• Aucun résultat trouvé

A multi-scale method to assess pesticide contamination risks in agricultural watersheds

N/A
N/A
Protected

Academic year: 2021

Partager "A multi-scale method to assess pesticide contamination risks in agricultural watersheds"

Copied!
17
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 9954

To link to this article : DOI :

10.1016/j.ecolind.2013.09.001

URL :

http://dx.doi.org/10.1016/j.ecolind.2013.09.001

To cite this version :

Macary, Francis and Morin, Soizic and Probst,

Jean-Luc and Saudubray, Frédéric A multi-scale method to assess

pesticide contamination risks in agricultural watersheds. (2014)

Ecological Indicators, 36 . pp. 624-639. ISSN 1470-160X

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

A

multi-scale

method

to

assess

pesticide

contamination

risks

in

agricultural

watersheds

Francis

Macary

a,∗

,

Soizic

Morin

b

,

Jean-Luc

Probst

c,d

,

Frédéric

Saudubray

a

aIrstea,URADBXAménitésetdynamiquesdesespacesruraux,50avenuedeVerdun,F-33612CestasCedex,France bIrstea,URREBXRéseaux,épurationetqualitédeseaux,50avenuedeVerdun,F-33612CestasCedex,France

cUniversitédeToulouse,INPT,UPS,LaboratoireEcologieFonctionnelleetEnvironnement(EcoLab),ENSAT,Avenuedel’Agrobiopôle,31326 Castanet-Tolosan,France

dCNRS,EcoLab,31326Castanet-Tolosan,France

Keywords: Agriculture GIS Remotesensing Pesticides Phytopixal Spacescaling

Watercontaminationrisk

a

b

s

t

r

a

c

t

Theprotectionofwaterisnowamajorpriorityforenvironmentalmanagers,especiallyarounddrinking pumpingstations.Inviewofthenewchallengesfacingwateragencies,wedevelopedamethoddesigned tosupporttheirpublicpolicydecision-making,atavarietyofdifferentspatialscales.Inthispaper,we presentthisnewspatialmethod,usingremotesensingandaGIS,designedtodeterminethe contami-nationriskduetoagriculturalinputs,suchaspesticides.Theoriginalityofthismethodliesintheuse ofaverydetailedspatialobject,theRSO(ReferenceSpatialObject),whichcanbeaggregatedtomany workingandmanagingscales.Thishasbeenachievedthankstothepixelsizeoftheremotesensing,with agridresolutionof30m×30minourapplication.

Themethod–calledPHYTOPIXAL–isbasedonacombinationofindicatorsrelatingtothe environmen-talvulnerabilityofthesurfacewaterenvironment(slope,soiltypeanddistancetothestream)andthe agriculturalpressure(landuseandpracticesofthefarmers).Thecombinationoftheseindicatorsforeach pixelprovidesthecontaminationrisk.Thescoringofvariableswasimplementedaccordingknowledge inliteratureandofexperts.

Thismethodisusedtotargetspecificagriculturalinputtransferrisks.Theriskvaluesarefirstcalculated foreachpixel.Afterthisinitialcalculation,thedataarethenaggregatedfordecisionmakers,according tothemostsuitablelevelsoforganisation.Thesedataarebasedonanaveragevalueforthewatershed areas.

InthispaperwedetailanapplicationofthemethodtoanareainthehillsofSouthwestFrance.We showthepesticidecontaminationriskbyinareaswithdifferentsizedwatersheds,rangingfrom2km2

to7000km2,inwhichstreamwateriscollectedforconsumptionbyhumansandanimals.Theresults

wererecentlyusedbytheregionalwateragencytodeterminetheprotectionzoningforalargepumping station.Measureswerethenproposedtofarmerswithaviewtoimprovingtheirpractices.

Themethodcanbeextrapolatedtodifferentotherareastopreserveorrestorethesurfacewater.

1. Introduction

Forseveraldecades,powerfulagriculturalpressureson envi-ronmentsofvaryingvulnerabilityhaveledtothecontaminationof waterbodiesbyarangeofdifferentpollutants:fertilisers, primar-ilynitrogen(Henin,1980;Schröderetal.,2004;Perrinetal.,2008) andpesticides(VanderWerf,1996;Barriuso,2004)areamongthe bestknown.Atthesametime,societyisdemandinganevermore stringentprotectionoftheenvironment.Inresponsetothis,public authoritieshaveimplementednumerousregulatoryandincentive

∗ Correspondingauthor.Tel.:+33557890845. E-mailaddress:francis.macary@irstea.fr(F.Macary).

measures,someofwhich directlyconcernagriculturalactivities

(CEE,1991a,b,1998).

In1992,theEuropeanEconomicCommunityimplementedthe first majorreform of the EuropeanAgricultural Policy (Deneux

andEmorine,1998;Weyerbrock,1998).Theaimwastodecrease

theagriculturalbudgetof ECCwithalimitationofproductions, and to increase the environmental protection (surface waters, groundwater,soils,andbiodiversity).Thisnewpolicyledto agri-environmentalmeasures,withsubsidiesforfarmerswhodecided toadoptenvironmentalprotectionmeasures.Theyear2000saw thearrivaloftheEuropeanFrameworkDirectiveonWater,which requiresallbodiesofwatertobeinagoodecologicalcondition by2015.TheDirectivesetoutchemicalandbiologicalnormstobe achievedbyEUstates(EC,2000).

