• Aucun résultat trouvé

Variation in the transmission of barley yellow dwarf virus-PAV bydifferent Sitobion avenae clones in China

N/A
N/A
Protected

Academic year: 2021

Partager "Variation in the transmission of barley yellow dwarf virus-PAV bydifferent Sitobion avenae clones in China"

Copied!
6
0
0

Texte intégral

(1)

JournalofVirologicalMethods194 (2013) 1–6

ContentslistsavailableatScienceDirect

Journal

of

Virological

Methods

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / j v i r o m e t

Variation

in

the

transmission

of

barley

yellow

dwarf

virus-PAV

by

different

Sitobion

avenae

clones

in

China

Wenjuan

Yu

a,b

,

Zhaohuan

Xu

c

,

Frédéric

Francis

b

,

Yong

Liu

e

,

Dengfa

Cheng

a

,

Claude

Bragard

d,∗∗

,

Julian

Chen

a,∗

aStateKeyLaboratoryforBiologyofPlantDiseaseandInsectPests,InstituteofPlantProtection,ChineseAcademyofAgriculturalSciences,Beijing100193,

China

bFunctionalandEvolutionaryEntomology,GemblouxAgro-BioTech,UniversityofLiege,PassagedesDéportés2,B-5030Gembloux,Belgium

cCollegeofAgronomy,JiangxiAgriculturalUniversity,Nanchang330045,China

dEarthandLifeInstitute,AppliedMicrobiologye-Phytopathology,UniversitécatholiquedeLouvain,CroixduSud2bte3,1348Louvain-la-Neuve,Belgium

eCollegeofPlantProtection,ShandongAgriculturalUniversity,Taian271018,China

Articlehistory:

Received10April2013

Receivedinrevisedform15July2013

Accepted18July2013

Available online xxx Keywords:

Transmissionefficiency

Barleyyellowdwarfvirus

Sitobionavenae

RT-PCR TAS-ELISA

a

b

s

t

r

a

c

t

FourteenSitobionavenaeFabricius(Hemiptera:Aphididae)clonallines(clones)originatingfromChina weretestedfortheirabilitytotransmitBYDV-PAV(oneisolatefromBelgiumandanotherfromChina) usingwheatplants.Bysequenceanalysis,thecoatproteingeneofBYDV-PAV-BEwasdistinguishable fromBYDV-PAV-CN.AlloftheclonescouldtransmitBYDV-PAV,andthetransmissionvariedfrom24.42% to66.67%withBYDV-PAV-BEandfrom23.55%to56.18%withBYDV-PAV-CN.Thesedatasuggestthat S.avenaehasnospecialtyinBYDV-PAVisolate.Significantdifferencesinthetransmissionfrequencies betweenthecloneswithBYDV-PAV-BEandBYDV-PAV-CNwereobserved.Thetransmissionefficiencies ofaphidclonesfromthemiddle-lowerreachesofYangtzeRiver(AH,HD,HDE,HZ,JZ,JYandSJ)andYunnan province(YH)weresimilar.Nevertheless,differencesinthevirustransmissionefficienciesoftheclones fromnorthern(STandSTA)andnorthwestern(QX,SBandXS)regionswereassessed.Thetransmission efficiencyofS.avenaefromnorthernandnorthwesternChina,whereBYDVimpactismoreimportant, washigherthanthatfromthemiddle-lowerreachesoftheYangtzeRiverandYunnanprovince.This workemphasizestheimportanceofconsideringaphidvectorclonaldiversityinadditiontovirusstrain variabilitywhenassessingBYDVtransmissionefficiency.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Barleyyellowdwarfisoneofthemostdamagingcereal dis-easesworldwide.Itiscausedpredominantlybydifferentviruses currently classified into two genera, Luteovirus and Polerovirus of theplantvirusfamily Luteoviridae (Mayo and D’Arcy,1999). BYDVsdisplayahighdegreeofvectorspecificityamongdifferent aphidspecies.EachBYDVstrainistransmittedefficientlybyonlya limitednumberofaphidspecies.Nevertheless,oneaphidspecies canefficientlytransmitmorethanonevirusstrain(Rochow,1959). Four BYDV (GPV, PAV, GAV, and RMV) isolates exist in China according toRochow’s system(Zhou et al., 1987; Wang et al., 2001;Liuetal.,2007).BYDV-GAVissimilartoBYDV-MAV,which istransmittednonspecificallybytheSitobionavenaeandSchizaphis

∗ Correspondingauthor.Tel.:+861062813685;fax:+861062895365.

∗∗ Correspondingauthor.fax:+3210478697.

