmixture,J.Mater. Sci.Eng.A3(12)(2013)814–819.

[21]H.Belhouchet,M.Hamidouche,N.Bouaouadja,V.Garnier,G. Fantozzi,Elaborationandcharacterizationof

mullite-zirconiacompositesfromgibbsite,boehmiteand zircon,J.Ceram.Silik.53(3)(2009)205–210.

[22]H.Belhouchet,M.Hamidouche,R.Torrecillas,G.Fantozzi, Thenon-isothermalkineticsofmulliteformationin boehmite–zirconmixtures,J.Therm.Anal.Calorim.116 (2014)795–803.

[23]H.Belhouchet,H.Makri,M.Hamidouche,N.Bouaouadja,V. Garnier,G.Fantozzi,Elaborationandcharacterizationof multiphasecompositesobtainedbyreactionsinteringof boehmiteandzircon,J.Aust.Ceram.Soc.50(2)(2014) 135–146.

[24]S.Lamouri,M.Hamidouche,N.Bouaouadja,H.Belhouchet,V. Garnier,G.Fantozzi,J.F.Trelkat,Controlofthe␥-aluminato ␣-aluminaphasetransformationforanoptimizedalumina densification,Bol.Soc.Esp.Cerám.Vidrio56(2)(2017) 47–54.

[25]V.Viswabaskaran,F.D.Gnanam,M.Balasubramanian,Effect ofMgO,Y2O3andboehmiteadditivesonthesintering behaviorofmulliteformedfromkaolinite-reactivealumina, J.Mater.Process.Technol.142(2003)275–281.

[26]P.G.Wherllyson,V.J.Silva,R.R.Menezes,G.A.Neves,H.L.Lira, L.N.L.Santana,Microstructural,physicalandmechanical behaviorofpastescontainingclaysandaluminawaste,J. Appl.ClaySci.137(2017)259–265.

[27]C.J.McConville,W.E.Lee,Microstructuraldevelopmenton firingilliteandsmectiteclayscomparedwiththatin kaolinite,J.Am.Ceram.Soc.88(2005)2267–2276.

[28]G.Lecomte-Nana,J.P.Bonnet,N.Soro,Influenceofironon theoccurrenceofprimarymulliteinkaolinbasedmaterials: asemi-quantitativeX-raydiffractionstudy,J.Eur.Ceram. Soc.33(2013)669–677.

[29]V.J.Silva,M.F.Silva,W.P.Gonc¸alves,R.R.deMenezes,G.A. Neves,H.L.Lira,L.N.L.Santana,Porousmulliteblockswith compositionscontainingkaolinandaluminawaste,Ceram. Int.42(2016)15471–15478.

[30]S.Deniel,N.T.Doyen,C.Dublanche-Tixier,D.Chateigner,P. Blanchart,Processingandcharacterizationoftextured mulliteceramicsfromphyllosilicates,J.Am.Chem.Soc.30 (2010)2427–2434.

[31]A.Arib,A.Sarhiri,R.Moussa,T.Remmal,M.Gomina, Caractéristiquesstructuralesetmécaniquesdecéramiquesà based’argiles:Influencedelasourcedefeldspath,C.R. Chim.10(2007)502–510.

[32]H.P.Fang,M.H.Huang,Z.H.Chen,K.Xu,Y.G.Liu,Y.G.Huang, EffectofLa2O3additivesonthestrengthandmicrostructure ofmulliteceramicsobtainedfromcoalgangueand␥-Al2O3, Ceram.Int.39(2013)6841–6846.

[33]X.Xu,X.Lao,J.Wu,Y.Zhang,X.Xu,K.Li,Microstructural evolution,phasetransformations,andvariationsinphysical propertiesofcoalserieskaolinpowdercompactduring firing,Appl.ClaySci.115(2015)76–86.

Figure

Fig. 1 – XRD spectra of the used natural kaolin, K: kaolinite;
Fig. 4 – Differential thermal analysis and thermo
Fig. 7 represents the XRD diagrams of MDD1 and MDD3 mixtures fired at different temperatures.
Fig. 8 – Variation of the crystallinity rate of MDD1 and MDD3 mixtures as a function of temperature treatment.
+2

Références

Documents relatifs

В исследовании также может отмечаться, что реклама более здоровых пищевых продуктов способна оказывать некоторое воздействие на улучшение

die zuverlässigen un- mittelbaren Erkenntnisse über die Wirkung der Einführung von Beschränkungen für die Vermarktung ener- giereicher, nährstoffarmer Lebensmittel an Kinder oder

Implementation of this perspective means one must place oneself at a level of microsociological analysis in order to observe how, within everyday life encounters,

Silica gel and aluminium salt, in the stoichiometric ratio for mullite (Al/Si=3), have been used to pre- pare the mullite precursor by reaction in molten alkali nitrates at 450 C..

This adsorption is divided into two zones: a diffusion region and a kinetic area controlled by the reaction. The thermodynamic parameters show that the sorption is spontaneous

PJ/SAID: the width and peak intensities of the drift profile, the electric field, the field-aligned current densities, the grad- ual increase of the westward drifts as

in Fig. The grain size distribution of ZrO, particles in both samples is shown in Fig. The distribution for MZ2 is wider than that for MZI.. The critical grain size of ZrO,

Additional Zr02 and a wide grain size distribution of the present Zr02 effected a strong decrease of the thermal expansion (cooling) having a positive influence to the