(3)

Differentassessmentsofthesepoliciesindicatethatthe sus-tainabilityofwatermanagementinruralareascanbeimproved. Accesstodecision-makingtoolsatdifferentspatialscaleswillallow abetteranalysisofrisks,andhelpintheselectionofthosezones wherecertainmeasuresshouldbeprioritised.Changesin agricul-turalpracticestendtotakeplaceatfarmandlandparcellevel.This intermediatescale(smallarea)isusefulfortheimplementation ofactionsbylocalgroups(farmerswithinthesamesmall water-shed,localfishingassociations,etc.).Onthecontrary,itisatthe scaleofwateragencyhydrologicalareasthatdifferentmeasures forwaterprotectionaredefined.Forinstance,Frenchpolicy mak-ersrecentlydecidedtoprotectpumpingzonesforsurfacewaterby creatingterritorialactionplans(TAP).ATAPincludesmeasuresin whichparticipants(principallyfarmers,butalsomunicipalitiesand inhabitants)arerequiredtoreducethecontaminantstransferred intosurfacewater.SomeTAPsareconcernedwiththeextensionof culturesuccessionsonthesameparcelofland(fourorfivedifferent cultures,beforereturningtothefirst),reducingdosesoffertilizers andpesticides,adoptionofintermediatecropsinwinterbank pro-tection,theBestManagementPracticesfortillage,etc.Somegood environmentalpractices,liketheintroductionofvegetativefilter stripsalongstreams,canalsobemademoreeffectivebythe devel-opmentofriparianzones,whenpossible.Inthesecases,managers givesubsidiestofarmers,andthereforeneedaccurateinformation aboutpotentialriskzoningbeforedrawinguptheirTAP.

Upuntilnow,agri-environmentalindicatorsandhydrological modelsusedtoassesstheconditionofwaterresourcesandthe potentialforcontaminationbypollutants(cf.Section2.1),haveonly providedinformationatasinglespatiallevel.Thesebasic indica-torswereusuallyappliedattheagriculturalparcelscaleand–more rarely–atthewatershed levelespeciallythose oflarge dimen-sion,wherethereareimplicationsforenvironmentalmanagement

(Devillersetal.,2004).Thesemodelscannotbeappliedtoother

scales,becausedatafortheindicatorsaregenerallycalculatedatthe parcellevel.Thiskindofmodelstendstobeapplicabletobest man-agementpracticesinfarming.However,forpublicmanagersand wateragencies,theimplementationofagri-environmentalpolicies requiresdecision-makingtoolsforlargerscales(riverbasin,region, etc.)(Gardi,2001).

Toachievethis, thevariables, geographicalobjectsandbasic indicatorsused,mustbeadaptedtothetransferofspatialscales.In termsofdefinitions,weconsiderthatthevulnerabilityofan envi-ronment(surfacewaterforinstance)representsthelikelihoodthat itwillbeaffectedbypollutants.Ontheotherhand,thesensitivityof theenvironmentallowsustoevaluatehowthisenvironmentmay respondtocontamination.

Thekeyenvironmentalissuesconcerntheconservation, preser-vationandrehabilitationofthevarioususesofawaterresource. Indeed,differentusesofaquaticenvironmentsmaybeaffectedby occasionalanddiffusepollutions:abstractionsfordrinkingwater supplies,waterresourcesforirrigationandrecreationaluses (fish-ingandbathing). Theriskarisesfromthecombinationofthese environmentalissues, thevulnerabilityofaquaticenvironments andthedifferentpressuresbeingexperienced.

Thevulnerabilityofanenvironmentplaysanimportantrolein thequalityofsurfacewaterusedbyhumansandanimals.Pollution observedinruralwatershedsmainlyoriginatesfromagricultural inputs(pesticides,nitrogenfertilizers).Environmentalrisk assess-mentdependsonthelevelofobservationbythepeopleinvolved andthuscanbecarriedoutatdifferentspatialscales,according totheissuebeingconsidered:e.g.decision-makingscales, agricul-turalpracticesorwatercontamination.Thus,arisk(CORPEN,2003) allowsanestimationofthepossibilityofchangestospecificuses, suchasthequalityofwaterforconsumption.

Thesedifferentspatialentitiesmaybesuperimposedand fit-tedtogether:nested watershedswhen eachentity iscontained

in anotherlargerentity(a “Russiandoll” approach),or become embedded,when onlyapartoftheterritoryorspatialentityis includedinanotherterritoryorentity.Particularlyforagricultural managemententities,e.g.farmingparcels,farmsandoperational infrastructures,the sametypes of spatialentities very oftenfit together.

The problem of scale changes associated with agri-environmental risks is now a recurrent topic in sustainable development discussions; it is both a research concern and a prerequisiteforsupportingstakeholdersindecision-making.

Theaimofthispaperistopresentanewspatialisedmethod, for assessing thecontamination risk of surface waters by agri-culturalpesticideoverinterconnectedareasofdifferentsizesin differentcountries,implementedbycombiningdifferent indica-tors.Ourmainobjectiveistoprovideaspatialisedmethodusinga GIS,whichmustbepreciseenoughtoobtainefficientresults,and alsotobesuitableforenvironmentalmanagersandstakeholdersin theirdecisionmaking.Unlikehydrologicalmodels,wedonotconsider theassessmentofcontaminantflux,whichneedaresolutionof com-plexequations,butadiscriminationofriskareasbyasuitablemethod forwaterandenvironmentalmanagers.

Afterareviewofthedifferentmethodsusedforassessingwater contaminationrisks,andforchangingspatialorganisational lev-els,wewillexplainthestructureofthemethodthatwedeveloped (Section2.2).Wewillthendetailthetestapplication,carriedoutin southwestFrance,whereweusedourmethodto,determine pesti-cidecontaminationrisksforsurfacewaterdestinedforhumanand animalconsumption.

2. Consideringlevelsofspatialorganisationalinrisk assessment:areview

2.1. Modelsandindicatorsusedforcharacterisingwater contaminationrisks

Bio-physicalmodelsandagri-environmentalindicatorsare gen-erally used for assessing the contamination risk to water in watersheds(TongandChen,2002).However,theseapproachesare specifictoasingleobservationscaleandtheycannotbedirectly transferredtootherscales.