E-mailaddresses:claude.bragard@uclouvain.be(C.Bragard),jlchen@ippcaas.cn

(J.Chen).

graminum aphids (Wang et al., 2001), whereas the BYDV-GPV strainismorecloselyrelatedtoBYDV-RPV,whichistransmitted bybothS.graminumandRhopalosiphumpadi(Wangetal.,1998). R.padiandS.avenaeefficienttransmitPAV,whereasRMVisbest transmittedbyR.maidis(WangandZhou,2003;Zhouetal.,1984, 1987;WangandZhou,2003).Lastly,theBYDV-GPVstrainhasonly beenobservedinChina(Zhouetal.,1987).

BYDVs are transmittedby aphids in a persistent or circula-tivemanner.Acquisitionandinfectionfeedingperiodsof48hours or more are required tomaximize thetransmission rate.Once acquired,thevirusisretainedfor numerousdays,oftenfor the entirelifeofthevector.Thecirculativeviralroutethroughtheaphid bodyhasbeenpartiallycharacterized.Aphidsacquiretheviruses from infected phloem cells while feeding using their piercing-suckingstylets.Thevirionstravelupthestyletfoodcanalandinto theaphid’sgutlumen.Subsequently,thevirionstraversethe lin-ingofthehindgut,arereleasedintothebodycavity(hemocoel), andbegintocirculateinthehemolymph.Thevirionssuspendedin thehemolymphthatcontactthepairedaccessorysalivaryglands (ASG)areactivelyendocytosedintotheASGcells,transportedinto

0166-0934/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

Fig.1. Locations(Chineseprovince&city)ofSitobionavenaeclonescollection.AH,AnhuiHefei;HD,HubeiDanjiangkou;HDE,HenanDengzhou;HL,HenanLuoyang;HZ,

HubeiZaoyang;JY,JiangsuYancheng;JZ,JiangsuZhenjiang;QX,QinghaiXining;SB,ShaanxiBaoji;SJ,SichuanJiangyou;ST,ShandongTaian;STA,ShanxiTaiyuan;XS,Xinjiang

Shihezi;YH,YunnanHonghe.

thesalivaryduct,fromwhichtheycaninfectpotentialhostplants (Gildow,1985,1993;GildowandGray,1993;Yangetal.,2008). Virus-aphidspecificitylikelyresultsfromtherecognitionbetween virionsofaspecificisolateandtheviralreceptorsintheaccessory salivaryglandsofaparticularaphidspecies(GildowandRochow, 1980;GildowandGray,1993;Peifferetal.,1997;Bencharkietal., 2000).

Althoughtheviraltransmissionefficiencyiswellknowntodiffer betweenaphidspecies(evenifthemolecularmechanismsarestill unknown),themechanismsthatdifferentiatetheabilityofdistinct aphidclonestotransmitvariousBYDVvariantsremainunknown. Atpresent,studiesonintra-specificvariationofBYDVtransmission thatwereperformedmainlywithS.graminumandR.padialways usedonevirusstrain,whichdidnotalwayscorrespondtoorigin ofthetested aphidclones(Gildowand Rochow,1983;Guo and Moreau,1996;Guoet al.,1997a,1997b;Bencharki etal.,2000; Smyrnioudisetal.,2001;Papuraetal.,2002;Dedryveretal.,2005; Duetal.,2007).

GiventhatS.avenaeisoneofthemostcommonanddestructive wheatpestsandisaprimaryvectorforBYDV-PAV,weassessedthe viraltransmissionefficiencyofadiversityofaphidclonesandvirus strainsusingawheatmodelinthisstudy.AlargecollectionofS. avenaeaphidclonesthroughoutChinawereattainedandtestedfor BYDV-PAVtransmissionintwodifferentgeographicisolates,one fromChinaandonefromEurope(Belgium).

2. Materialsandmethods

2.1. CollectionandrearingofS.avenae

FourteenS.avenaeclones werecollectedfromwinterwheat (TriticumaestivumL.)fieldsinthewheat-growingareasofChina, includingtheHuang-Huai winter (autumnsowing)wheat area,

Yangtze River winter (autumn sowing) wheat area, Xinjiang winter-springwheatarea,Qinghai-Tibetspring-winterwheatarea andtheSouthwestwinter(autumnsowing)wheatarea(Fig.1)in 2009.Allclonesweremaintainedseparatelyonseedlingsfroma susceptibleaphidwheatcultivar(cv.Toisond’or).Alloftheaphids wererearedunderconditionsthatminimizedthecontamination riskbetweenclones,i.e.,theaphidisolatesweretransferredtopots ofwheatseedlingsatthesecondstage,andeachpotwasseparated withatransparentplasticcylindercagecoveredwithgauze(12cm heightand24cmindiameter).Theaphidsandplantswere main-tainedinagreenhousecompartmentat22◦C±1,60–70%relative humidityanda16hourlightphotoperiod.

