• Aucun résultat trouvé

Single Point Incremental Forming using Adaptive Remeshing Technique with Solid-Shell Finite Elements

N/A
N/A
Protected

Academic year: 2021

Partager "Single Point Incremental Forming using Adaptive Remeshing Technique with Solid-Shell Finite Elements"

Copied!
21
0
0

Texte intégral

(1)

J. Sena*, R. Sousa, A. M. Habraken, R. A. F. Valente, L. Duchêne

Department of Mechanical Engineering University of Aveiro

*sena.ilidio@ua.pt

Single Point Incremental Forming using

Adaptive Remeshing Technique with

(2)

Outline

1. Introduction

2. SPIF Numerical simulation

3. Adaptive Remeshing

4. Benchmark example

4.1. Solid-Shell Element: RESS (Reduced Enhanced Solid-Shell)

(3)

In

tr

o

d

u

ct

io

n

 The tool is guided by numerical control system, which defines the trajectory where the forming tool follows and progressively deforms a clamped sheet into its desired shape

 The zone where high deformations occur is always close to the current location of the tool.

 Single point incremental forming (SPIF) is a sheet metal forming process that is appropriate for rapid prototyping.

 In SPIF, the lower surface of the metal sheet doesn’t require any dedicated dies or punches to form a complex shape.

(4)

N

u

m

e

ri

ca

l

S

im

u

la

ti

o

n

 PROBLEM:

- The constantly changing contact between the tool and the metal sheet during the process.

- The nonlinearities involved causes a huge computational time.

 The nonlinear finite element code used is the LAGAMINE developed in FORTRAN by MSM team of ArGEnCo department in University of Liège since 80’s.

 In LAGAMINE was developed the Adaptive Remeshing available only for Shell finite elements*.

 The Adaptive Remeshing Technique was extended to use with 8 nodes solid element.

 Objective:

- Use a 3D constitutive law

- Prediction of the sheet thickness strain

(5)

A

d

a

p

ti

v

e

R

e

m

e

sh

in

g

• Selection of a neighborhood around the position of the tool center

Remeshing Criterion

• Proximity condition :

D² ≤ α (L²+R²)

- D: minimum distance between the tool center and the four nodes of the contact element

- L: length of the longest diagonal of the element

- R: radius of the tool

- α: coefficient adjusting the size of the neighborhood chosen by the user

(6)

Derefinement Criterion

v i i i 1,4

X

H ( , )X

=

=

ξ η

c v

d = X -X

max

d

d

• Computation of the initial relative position:

−Hi: interpolation function

−x, h: initial relative positions of the node in the coarse element −Xi: nodes positions of the coarse element

−Xc: Current position of the node −dmax: maximal admissible

distance chosen by the user • Computation of the distance

• Criterion of reaction of coarse element

d

Old Node New node Virtual position

Top view Lateral View

A

d

a

p

ti

v

e

R

e

m

e

sh

in

g

(7)

p k n n k kJ pj pj min j n n k kJ pj p pj min

CZ

Z

+

R

R

if R >R

1

C

Z

+

R

R

Z if R

R



= 



• j: is the index of the new integration point

• k: is the index of the integration point of another element

• p: is the index of the closest integration point

• Zi: can be the stress or variables of state components at the integration point j

• Rkj: distance between the integration point k and j

Interpolation of state variables and stress

• C: coefficient defined by the user • n: degree of interpolation

• d: highest diagonal of the element • D: highest diagonal of the structure

1 min With : R 1.5d R 0.0001D = =

A

d

a

p

ti

v

e

R

e

m

e

sh

in

g

(8)

ELEMB

ELEMENT SUBROUT INE

Int egrat ion point s loop NO Element ’s loop ST EP LOOP LAMIN2 1 Check t he convergence it erat ively Converge ? 2 ELEMB2 PRINT PER ECRVAR PRIDON YES YES

REMESHING ? ADAPT _ REMESH NO

Int erpolat es t he st ress and

st at e variable of coarse element s deact ivat ed

INT ERPOL_ ELEM

YES Has remeshing

element s ? 6

Writ e in out put files

Generat ion of t he new element s Int erpolat ion of t he st ress and st at e variables for new

element s

INT ERPOL_ ELEM

A

d

a

p

ti

v

e

R

e

m

e

sh

in

g

(9)

B

e

n

ch

m

a

rk

e

xa

m

p

le

182 mm 9 1 m m X Y tool

Line test description

– Simple SPIF process:

– Material : An aluminium alloy

AA3003-O

– thickness: 1.2 mm

– spherical tool radius: 5 mm

– Boundary conditions:

8

Line test description

Line test description

Line test description

Line test description

(10)

• Composed by 5 steps :

1. Indentation of 5 mm

2. Line movement at the same

depth along the X axis

3. Second indention to the

depth of 10 mm

4. Line at the same depth along

the X axis

B

e

n

ch

m

a

rk

e

xa

m

p

le

Line test description

1.

2.

3.

4.