Bio-physicalmodelsevaluatetheinfluenceofafactorandits modalities on thepollutants fluxes observed at theoutlet of a riverbasin.Scenariotestingisfrequentlyusedtoprovideanswers instudiesofcomplex phenomena.Thesemodelsprovideuseful resultsfortheestimationofpollutantsflows,e.g.theEPICmodel (ErosionProductivityImpactCalculator)(Williams,1990),SWAT model(Soil&WaterAssessmentTool)(Arnoldetal.,1998),STICKS model(Brissonetal.,2003)andTNT2model(Topography-based NitrogenTransfersandTransformations)(Beaujouanetal.,2002).

Wohlfahrt et al.(2010) implemented theMHYDAS model

(dis-tributed hydrological model for agrosystems) to carry out risk assessmentsfor diffusepollution in diagnosticsas wellas test-mitigationstrategies ina smallwatershed.Ferrantetal.(2011)

haverecentlydevelopedtheSWATandTNT2modelsfor measur-ingnitrogen fluxesin South-WestFrance.Boithias etal.(2011)

andLescotetal.(2011)usedtheSWATmodeltoassesspesticides

fluxesinthesamearea.LimandEngel(2003)refinedtheNAPRA (NationalAgriculturalPesticideRiskAnalysis)modelintheUSA. Othermodelsarecurrentlyunderdevelopmentforthesameor similarpurposes(Gascuel-Odouxetal.,2009a,b).Thesecombine agronomical-hydrologicalmodels(whichtakeintoaccount agricul-turalpracticesatrelevantspatio-temporalscales),theinteraction withthephysicalenvironment,andtheclimate(Vazquez-Amabile

andEngel,2008).However,itisoftendifficulttosetparameters

(4)

usefulaswayofhelpingresearcherstobetterunderstandphysical processesthanasadecision-makingsupporttoolformanagersof publicservices.

Agri-environmentalindicatorsarebasedondescriptive param-eters thatsummarise the complexityof situations or processes

(Bockstaller et al., 1997).They are used tomonitor and assess

the impacts of agriculture on the environment (Buczko and

Kuchenbuch,2010).

Mostofthemarebuiltatthe“farmingparcel”level(Devillers etal.,2004),for exampleADSCOR(AdditiveScoring),EIQ (Envi-ronmentalImpactQuotient),EPRIP(EnvironmentalPotentialRisk IndicatorforPesticides),GUS(GroundwaterUbiquityScore),I-Phy (IndicateurPhytosanitaire),PEI(PesticideEnvironmentalIndex),or thePhosphorusIndex(Bechmannetal.,2005),thoughsomecanbe usedatthe‘farm’level:GUS,PEI,RMI(RiskManagementIndicator). Bycombiningtheseindicatorswithgeographicalinformation sys-tems(GIS)–normallyatthesmallwatershedscale–itispossibleto establishenvironmentalriskzonesforsensitiveenvironments.GIS havebeencommonlyusedsincethe1990stodeterminethe rela-tionshipsbetweenagriculturalactivities,includinglanduseand waterqualityatthewatershedscale(SrinivasanandArnold,1994;

XinhaoandYin,1997;AspinallandPearson,2000).Theythus

repre-sentadecision-makingsupporttoolforthechoiceofmeasurestobe implementedbymanagersofpublicservices(Schröderetal.,2004;

AlkanOlssonetal.,2009).Additionally,someindicatorsassess

agri-culturallandscapesforwater qualityprotection(Gascuel-Odoux

etal.,2009a,b).

However,alloftheseindicatorsarebuiltata certainspatial organisationallevelanddonotallowforchangingofspatialscales. Hence,theygenerallycannotaddressthequestionsof environmen-talmanagers.

2.2. Methodsforchangingspatialorganisationallevels

Scalereferstothespatialdimensionsatwhichentities,elements andprocessescanbeobservedandcharacterised(Dumanskietal., 1998).Thisconceptualspacerelatestostudycompartmentsand threelevelsaretraditionallyincluded:theglobalscale,the inter-mediatescaleandthelocalscale.

Theglobalscaleconcernstheenvironmentandmajorsystems (oceans,atmosphereandcontinents)forwhichthedescriptiongrid isapproximatelyonehundredkilometres.

Theintermediateor“regional”scalecorrespondstotheregional engineeringscaleinparticular,andallowstheanalysisof interac-tionsbetweenmankindandtheenvironment.Thisscaletakesinto accountthecharacteristicvalues relatingtodifferentprocesses, thegeomorphological and hydrologicalorganisation ofareas at theirbestlevelofconsistency(e.g.awatershed)andthelevelof anthropogenicactivities.Therefore,agri-environmentalissuesare generallysituatedatthisintermediatescalewhichvariesfroma fewsquarekilometrestoseveralthousand.Thisexplainswhy dif-ferentmethodscanbeused.

Thelocalscaleconcernstheprocessesthemselves;thesemay bebiological,suchasplantgrowth,orphysico-chemical,suchas riverinetransportsofsoluteandparticulateelements.

Thespatialscaletransmitstheideaofcontinuity.Incontrast, a spatialorganisationlevel (SOL)corresponds toa spatialentity andthecharacteristic values of aprocess orof a phenomenon. Thisnotionoforganisationallevelscansimultaneouslytakeinto accountthehandlingofecological,agriculturaland administra-tiveprocesses.Fourtypesofspatialorganisationallevelscanbe identifiedintheagri-environmentalfield:

-Thelevelofeco-hydrologicalorganisation(watershed,landscape unit);

-Thelevel of socio-economicorganisation:agriculturalactivity (farmingparcel,farm,operationalinfrastructure);

-Thelocalterritoryorganisationwithacollectiveidentity(towns andotherurbanareas)

-The politico-administrative organisation or decision-making levelforenvironmentalmanagers(hydrographicareaorbasin, region).