2.2. Virusstrains

The BYDV strains were obtained from Belgium, Louvain-la-Neuve (BYDV-PAV-BE) in 2009 and China, Yangling - Shannxi province (BYDV-PAV-CN)in 2011.They weremaintained sepa-ratelyonwheatseedlingscv.Toisond’orinfestedwithS.avenaeina greenhousecompartmentat20±1◦Canda16hlightphotoperiod.

2.3. RT-PCR

RT-PCR was used to identify the BYDV strain using the primer pair P5 (5-CCAGTGGTTGTGGTC-3) and P3 (5 -GGAGTCTACCTATTT-3)(Duetal.,2007).TotalRNAwasextracted fromtheplantmaterialusingtheRNeasyplantmini-kit(Qiagen, Germany)followingthemanufacturer’sinstructions.cDNA synthe-siswithRT-PCRandPCRwereperformedasdescribedbyRobertson etal.(1991)andDuetal.(2007),respectively.Theamplified prod-uctswerepurifiedandsequenced,andthesequenceswerealigned usingClustalW.ThealignedRNAsequenceswereimportedinto

(3)

W.Yuetal./JournalofVirologicalMethods194 (2013) 1–6 3

Fig.2. RT-PCRproductsofthecoatproteingenefromtheBYDV-PAV-BEisolate

usingtheprimerpairP5andP3.CN:BYDV-PAV-Chinaisolate(503bp);BE:

BYDV-PAV-Belgiumisolate(534bp).

MEGA4.0 (Tamura et al., 2007) for sequence comparison and variationanalysis.

2.4. Viraltransmissionefficiencyassays

Theplants wereassessed forthepresence of theviruswith DAS-ELISA(DSMZ,Braunschweig).Plantswithsimilaroptical den-sities (OD) were used as virus inoculums in the transmission experiments.Two-day-oldS.avenaenymphswerefedanartificial diet (infected tissue ground in a 15% sucrose-containing solu-tion)throughparaffinmembranefora48houracquisitionaccess period.Aphidswereremovedfromthemembrane,andthreewere transferredontoeachtestplant.Thirtyplantswereusedforeach condition.Aftera72hinfectionaccessperiod, theaphidswere killed.Thewheatplantswerestoredinagreenhousefor15days before observation. Transmission by each S. avenae clone was repeatedinthreeseparateexperiments.

ThepresenceoftheBYDV-PAVvirusintheleavesofinfected plantswasassessedusingDAS-ELISAfollowingthemanufacturer’s instructions(DrS. Winter,DSMZ,Braunschweig,Germany).The sampleswereconsideredpositivewhentheODvaluesweregreater thanthreetimesthemeanoftheresultsfromuninfectedcontrol leaves.

2.5. Dataanalyses

Ananalysisofvariance(ANOVAs)wasperformedusingtheGLM procedureintheSASsystem(SASInstituteInc.2001).Aone-way analysisofvariancewithtreatedaphidcloneswasconductedfor allvariables,andthemeanswereseparatedbyTukey’sstudentized rangetest(HSD)atP=0.05.

3. Results

3.1. MoleculardiagnosisofBYDVstrain

Twounique534bpand 503bpRT-PCR productwere ampli-fied for the BYDV strain from Belgium and China (Fig. 2) and were separately sequenced. In comparisons with other known Luteoviridaememberssequences,theBYDVstrainsequencefrom BelgiumwassimilartotheBYDV-PAV-Swedenisolate(Accession number:AJ563413)sequence,andtheBYDVstrainsequencefrom ChinawassimilartotheBYDV-PAV-CNisolate(Accessionnumber: EU332318.1)sequence.ThisstudyemployedtheBYDV-PAVstrain. Geneticdistanceanalysisbasedonthecoatproteingenesequences indicatedthattheBYDV-PAV-BEisolatewasdistinguishablefrom

Fig.3. GeneticdistanceanalysisforBYDV-PAVinthisstudyandotherPAVisolates

basedoncoatproteingenesequences.Accessionnumbersofpreviouslysequenced

BYDVcoatproteingenesequencesareinparentheses.BYDV-RMV(Z14123)was

usedasoutgroup.TheirgeneticdistanceswereanalyzedwithMEGA4.0usingthe

neighbor-joiningmethodwithabootstrapvalueof1000.

theBYDV-PAV-CNisolate(Fig.3),butthenucleotidesofthetwo BYDV-PAVgenewere78%similar(Fig.4).