5.

t=0.2 t=0.8 t=1.0 t=1.6 t=1.8

(11)

Material

– Material : An aluminium alloy AA3003-O

– The constitutive law: Hill (Isotropic behaviour law) – Parameters:

Young modulus: E1 = E2 = E3 = 72600 MPa Poisson ratio: ν12 = ν3 = 0.36

Coulomb modulus: G1 = G2 = G3 = 26691.18 MPa Lankford coefficients defining the yield locus: F= G= H= 1.0; N= L= M= 3.0

– Hardening Swift law: σeq =K (ε0 + εpl)n with K= 180.0, ε0= 0.00057, n= 0.229

B

e

n

ch

m

a

rk

e

xa

m

p

le

(12)

Reference: Fine mesh for without remeshing simulation

Coarse Mesh for with adaptive remeshing simulation

− 4 types of Elements :

− 8 node solid-shell finite element RESS with 3GP

− Contact element CFI3D with 4GP − Shell element COQJ4 with 4GP − Contact element CLCOQ

− 2 types of mesh :

− Coarse with 72x2 elements with one element in thickness direction

(RESS+CFI3D)

− Coarse with 72 elements COQJ4

− Reference without remeshing 806X2 elements (RESS+CFI3D)

B

e

n

ch

m

a

rk

e

xa

m

p

le

Meshes

(13)

S

o

li

d

-S

h

e

ll

E

le

m

e

n

t

RESS (Reduced Enhanced Solid Shell)*

12  Solid-Shell Element specially design to use in metal forming applications

 Implemented in LAGAMINE code  Integration scheme (a) advantages:

- Reduced integration in plane

- Arbitrary number of integration points in one single layer in thickness direction

 Combination between displacement strain and enhanced strain components interpolated by enhanced matrix with only enhanced mode

 Stabilization technique

(c) (b)

(14)

Evolution of tool during the line test with RESS

N

u

m

e

ri

ca

l

re

su

lt

s

0 100 200 300 400 500 600 700 800 900 1000 0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 Time F o rc e [ K N ]

RESS with remeshing n=3 RESS with remeshing n=1 RESS with remeshing n=2 Reference (without remeshing)

(15)

Shape in a cross-section

N

u

m

e

ri

ca

l

re

su

lt

s

-10 -8 -6 -4 -2 0 2 0 20 40 60 80 100 120 140 160 180 x [mm] y [ m m ]

(16)

Numerical validation

– Comparison between experimental and numerical results:

– Divisions per edge (n): 3 nodes (one element is divided by 16 new

elements)

0 200 400 600 800 1000 1200 1400 1600 1800 0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 Time F o rc e [ K N ]

RESS (3 GP) with remeshing Experimental COQJ4 (4GP) with remeshing

N

u

m

e

ri

ca

l

re

su

lt

s

(17)

N

u

m

e

ri

ca

l

re

su

lt

s

Final mesh using adaptive remeshing

(18)

Comparisons of time performance

Reference COQJ4 4GP RESS 3GP Classic 8GP

CPU time 5m 36s 18m 54s 17m 9s Nº of Iterations 2859 1194 1107 Nº of steps 579 167 203 N=1 CPU time 1m 18s 2m 9s 1m 31s Nº of Iterations 4164 907 725 Nº of steps 1041 153 158 N=2 CPU time 1m 13s 5m 4s 4m 7s Nº of Iterations 2792 1059 680 Nº of steps 698 197 133 N=3 CPU time 1m 23s 6m 39s 5m 29s Nº of Iterations 2076 1095 946 Nº of steps 519 163 170

N

u

m

e

ri

ca

l

re

su

lt

s

(19)

• Total CPU time spent at the elements level:

• The CPU time spent with constitutive law corresponds to a 24% of the total time spent in the shell elements

• Using RESS the CPU time spent with constitutive law corresponds to a 44% of the total CPU time spent in the elements scheme

COQJ4 RESS Element scheme 100% 89% Contact elements 0% 11% Constitutive law 24% 44%

N

u

m

e

ri

ca

l

re

su

lt

s

Statistics results

(20)

F

in

a

l

C

o

n

si

d

e

ra

ti

o

n

s

• The results presented were expected due to the less number of elements and consequently less integration points using shell finite element.

• The major interest of the present work is the 3D analysis of single point incremental forming process.

• The current work in progress is the application of adaptive remeshing using RESS finite element in an efficient and accurate simulation framework of SPIF processes for general 3D analysis.

• The near future work will be the use of unstructured meshes using the adaptive remeshing technique.

(21)

14th ESAFORM Conference on

Material Forming

Belfast - Ireland - April 27-29, 2011

Thank you for your

attention

Références

Documents relatifs

Avec la crise agricole des années 1990, les conditions sociales des agriculteurs vont se détériorer et les techniques de production du système de l’économie de plantation

- les autres, qualifiés d’« espaces actualité enrichis », rassemblent les collections de presse mais proposent aussi d’autres ressources : ouvrages et usuels destinés

Ce rapport de recherche a pour objectif de déterminer si les coûts économiques liés à la construction d’un nouveau bâtiment dans le centre-ville d’Ottawa pour le Musée

Pourtant, les diverses recommandations et rapports de groupes d’experts sur la prise en charge des patients BPCO sont principalement dominés par les thérapies

28 Thèse pour le Doctorat en Médecine- Faculté de Grenoble- Aude MÉLIN- 3 juillet 2013 Dans le groupe des patients ayant bénéficié d’un BIF, vingt deux patients ont

Finally, we observed that gender influenced the effect of suicidal behaviors on empathy capacities; there was no significant differences in the empathy score (Bryant’s empathy

L’estimation du poids financier à la fois du secteur du transport routier dans sa globalité et de l’accidentalité routière met en évidence une dimension économique prégnante

A raíz de la pandemia del covid-19 y la creciente utilización del comercio electrónico, el MICI de Panamá fortalecerá las capacidades de las pymes en esta área.. Sumado a ello,