In this paper, we will look at the eco-hydrological and politico-administrativeorganisation,asthisisthelevelatwhich contaminationriskassessmentmustbedevelopedtoaid environ-mentalmanagersintheirdecisionmaking.

2.2.1. Relationshipsbetweendatasourcesandspatialscales Therelationshipsandinterconnectionsbetweenspatialentities without commongeographical boundaries are sources of com-plexityinagri-environmentalapproaches(Dumanskietal.,1998;

Dalgaardetal.,2003).Forexample,statisticaldataderivedfrom

theFrenchagriculturalcensus(RecensementAgricole)cannotbe superimposedoverahydrographicdivision.

Specificsourcesofdata(parcelsurveysandfarmsurveysin addi-tiontosite,hydrological,statisticalandremotesensingsurveys) areobtainedatdistinctobservationscales(Bocketal.,2005).The sameappliestodifferentenvironmentaldiagnosismethods(parcel reports,specificfarmreports,indicators,spatialanalyses,models). Ratherthanremainingatagivenlevel,achangeofscaleisthe processofchangingfromoneorganisationalleveltothenext.To doso,thevariationsinoperation,schematisation,descriptorsand thepossiblelinksbetweentheconsecutivelevelsmustbe

spec-ified(Puechetal.,2003).ThedevelopmentofGIShasfacilitated

theprocessingofthesemulti-sourceand multi-scalardatabases

(Balrametal.,2009).

The key aim is to have access to relevant information at thedifferentspatialscales,whileprocessingdatawhichcanaid decision-makingforthemanagersofruralareas.Relationshipsexist betweenthestudyscales,data,methodsused,theexpectedresults andthedataacquisitionmodes(Cotteretal.,2003;DixonandEarls,

2009).

2.2.2. ReferenceSpatialObject

The complex interaction between the spatial organisational level(establishedbythedecision-makinglevel)andthespatial het-erogeneity(tobemeasuredorrepresented)isamajordifficultyin theagri-environmentalfieldandespeciallyinhydrology.This diffi-cultyismagnifiedifspatialheterogeneitiesneedtobeevaluatedat multiplescalesofdecision-making.Woodetal.(1988)proposedthe “representativeelementaryarea”REAconcept,orReferenceSpatial Object(RSO),whichtakesintoaccountthataphenomenonbeing studiedcorrespondstoaworkingareawithanassociatedscale. Whenthere isa goodmatch,themodellingor explanationofa phenomenonisbothbetterandeasiertounderstand.Thismethod isproposedfordefiningthesizeofawatershedthatisadaptedto hydrologicalstudies.

AReferenceSpatialObjectordiscriminationunitcanthenbe associatedwitheachofthesescales.ThechoiceofanRSOisthe resultofacompromisebetweenitsappropriatenessatthescalein question(optimalresolution),anditsabilitytoaccuratelydefine theproblemsofdiffusepollution.

Changingfromonescaletoanothercausesmajorproblems.For example,thisoccurswhentheobservationsofagricultural pollu-tiononbasicparcelsarerelatedtothemeasurementsofpollutant productsattheoutletsofmajorwatersheds(Puechetal.,2003).This problemmaybeaccentuatedifweconsiderthetemporal dimen-sion(difficultyofcomparingindicatorsofpressureandindicators ofconditionduetotheretentionandsaltingoutofmoleculeswhich maypersistoverseveraldecades).

(5)

Fig.1.Differentspatialorganisationallevels,dataandmethods.

Onewaytoresolvetheproblemofscalechangingistoinclude severalorganisationallevelswhencreatinganindicator(Bocketal.,

2005).

Indicatorsconstituteanimportantelementinthechangefrom onescaletoanotherand arebecomingincreasinglywidespread inthehandlingofagri-environmentalissues(Steinetal.,2001;

Riley,2001).Theymayhave asingleormultiplecomponent(s).

Riley(2001)emphasisesthefactthatintheagriculturalandnatural

resourcesector,thecreationofasingle-componentindicatoristhe dominantapproach.Incontrasttothesingle-componentindicator, multi-componentindicators(VanCauwenberghetal.,2007)may becoefficientsofvariationoracomplexfunctionofthesedifferent components(Riley,2001).

2.2.3. Methodsforchangingspatialscales

Differentmethodscanbeusedaccordingeachcontext(Macary

andVernier,2007a).

2.2.3.1. Specificindicatorsforeachscale. Thelevelofspatial organi-sationbeingstudieddeterminesthemethodsthathavetobeused. Foreachsituation(Fig.1), theresponsetothequestionofscale changeisprovidedbyachangeofdataand,consequently,ofthe environmentalindicatorsspecifictoeachspatiallevel(Riley,2001;

Steinetal.,2001).Thisisthemaintypeofstudycarriedoutto

datebythedifferentauthors.Indicatorsarebuiltatdifferentlevels: parcelsofland,farms,watersheds,andadministrativeterritories

(Macaryetal.,2007).

2.2.3.2. Aggregativeanddisaggregativeapproaches. Thedescription ofphenomenawithinaspatialobjectoftenrequiresworkingat theprevious or following organisational level. Aggregative and disaggregative methods often originate from these inter-scale approaches(BlöschlandSivapalan,1995).

Disaggregation is used to determine the behaviour of con-stituentcomponentsbasedonthebehaviourofthewholeentity

(Riitters,2005).BlöschlandSivapalan(1995)describe

disaggrega-tionasbeingthetransitionfroma“meanvalue”inaparticularfield toitsdetaileddistributionwithinasectionofthisfield.

Aggregationisusedtomakethetransitionfromtheconstitutive componentstothewholeentity.However,inthiscase,the transpo-sitionoftheprocessesidentifiedatonescaleoffersnoguaranteesof validityatanotherscale.Furthermore,anotherdifficultyrelatesto theinteractionbetweenseveralprocesses.Whilethe representa-tionofasingleprocessmaybeenvisaged,theinclusionofmultiple processesismorecomplex.