3.2. Transmissionefficiencyofdifferentaphidclones

Fourteen geographicallyseparateS.avenaeclones were sub-mittedtotransmissionexperiments.Allaphidclonestransmitted theBYDV-PAV-BEisolateandBYDV-PAV-CNisolate(Table1).The average transmissionrate of BYDV-PAV-BE isolatewas 42.06%. A one-way variance analysis of transmission rates revealed a significant effect for the S. avenae clone (df=13, MS= 42.326, F=10.36,P<0.001).TheSTAclonetransmittedat66.67±3.84%, whereas theHDE clone transmitted at only 24.42±2.21%. The most efficient S. avenae clone transmitted BYDV-PAV approxi-matelythreetimesmoreefficientlythantheleastefficientaphid strain.TheaveragetransmissionratefortheBYDV-PAV-CNisolate was35.08%,whichwaslowerthanfortheBYDV-PAV-BEisolate.A significanteffectofthecloneontransmissionratewasobserved (df=13, MS= 8.219,F=23.5, P<0.001). TheSTA clone transmit-tedat56.18±5.22%,whereasetheHDEclonetransmittedatonly 23.55±1.36%.ThemostefficientS.avenaeclonetransmittedthe BYDV-PAVapproximately2.4timesmorethantheleastefficient clone.Thetransmissionefficiencyoftheclonesfromthe middle-lowerreachesoftheYangtzeRiver(AH,HD,HDE,HZ,JZ,JYandSJ) andtheYunnanprovince(YH)werenotsignificantlydifferent,and neitherwerethetransmissionefficienciesoftheclonesfromthe northern(STandSTA)andnorthwestern(QX,SBandXS)regions. Lastly,thetransmissionefficiencyofS.avenaefromthenorthern andnorthwesternregionswashigherthanfromthemiddle-lower reachesoftheYangtzeRiverandtheYunnanprovince.

4. Discussion

BYDVs have been previously demonstrated to display high degreesofvectorspecificityamongdifferentaphidspecies,where each virusistransmittedefficiently byonlyoneorafew aphid species.InChina,Duetal.(2007)reportedthatBYDV-PAVwas effi-cientlytransmittedbyR.padi-LaandS.avenae-LabutpoorlybyS. graminum-La.S.graminum-LaandS.avenae-La.M.dirbodum exhib-itedtransmissionratesof75%withBYDV-GAV,andBYDV-GPVwas transmittedby S.graminum-La andR. padi-Laat approximately 80%and50%,respectively.TheChineseBYDV-PAVandBYDV-GAV isolatesaremembersofLuteovirusanddistinguishablefromtheir relativesisolatedinothercountries.BYDV-GPVisadistinctvirusin China.Itharborsapolerovirus-likecoatproteingeneandisclosest toCYDV-RPVandCYDV-RPSbutlacksaserologicalrelationshipall U.S.isolates(Duetal.,2007).

In thisstudy,theS.avenaecloneswerefromChina,and the BYDV-PAVswerefrom Chinaand Belgium,Europe.The genetic

(4)

Fig.4. AlignmentofBYDV-PAV-BEandBYDV-PAV-YL-CN.Upperline:BYDV-PAV-BE,lowerline:BYDV-PAV-YL-CN.Identity=77.93%(392/503),Gap=5.81%(31/534).

distanceanalysisbasedonthecoatproteingenesequences indi-catedthattheBYDV-PAV-BEisolatewasdistinguishablefromthe BYDV-PAV-CNisolate,but thenucleotidesequences ofthe two BYDV-PAVgeneswere78%similar.TheBelgianvirusstrainwas usedtoassessthetransmissibilityofnon-vector-associatedaphid clones.OurresultsdemonstratedthatallChinesecloneswereable totransmitBYDV-PAV-BEatdifferentefficiencyrates.The trans-missionratesvariedfrom24to67%withtheBYDV-PAV-BEisolate andfrom23to56%withtheBYDV-PAV-CNisolate.Theseresults arepartlyconsistentwithpreviousBYDV-PAVtransmission stud-iesusingdifferentS.avenaeclones.GuoandMoreau(1996)and Guoetal.(1997a,1997b)observedatransmissionrange of0to 76% among 21 clones collected from 4 French regions. Papura etal.(2002)tested39F1progenyand observeda0%to88%of viraltransmissionrates.Notably,theBYDV-PAVsdidnotpossess anynon-vectorstrainsinthisstudy.Indeed,allstrains transmit-tedboth BYDV-PAVisolatesatleastat a20%transmissionrate, whereasanextremelylargeareaforaphidstraincollectionwas investigated. Thisfinding providessome context to theresults from Bencharki et al. (2000), who reported that the transmis-sionefficiency of S. avenaewas generally dependent upon the PAVisolate.Considering apool ofaphidclones,thefinal trans-missionratewasextremelysimilarevenfordifferentBYDV-PAV strains.