Aggregationfollowsthesamelogicasanindicatorwhich con-densesrawinformationintosyntheticinformation.

2.2.3.2.1. Method of direct aggregation at each RSO observed. Thefirstmethodconsistsofaggregating theelementarydataat eachRSOobserved.

Forexample,withagri-environmentalinformation,scores qual-ifyingsimple indicators allocatedtoeach parcelof landcan be combinedatthescaleobserved(eachwatershedlevel).Thisform ofaggregationcanbeusedtotakeintoaccountdifferent physi-calprocessesatthescalesconsidered.Themaindisadvantageof thisapproachisthepotentiallossofinformationduetopremature aggregation.Thebestsolutionforkeepingasmuchofthe informa-tionaspossibleistochooseasmallRSO,calculatetheindicatorsat thisscale,andultimatelyachieveaggregationattheorganisation levelselectedbymanagersandactors.

Some authors have previously used this kind of aggrega-tion,throughaGISprocess,ofsimulationunits,assessedbythe agro-hydrologicalmodelSWAP(soil-water-atmosphere-plant),for upscalingofwaterproductivity,fromfieldstoregions(Wesseling

andFeddes,2006).

2.2.3.2.2. Choiceofacommonelementforthedivisionofspace ateach scale(Aggregationanddisaggregation). Anothermethod considersacommonRSOatthedifferentscalesfor environmen-talmanagersandlocalparticipants.Theadoptionoftheunitat thesmallestpossibleresolutionallowsfortheconservationofthe mostdetailedinformation,regardlessofthescalethatisused,thus avoidingtheprematureaggregationofinformation.

Eachelementisassociatedwiththevaluecalculated,basedon theinformationrelatingtothesimpleindicators.Theaggregation, accordingtoanarithmeticalorstatisticalprocess,isthen exclu-sivelybasedontheseelementsforeachofthescalesdeterminedin ordertoallowforthereadingandinterpretationoftheresults.The

(6)

accuracyofthisspatialisedmethodvariesaccordingtothelevelof spatialorganisation.Itisallthemoreimportantwhenthereisa smallarea,giventheavailabledataandtheirdetails.Thismeans thatitispossibletosupplementtheinformationaccordingtothe dataavailableateachorganisationallevel.

Dalgaardetal.(2003)distinguishedthreeaggregation

proce-dures: the linear procedure, the non-linear procedure and the “hierarchical”procedure.Thelattermakesiteasiertoovercome thedifficultiesofinteractionsbetweenprocesses.

Thelinearaggregationprocedureisthemostcommonlyknown. Itconsistsofthesumof itsparts.In thenon-linearaggregation procedure,thevariabletakenintoaccount,cantakedifferent val-ues,accordingtoseveralthresholds.Theaggregationmusttake intoaccounttheintrinsiccharacteristicsofthefundamentalunits. Thehierarchicalproceduretakesintoaccounttheintrinsic charac-teristicsofeachelementofthesystemandalsotherelationships betweentheseelements.

Disaggregativeapproachesdependlargelyonthedataset avail-able.Thegeneralmethodforthedisaggregationofinformationis spatialinterpolation.Thismethodreliesontoolsdirectly character-isingtheformofspatialorganisationandincludesalargenumber oftechniques.Someindicatorsareusedtomeasuretheshapeofa spatialdistribution.Here,theautocorrelationindicesarethemore traditional.Othermethodsofgeostatisticsusespaceinamorelocal way,suchasvariograms.Thesecanidentifybreaksinthe distribu-tionofdataorinterpolationtechniquesandkriging(Ernoultetal.,

2003).

2.2.3.2.3. Other aggregation processes, with multi-criteria approaches. Methods called Multi-Criteria Decision Aiding (MCDA) methods, or Multi-Criteria Decision Analysis methods, weredevelopedinthe1970s(Roy,1990).Theyhavebeenusedin severaldomains(Schärlig,1996).Sincetheearly1980s,theyhave beentestedwithsuccessinthefieldofenvironmental manage-mentissues(Simos,1990).Inmostcases,thecriteriaaggregation processwasbasedonasystemofoutranking(Maystreetal.,1994). Later,theMCDAwascoupledwithGIS,duetothespatialnatureof environmentalissues.

Malczewski(1999,2006)carriedoutanimportantsurveyof

lit-eraturewithregardtoGIScombinedwithMCDAandtheirmany applications.Twomaintrendsweredeveloped.Thefirstinvolved combiningGISsoftwarewithMCDAmethods,whichmakesbest useof theperformance of each system. Althoughvery precise, this method involves many implementations between the two processes.Then,whenthesemethodswereappliedonlarge ter-ritories,anintegratedcouplingwithGISsoftwarewasdeveloped, byadditionintheGISofaMulti-CriteriaEvaluation(MCE)function

(Eastman,2001,1993).TheMCEtakeintoaccountafuzzylogic,

andacriteriaweighting(Saaty,1990),likeinclassicalmethods: bythisway,theGISbecomesGAS(GeographicAnalysisSystem). ClarklabsofClarkUniversityinUSAdevelopedtheIDRISIsoftware

(Eastmanetal.,1993).Itwasusedinmanyenvironmental

applica-tions,likeanassessmentoflanduseinalargeregion(Paegelowand

Olmedo-Camacho,2005;PaegelowandCamacho-Olmedo,2008).

3. Materialsandmethods

3.1. Studyareaanddevelopmentcontextoftheriskassessment method

In South western France, the Coteaux de Gascogne area is drainedby17rivers.Thefivelargestriversinlengthandfloware fromWesttoEast:Baïse,Gers,Arrats,GimoneandSave.Theyare alllefttributariesoftheGaronneRiver,locatedbetweenthe Pyre-neesMountainsandtheAtlanticOcean.Alltheserivershavetheir sourceintheLannemezanplateau,andtheyaredraining.Acanal

betweentheNesteRiverandthesourcesoftheseGascognerivers wascreatedinthesecondpartofthe19thcenturytoreplenish theseriverswithwaterduringthedryperiod.Theirwatersheds coverseveralthousandsofsquarekilometres.Overthelasttwo decades(1985–2004),themeanannualrainfallwas691mmwith evapotranspirationof819mm.

Thenaturalhydrologicalregimeoftheseriversispluvialand thelowflowperiodcorrespondstosummer(JulytoSeptember) andtheinterannualvariabilityoftheirmoduleisveryhigh(Probst

andTardy,1985).

Thisgeographicalarea(Fig.2)covers7000km2,whichjustifies theuseofsatelliteimagesinordertoobtaindetailedcoverageof thelandsurface.DatafromtheCorineLandCoverdatabasearenot preciseenoughintermsofthematicresolutiontoestablish poten-tialrisksofsurfacewatercontamination,aseachkindofcrophas tobeconsidered,andnotonlyarablelandsasawhole.

Rawwaterforconsumptionbyhumansandanimalsis essen-tially extracted directly from theserivers by pumping stations (Fig.2)andthisisthemainresponsibilityofwatermanagers.Given theproblemofrelativelylimitedflows,contaminationduetothe transferoffertilisers(mainlynitrogen)andpesticidesof agricul-turaloriginismagnified.

Theeffectsoftheagri-environmentalmeasurestowhich farm-ers subscribed voluntarily after the new European agricultural policy,in 1992 (seeSection 1) werevery limited. Indeed, they werespreadverythinlyacrosstheregionandtheymade there-forelittleornocontributiontotherequiredimprovementonthe pressuresandtheirimpactsonsurfacewaters.Thishasprompted wateragencymanagers,asintheAdour-Garonneriverbasins,to makespecialprovisionsfortheprotectionofwatershedareas.For example,theimplementationoffinancialincentiveshadtobemore preciselytargeted,andwerethusdesignedwiththespecificaimof reducingthepollutionofriverwaters.Firstly,limitsforthe protec-tionofwaterpumpingareashadtobepreciselydefined,andthere wasaneedtodelineatehigh-riskwaterareas.

Thiscalledforthescientificdevelopmentofaspecificmethodto spatialisesurfacewaterrisks,easiertousethanclassical hydrolog-icalmodelsandadaptedtodifferentspatialscales.Inthiscontext, wecarriedoutresearchintoamethodofriskdetermination,at dif-ferentspatialscalesandapplicabletootherregionsinwhichsurface waterisexposedtodifferentcontaminants.

In this area, we considered nested watersheds as different spatial organisational levels (SOLs). For example, the largest watershed(Save,1150km2)istheresultofinterconnectionsof sec-ondarywatershedsdrainedbytributaries(i.e.Boulouzeriverbasin, 70km2), which are themselves interconnectionsof elementary watershedsdrainedbysub-tributaries(i.e.Montoussécatchment, 6km2).

3.2. Implementationofaspatialcognitivemethod

3.2.1. OverallstructureofthemethodanditsdifferentSOLs

Our generic spatialised pixel-based method (called PIXAL method) is based on a combination of spatialised agri-environmentalindicators,calculatedatthepixellevelofremote sensing.The application inthis paper focusesonphytosanitary issues,andthemethodisthereforecalledPHYTOPIXAL.

PHYTOPIXALtakesintoaccountfactorsofsurfacewater vulner-ability(Section3.2)andagriculturalpressure(Section3.2.3).Ina firststep,eachfactorprovidesabasisindicator,usabletodiscuss withstakeholders.Then,theseindicatorsarecombinedtoobtain riskvalues,calculatedforeachpixel(30m×30m).

Inasecondstep,riskvaluesareaggregatedtodeterminerisk zones,accordingtotheleveloforganisationandmanagement cho-senbythepublicmanagementbodiesandstakeholders.

(7)

Fig.2.LocationofthestudyareainSouthwestFrance.

(8)

Fig.4.OverallstructureofthePHYTOPIXALspatialisedmethodanditsdifferentscalesofresults.

Fromthesedata,thecontaminationriskofsurfacewatersby pollutantswascalculatedatdifferentSOLs(Fig.3),andexpressed fromthescaleofthesmallelementaryagriculturalwatershedto thatofthelargesurroundingwatershed.Thegeneralflowchartof thismethodappearsinFig.4.

3.2.2. Creationofsurfacewatervulnerabilityindicators

Thefactorswhichcontributetosurfacewatervulnerabilityare mainlyrelatedtothenatureofthesoil,thegeologicalsubstratum, theslope,andtheconnectivitywiththebodyofwaterinquestion. Someofthesewerediscardedbecausetheywerenotrelevantfor thecharacterisationofdifferentscalesofinterest,ordidnotprovide datasufficientlyaccurateanddiscriminatinginthestudyarea(i.e. geologicalsubstratum).Theparametersretainedweretopography, drainageandsoil.Thisinformationfullysatisfiestheneedto incor-poratethechangeofscale.Dataweregatheredoverthefullareaat thesmallestscale,allowingforamoreprecisedescription.

Allvariableswerescored(Devillersetal.,2004)priortothe cal-culationoftheindicators.Fromtherangeofvariationofeachfactor, classesofvaluesweredeterminedaccordingtoprevious knowl-edge(baseduponscientificliterature,agronomists’expertopinion, andourexperienceinthisarea)regardingtheircontributionto con-taminationrisks.Thatexplainswhyweconsideredthismodelasa cognitivemodel(LeBissonnaisetal.,1998).Weattributedthe high-estscorewheretherewasthehighestlevelofrisk,andidentical weightingwasusedforallscores.

Table1summarisesthescoresofthethreevulnerability

indica-tors.