Little is known about why such diversity in transmission ability exists.van den Heuvel etal. (1994, 1997) have demon-stratedthatsymbionin,aGroELhomologousproteinsynthesized byendosymbioticbacteriaandsecretedintotheaphidhemolymph, isessentialforefficientLuteovirustransmission.Additionally,they revealedthatsymbioninfromdifferentaphidspeciescouldbindto Luteoviridaeinvitrowithdifferentaffinities.Bencharkietal.(2000) suggestedthattheobservedintraspecificvariabilityin transmis-sionefficiencymayberelated,atleastinpart,todifferencesinthe movementabilityoftheBYDVvirusthroughouttheepithelialcell barriersatthehindgutand/ortheaccessorysalivaryglandsinthe differentclonesortothestabilityofthevirusinthehemolymph. Symbioninoftheinefficientaphidsub-clonesmaybereleasedat lowconcentrationsorexhibitalowbindingaffinityforthevirus. Althoughendosymbiontsmayparticipateinstabilizingvirus par-ticles,Burrowsetal.(2007)didnotbelievethattheydetermine vectorcompetencebecausetheyobservedthatthehindgutand accessorysalivaryglandbarrierstotransmissionweregenetically controlledandseparatedinF2S.graminumhybrid.Further func-tionalexperimentsusingomicstoolsaremeritedtoelucidatethe molecularmechanismsofthevirus-aphidinteractionsandto char-acterizetheparticipatingproteins.

Takentogether,theresultssuggestthatboththeS.avenaeclone and the BYDV-PAVstrains must beconsidered when assessing

(5)

W.Yuetal./JournalofVirologicalMethods194 (2013) 1–6 5

Table1

ComparisonoftransmissionefficiencyofBYDV-PAVbetweenSitobionavenaeclones.

Locality Code TransmissionratesofBYDV-PAV-BE(%) TransmissionratesofBYDV-PAV-CN(%)

Repeat1 Repeat2 Repeat3 Mean±SEb Repeat1 Repeat2 Repeat3 Mean±SEc

Huang-Huaiwinter(autumnsowing)wheatareaandYangtzeRiverwinter(autumnsowing)wheatarea

AnhuiHefei AH 40.00(10d) 33.33(10) 40.00(10) 37.78±2.22CDE 34.19(10) 32.96(10) 30.83(10) 32.66±1.70C

HenanDengzhou HDE 26.67(8) 26.67(8) 20.00(6) 24.42±2.21E 22.89(10) 25.11(10) 22.65(9) 23.55±1.36D

HenanLuoyang HL 40.00(10) 46.67(10) 40.00(10) 42.23±2.23BCDE 31.61(10) 29.32(10) 37.76(10) 32.90±4.36C

HubeiDanjiangkou HD 33.33(10) 26.67(8) 40.00(10) 33.32±3.85DE 27.59(10) 29.36(10) 30.79(10) 29.54±1.60CD

HubeiZaoyang HZ 40.00(10) 33.33(10) 26.67(8) 33.33±3.85DE 30.16(10) 31.08(10) 34.23(10) 31.82±2.13CD

JiangsuYancheng JY 40.00(10) 40.00(10) 33.33(10) 37.78±2.22CDE 37.30(10) 36.82(10) 38.03(10) 37.38±0.61C

JiangsuZhenjiang JZ 26.67(8) 26.67(10) 40.00(10) 31.12±4.44DE 29.61(10) 31.10(10) 33.35(10) 31.35±1.88CD

ShaanxiBaoji SB 66.67(10) 53.33(10) 60.00(10) 60.00±3.87AB 30.61(8) 28.31(10) 36.91(10) 31.94±4.45CDa

ShandongTaian ST 46.67(10) 53.33(10) 46.67(10) 48.89±2.21ABCD 46.46(10) 49.65(10) 42.72(10) 49.61±3.13B

ShanxiTaiyuan STA 73.33(10) 66.67(10) 60.00(10) 66.67±3.84A 50.36(10) 60.45(10) 57.74(10) 56.18±5.22A

Xinjiangwinter-springwheatarea

XinjiangShihezi XS 53.33(10) 46.67(10) 33.33(10) 44.43±5.87BCD 29.39(10) 30.83(10) 36.44(10) 32.22±3.72C

Qinghai-Tibetspring-winterwheatareaandSouthwestwinter(autumnsowing)wheatarea

SichuanJiangyou SJ 46.67(10) 40.00(10) 40.00(10) 42.23±2.23BCDE 36.77(10) 36.81(10) 36.64(10) 36.74±0.09C

QinghaiXining QX 66.67(10) 53.33(10) 46.67(10) 55.56±5.89ABC 38.13(10) 34.12(10) 37.90(10) 36.72±2.25Ca

YunnanHonghe YH 26.67(10) 40.00(10) 26.67(8) 31.12±4.44DE 30.65(10) 28.83(10) 27.73(10) 29.07±1.47CD

Horizontal,Two-samplet-test.