3.2.2.1. Slope. Slopeisan essentialfactorin thetransferof pol-lutants likepesticides (Beaujouan et al., 2002; Barriuso, 2004), influencessurfacerun-off,andhasadirecteffectontransfertimes fromsoilstowater.Furthermore,ithasdirectconsequenceson physical erosion processes and facilitates the transportation of activesubstancesadsorbedontosuspendedmattersparticularly

duringthefloodevents(Taghavietal.,2011).ADigitalElevation Model(DEM)fromtheFrenchNationalMappingAgencyata reso-lutionof25mwasacquiredtocoverthestudyarea.Extrapolation toaresolutionof30mallowedthesamespatialresolutionasthat ofasatelliteimage.

Thethresholdsweredeterminedaccordingthespecific litera-tureabouterosioninFrance(LeBissonnaisetal.,1998).Theywere manuallycalculated,basedonthefrequencyhistogramoftheslope values,atthebasicpixellevel.Astheextremevalueswerelimited innumber,weincorporatedthemintothemajorclasses.Fiveslope classesadaptedforsurfacerunofftocalculatescoresforthisfactor, takingintoaccountthemaincharacteristicsofeach slopeclass: <3%; 3–7%;7–12%;12–25%; >25%.In this study area,crops are mainlygrowninparcelswithlessthana12%gradient.Beyondthis value,wefoundmainlygrasslands.Inthisstudy,weusedscores

from1to5(Table1)correspondingtothepreviousslopesclasses

Table1

Scoresofvulnerabilityindicatorsregardingslopesclasses,soilnature,distanceto hydrographicnetwork.

Vulnerabilityindicators Score/pixel

Slopesclasses >25 5 [12–25[ 4 [7–12[ 3 [3–7[ 2 [0–3[ 1 Soilnature

Rendosolsandthincalcosols 4

Thickcalcosols 3

Luvisolsandcambisols 2

Fluviosols 1

Distancetohydrographicnetwork

>100m 5

30–100m 3

(9)

Fig.5.Distancetowatercourses.

(1forslopes<3%,5forslopes>25%).Thesescoresmustbeadapted todifferentgeographicalcontexts,inotherareasandcountries.

3.2.2.2. Distance to watercourses. The contamination of surface

watersbypollutantsishighlydependentonthedistancebetween

theapplicationsiteandtherelevantbodyofwater.Twoparameters

wereconsideredwhendevelopingtheindicatorofdistancetothe

drainagenetwork:theexactdefinitionoftheactivenetworkand

thechoiceof“distance”adopted.Theprocessingofthedatabasefor

thedrainagenetworkconsistedfirstofextractingthepermanent

drainagesections.Wethendivideduptheresultinglayer,basedon thesuperficialareaofthesatelliteimage.Wecreatedtwobuffers, situatedatdistancesof30and100maroundthedrainagenetwork inordertoobtainthreedistinctzones(Fig.5).

Thethresholdof30mwasbasedonthespatialresolutionof thepixel.The100mthresholdwasbasedonlocalexpert opin-ion, takinginto account thevery tormented topography inthe field,especiallyinthishillyarea:this wasafirsttestof thresh-oldimplementation. We allocated a scoreto eachof thezones

(Table 1) after the merging and rasterisation of the extracted

layer.Thisscoresimplyshowstheincreasedriskwithproximity tothenetworkin3distanceclasses:<30m(score5);from30to 100m(score3);>100m(score1).Thesevalueswereassignedto accountfortheimportanceofthiscriterion,regardingotherstudies

(Aurousseauetal.,1998).Thecontext(connectivity)ofthisregion

requiredanadaptationofthescoresdependingonthespatialscale considered.Theycanbeeasilychangedaccordingeachphysical context.

3.2.2.3. Soiltypes. Soilcharacteristicsplayahighlysignificantrole intheretentiontimeofresiduesintheuppersoilhorizontothe streamwaters.Humuscontentandnatureoforganic–mineral com-plexescanplayveryimportantrolesintheretentionofmolecules.

ThroughouttheOligoceneandMioceneperiods,this areaofthe Coteauxde Gascognereceivedsandy,clayand calcareous sedi-mentsderivedfromtheerosionofthePyreneesMountains(Revel

andGuiresse,1995).Theheterogeneousmaterialsproducedathick

detritalformation,calledmolasse,duringtheMiocene.Fromthe Quaternaryperiodonwards,theriversbecamechannelized, cut-tingbroadvalleysinthemolassicdepositsandleavingterracesof coarsealluvialsediments.Thesubstratumofthedifferent water-shedsconsistsofimperviousMiocenemolassicdeposits.

Aweakerosionhasallowedthedevelopmentofcalcic Luvi-solsonthetertiarysubstratumandlocalRendosols(FAO,2006)on thehardcalcareoussandstonebeds.Amoderateerosionaffected soilcalcicCambisolsonhillsideswithverygentleslopes(lessthan 12%).Calcicsoils(Calcisols)aredominatedbyaclaycontent ran-gingfrom40%to50%andcalledlocally“Terreforts”:theyarelargely representedonthehillsandbecauseoftheirimpermeability,they greatlycontributetosurfacerunoff.Non-calcicsoils(Luvisols)are silty(50–60%)andlocallycalled“Boulbènes”(RevelandGuiresse,

1995).

In this area, 1/50,000 scale maps were drawn by pedolo-gistsfromtheCACG(Compagnied’AménagementdesCoteauxde Gascogne)inthe1960sandhavesincebeentransposedto1/80,000. ThissoilmapwasdigitisedfortheSavewatershedonly(Cemagref, 2006),limiting theuseof thisinformation tothiswatershed. It revealedasignificantbutvarying,soildepthintheriverSavearea, whichcouldinfluencesurfacerunoff.Thesoiltypesweregrouped intofourmaincategories,andscoredaccordingtotheirimportance withregardstothetransferofpollutantsbysurfacerunoff(Table1). Thiswasbasedonthestudiescarriedoutbypedologists (Revel

andGuiresse,1995)andprofessionaltechniciansbelongingtoa

RegionalActionGroupagainstWaterPollutionbyPesticide Prod-ucts(GRAMIP).Soiltypesarerankedfromthelowesttothehighest potentialsurfacerunoffprocessbelow:

(10)

◦Fluviosols(“Alluvions”):Theproximitytothesuperficialwater tableleadstodirecttransfertowardsitandthereforeanabsence oftransformation/degradationintheenvironment.