aSignificantlydifferenttransmissionefficiencybetweenthetwoBYDV-PAVisolateareindicated(n=3,P<0.05).Vertical:One-wayANOVA,Tukey’sstrudentizedrange

test(HSD).

bMeanswithincolumnsfollowedbythesameletterarenotsignificantlydifferent(df=13,MS=42.326,F=10.36,P<0.0001).

c Meanswithincolumnsfollowedbythesameletterarenotsignificantlydifferent(df=13,MS=8.219,F=23.5,P<0.0001).

d No.ofviruliferousaphids.

aphid-virusinteractions.Boththeaphidspeciesandtheviralclones shouldbeconsideredforviraltransmissionassessment.Moreover, theheterogeneityofaphidclonesfromacommongivenspecies, suchas S. avenae, is extremely high and thus must be signifi-cantlysampledforthoroughrepresentation.Indeed,ifmostofthe clonesdisplayedextremelysimilarvirustransmissionefficiencies betweentheBYDV-PAV-BEandBYDV-PAV-CNstrains,wherehalf oftheclonesdisplayeda10%orlesschangesinviraltransmission efficiency,andmorethanaquarteroftheclones(4of14clones) exhibiteda20to30%virustransmissionvariationamongthe BYDV-PAVstrains.Moreover,twoclones(fromShaanxiBaojiandQinghai Xining)displayedhighlysignificantchanges(from40to90%rate increases)whenswitchingfromaBYDV-PAVtootherstrain.These resultsweresystematicallyobservedwithBYDV-PAV-BE,whichisa strainthatdoesnotoccurco-geographicallywithothertestedaphid clones.Thisfindingisimportantgiventhataphidsaredispersed regionallyandinternationally.Becauseatwotothreefoldincrease inviraltransmissionisduetoanewefficientaphidcloneina par-ticulararea,extensivedamageandyieldlossescouldoccur.Inthis study,thetransmissionefficiencyofS.avenaefromnorthernand northwesternChinawashigherthanthatfromthemiddle-lower reachesof theYangtze River and Yunnan province. Coinciden-tally,BYDVspredominantlycausedwheatyellowdwarfdiseases throughoutthenorthernandnorthwesternprovincesofChina(Jin etal.,2004).Duetal.(2007)alsodemonstratedthattheclones thatdisplaythehighesttransmissionefficiencywerefromahighly prevalentBYDVarea. Theseresultssuggestthatassessing varia-tionforviraltransmissionbyidentifyingtheaphidspecieswillbe immenselyinterestingforepidemiologicalstudies.

Analysisofaphidtransmissionefficienciesisparticularly sig-nificanceforresearchingitsmigrationpath.Usingmicrosatellite markers,Wang(2007)inferredthat:(i)S.avenaearehighly migra-torythroughoutthemiddle-lower reachesoftheYangtzeRiver wheatgrowingareaofChina;(ii)S.avenaearehighlymigratory throughoutthenorthandnorthwestwheatgrowingareaofChina; (iii)themicrosatellitemarkeranalysesdidnotsupportthe con-clusionthatS.avenaeoverwintersinthesouthandmigratesnorth inthespring.Theaboveconclusioncoincideswiththeresultof ourstudy:(i)thetransmissionefficienciesoftheclonesfromthe

middle-lowerreachesoftheYangtzeRiver(AH,HD,HDE,HZ,JZ,JY andSJ)didnotdiffer;(ii)thetransmissionefficienciesoftheclones fromthenorthern(STandSTA)andnorthwestern(QX,SBandXS) areasofChinadidnotdiffer;(iii)andthetransmissionefficiencyof S.avenaefromthenorthernandnorthwesternregionswashigher thanfromthemiddle-lowerreachesoftheYangtzeRiver.

Inconclusion,furtheranalysisofthevirus-aphidinteractions aremeritedtoelucidatethemechanismsofvirusacquisition, trans-portandavailabilityintheaphidvectorsbyintegratinghighand lowtransmittingefficiencyclonesandcomparingthem.Further researchmayprovidefurthercontextformonitoringthe occur-renceofimportanttransportersand/orreceptorsinefficientaphid vectorsandforidentifyingpotentialinhibitor/competitorsof virus-bindingproteinstocontrolvirusdispersion.Abetterunderstanding ofviraltransmissionefficiencyinaphidsmaychange epidemiolog-icalmodelsthatareappliedtoplantvirusesinregionalareasand mayimprovecontrolstrategiesforaphid-virusassociations. Acknowledgements

This study was supported by the International Cooperation ProjectbetweenChinaandBelgium(2010DFA32810),and Inter-University Targeted Project between Belgium and China (PIC SHANDONG) was funded by the Cooperation universitaire au développement (CUD), and Modern Agro-industry Technology ResearchSystem(2060302).

References

Bencharki,B.,ElYamani,M.,Zaoui,D.,2000.Assessmentoftransmissionabilityof

barleyyellowdwarfvirus-PAVisolatesbydifferentpopulationsof Rhopalosi-phum padi andSitobionavenae. EuropeanJournal ofPlant Pathology106, 455–464.

Burrows,M.E.,Caillaud,M.C.,Smith,D.M.,Gray,S.M.,2007.Biometricalgenetic

anal-ysisofluteovirustransmissionintheaphidSchizaphisgraminum.Heredity98, 106–113.

Dedryver,C.A.,Riault,G.,Tanguy,S.,Gallic,J.F.,LeTrottet,M.,Jacquot,E.,2005.

Intra-specificvariationandinheritanceofBYDV-PAVtransmissionintheaphid Sitobionavenae.EuropeanJournalofPlantPathology111,341–354.

Du,Z.Q.,Li,L.,Liu,L.,Wang,X.F.,Zhou,G.,2007.Evaluationofaphidtransmission

abilitiesandvectortransmissionphenotypesofbarleyyellowdwarfvirusesin China.JournalofPlantPathology89,251–259.

(6)

hemocoeloftheaphidvector,Rhopalosiphumpadi.Phytopathology75,292–297.

Gildow,F.E.,1993.Evidenceforreceptor-mediatedendocytosisregulatingluteovirus

acquisitionbyaphids.Phytopathology83,270–277.

Gildow,F.E.,Gray,S.M.,1993.Theaphidsalivaryglandbasallaminaasa

selec-tivebarrierassociatedwithvector-specifictransmissionofbarleyyellowdwarf luteoviruses.Phytopathology83,1293–1302.

Gildow,F.E.,Rochow,W.F.,1980.Roleofaccessorysalivaryglandsinaphid

trans-missionofbarleyyellowdwarfvirus.Virology104,97–108.

Guo,J.Q.,Lapierre,H.,Moreau,J.P.,1997a.Clonalvariationsandvirusregulationby

aphidsintransmissionofaFrenchPAV-typeisolateofbarleyyellowdwarfvirus. PlantDisease81,570–575.

Guo,J.Q.,Lapierre,H.,moreau,J.P.,1997b.Vectoringabilityofaphidclonesof

Rhopalosiphumpadi(L)andSitobionavenae(Fabr)andtheircapacitytoretain barleyyellowdwarfvirus.AnnalsofAppliedBiology131,179–188.

Guo,J.Q.,Moreau,J.P.,1996.VariabilityamongaphidclonesofRhopalosiphumpadi

LandSitobionavenaeFabr(HomopteraAphididae)intransmissionofthreePAV isolatesofbarleyyellowdwarfviruses.CanEntomol128,209–217.

Jin,Z.B.,Wang,X.F.,Chang,S.J.,Zhou,G.H.,2004.Thecompletenucleotidesequence

anditsorganizationofthegenomeofBarleyyellowdwarfvirus-GAV.Science inChinaSeriesC47,175–182.

Liu,F.,Wang,X.F.,Liu,Y.,Xie,J.,Gray,S.M.,Zhou,G.,Gao,B.,2007.AChineseisolate

ofbarleyyellowdwarfvirus-PAVrepresentsathirddistinctspecieswithinthe PAVserotype.ArchivesofVirology152,1365–1373.

Mayo,M.A.,D’Arcy,C.J.,1999.Familyluteoviridae:areclassificationofluteoviruses.

In:Smith,H.G.,Barker,H.(Eds.),TheLuteoviridae.CABIPublishing,NewYork, pp.15–22.

Papura,D.,Jacquot,E.,Dedryver,C.A.,Luche,S.,Riault,G.,Bossis,M.,Rabilloud,T.,

2002.Two-dimensionalelectrophoresisofproteinsdiscriminatesaphidclones

ofSitobionavenaedifferinginBYDV-PAVtransmission.ArchivesofVirology147, 1881–1898.

Peiffer,M.L.,Gildow, F.E.,Gray,S.M.,1997.Twodistinctmechanismsregulate

luteovirustransmissionefficiencyandspecificityattheaphidsalivarygland. JournalofGeneralVirology78,495–503.

Robertson,N.L.,French,R.,Gray,S.M.,1991.Useofgroup-specificprimersandthe

polymerasechainreactionforthedetectionandidentificationofluteoviruses. JournalofGeneralVirology72,1473–1477.

atureonvariationintransmissionofaBYDVPAV-likeisolatebyclonesof RhopalosiphumpadiandSitobionavenae.EuropeanJournalofPlantPathology 107,167–173.

Tamura,K.,Dudley,J.,Nei,M.,Kumar,S.,2007.MEGA4molecularevolutionary

genet-icsanalysis(MEGA)softwareversion4.0.MolecularBiologyandEvolution24, 1596–1599.

vandenHeuvel,J.F.J.M.,Bruyere,A.,Hogenhout,S.A.,Ziegler-Graff,V.,Brault,V.,

Verbeek,M.,vanderWilk,F.,Richards,K.,1997.TheN-terminalregionofthe

luteovirusreadthroughdomaindeterminesvirusbindingtoBuchneraGroEL andisessentialforviruspersistenceintheaphid. JournalofVirology71, 7258–7265.

vandenHeuvel,J.F.J.M.,Verbeek,M.,vanderWilk,F.,1994.Endosymbiotic

bac-teriaassociatedwithcirculativetransmissionofpotatoleafrollvirusbyMyzus persicae.JournalofGeneralVirology75,2259–2565.

Wang,M.B.,Cheng,Z.,Keese,P.,Graham,M.W.,Larkin,P.J.,Waterhouse,P.M.,

1998.Comparisonofthecoatprotein,movementproteinandRNApolymerase

genesequencesofAustralianChinese,andAmericanisolatesofbarley yel-lowdwarfvirustransmittedbyRhopalosiphumpadi.ArchivesofVirology143, 1005–1013.

Wang,X.,Chang,S.,Jin,Z.,Li,L.,Zhou,G.,2001.Nucleotidesequencesofthecoat

proteinandreadthroughproteingenesoftheChineseGAVisolateofBarley yellowdwarfvirus.ActaVirologica45,249–252.

Wang,X.F.,Zhou,G.H.,2003.Identificationofaproteinassociatedwith

circula-tivetransmissionofBarleyyellowdwarfvirusfromcerealaphidsSchizaphis graminumandSitobionavenae.ChineseScienceBulletin48,2083–2087.

Wang,Y.M.,2007.MigrationandReproductiveModeofSitobionMiscanthi(tak.)

InferredFromPopulationGeneticStructureUsingMicrosatellites.China Agri-culturalUniversity,Beijing,China(PhDthesis).

Yang,X.L.,Thannhauser,T.W.,Burrows,M.,Cox-Foster,D.,Gildow,F.E.,Gray,S.M.,

2008.Couplinggeneticsandproteomicstoidentifyaphidproteinsassociated

withvector-specifictransmissionofPolerovirus(Luteoviridae).Journalof Virol-ogy82,291–299.

Zhou,G.H.,Cheng,Z.M.,Qian,Y.T.,Zhang,X.C.,Rochow,W.F.,1984.Serological

iden-tificationofluteovirusesofsmallgrainsinChina.PlantDisease68,710.

Zhou,G.H.,Zhang,S.X.,Qian,Y.T.,1987.Identificationandapplicationoffourstrains

Figure

Fig. 1. Locations (Chinese province &amp; city) of Sitobion avenae clones collection. AH, Anhui Hefei; HD, Hubei Danjiangkou; HDE, Henan Dengzhou; HL, Henan Luoyang; HZ, Hubei Zaoyang; JY, Jiangsu Yancheng; JZ, Jiangsu Zhenjiang; QX, Qinghai Xining; SB, Sh
Fig. 3. Genetic distance analysis for BYDV-PAV in this study and other PAV isolates based on coat protein gene sequences
Fig. 4. Alignment of BYDV-PAV-BE and BYDV-PAV-YL-CN. Upper line: BYDV-PAV-BE, lower line: BYDV-PAV-YL-CN

Références

Documents relatifs

We consider a model for solar wind plasma as a turbulent medium which consists of a mixture of nonlinear Alfv´en waves and quasi-two dimensional MHD vortices.. The lat- ter

A computer code, BetaShape, has been developed at the LNHB to calculate the beta spectra for allowed and forbidden unique transitions according to the assumptions described in

Field experiment, metalloids, metal translocation, rosemary, stress responses, trace metals.. Introduction

79 ةدصرلأل ةمئلاو ةيفاك تابثا ةلدا ىلع لوصحلا قباسلا ققدلما لمع قاروأ صحفب كلدو ةيحاتتفلا ريرقتلا نوك ةلاخ يفو ىلع لادعم قباسلا ققدلما ةيلاحلا ةرتفلا

Puis, dans certains contextes, les pratiques et les abords doivent être réévalués : une relation intime peut se faire jour avec la ville et le camp apparaître sous le signe

Des arguments centrés sur les inégalités de coût de la protection sociale d’entreprise entre les grandes entreprises et les plus petites unités peuvent être avancés pour

Emperors used the traditional forms of written communication, namely corre- spondence and edicts, which, as in republican times, were to be read by a town crier (praeco) to the

Viguié, Global units modulo elliptic units and ideal class groups. to appear