◦Luvisols and cambisols (“Boulbènes”): Permeable soils which facilitate infiltrations, but favour the formation of superficial crusting,whichisconducivetosurfacerunoff.

◦Thick calcosols(“Terrefort épais”), soils >40cm: Impermeable, clayeysoils;runoffispredominantlyhypodermic.Thesesoilsare composedofhydromorphicsandypocketswhichslowdownthe transferofproductstothewatertable.

◦Rendosolsand thin calcosols(“Terrefort mince”),soils<40cm: Theyfavourhortonian(surface)runoffwhichoccurswhenrain intensityexceedstheinfiltrationcapacityofthesoil.

3.2.3. Compositionoftheagriculturalpesticidepressureindicator 3.2.3.1. Landuse. Landusewithinawatershedinfluencesrunoff, hydrologicalregime,andstreamwaterquality.Landcoverbycrops canbeusedtoassessthepesticidepressuresexertedbyagricultural additives.Theclassificationofsatelliteimagesconstitutesthebasic informationlayerofthemethod.

TheCorineLandCoverdatabaseisnotaccurateenoughto dif-ferentiatethecropstypesonfarmland,thusimpedingtheprecise determination of risk levels. Because of this, we carried out a supervisedclassificationfromsatelliteimagesusingErdasImagine software®.Annuallandcoverisgivenbytheclassificationofaseries offourLandsat5TMsatelliteimages,takenonmultiplerelevant dates,tocharacteriseeachtypeofplantperseason,withthe low-estrateofclouds:0–20max;2004/12/01;2005/05/26;2005/07/13; 2005/08/30.

TheareaoftheseimagescoverstheCoteauxdeGascognearea, ataspatialresolutionof30m×30m.

Classificationinsupervisedmode,i.e.underthedirectcontrol oftheoperator, locatesthecrops in asufficiently accurateand exhaustivemanner.Thesamplesweregroupedintotencategories ofmajorcropsthatconsumeagriculturaladditives:wheat, bar-ley,rapeseed,sunflower,corn,sorghum,peasandbeans,soybean, grasslandsandfallow.Classificationalsodifferentiatesotherland use:fallow,hardwood,softwood,water,soilsandbuildings.We appliedthemaximumlikelihood ruletotheclassification algo-rithm:eachpixelwasallocatedtotheclasswiththehighestmean probabilityofallofthebatches.

3.2.3.2. Theagriculturalpressureindicatorforpesticides. Thelevelof pesticidepressureexertedbyagriculturalactivitiescanbederived fromlanduseforthestudiedyear,aseachcropcanbeassociated withameannumberofpesticidetreatments.Giventhelarge num-berofpesticidesubstancesandvariouscommercialformulations, weattributedameannumberoftreatmentstoeachcrop (herbi-cides,fungicidesandinsecticides)accordingtodataprovidedby theFrenchRegionalDepartmentforPlantProtection(SRPV).The treatmentofseeds,somethingwhichremainsverylocalised,was notconsideredhere.

Therefore,thepesticidepressureindicatorresultedfromthe crossingoftheclassifiedimageoflandusewiththenumberof pes-ticidetreatments.ToeasilyimplementthescoresintheGIS,these valuesweremultipliedbytwo,inordertoavoiddecimals. 3.2.4. Determinationofthecontaminationrisk(CRk)

Weperformedaspatialanalysisinordertooptimisethe dis-criminationofpesticidepressureareasataregionalscale,according toadivisionintoelementarywatershedsorhydrographicareas: levelsofdecisionmakingformanagersandstakeholders.

Thelayersofeachsingleindicatorwererasterisedbydefining acommonresolutioncellsizeof30m×30m.Thecontamination riskwasthenobtainedbycross-referencingthem.

Environmental vulnerability indicators were added with an identicalweightforeachfactor.Basedoncurrentknowledge,rising indicatorvaluesshowanincreasingrisk.Next,thecontamination risk wasobtainedbymultiplying thepressure indicatorbythe environmentalvulnerabilityindicators (Eq.(1)).Thisallowsthe calculationofazeroriskinareasinwhichnotreatmenthasbeen applied.

3.2.4.1. Calculationofthecontaminationriskforeachpixel. The fol-lowingformulawasadoptedforthespatialcognitivemodel:

CRk=[SL+D+So]×[Ap] (1)

where CRk,contaminationriskfor each crop,SL,values forthe slopelevel,D,valuesforthedistancefromeachpixeltothestream, So,valuesforthesoiltype,Ap,agriculturalpressure(numberof pesticidetreatmentsbycrop).

Weusedfiveriskcategories,whichallowedforgreater discrim-inationatthescaleofthisregion.Analystsanddecisionmakers generallyusethisnumberofcategoriesinriskstudies.

We maintained discretisation according to Jenks (Lepinard, 2008)naturalthresholds,thusobtainingthemost“homogeneous” categoriesofpossiblevalues.Thethresholdsvariedaccordingto thenumberofdiscriminatedunits.Thelevelofcontaminationrisk allocatedto a given unit (individualstatistic) dependedonthe performancesoftheotherunits.Theseunitsarecompared,with measurementsalwaysperformedusingthesameindicator. 3.2.4.2. Aggregation of information according to the investigation scale.Inordertoidentifypriorityareasforaction,theinformation obtainedmaybesubsequentlyaggregated.Accordingtothe differ-entsolutionsdescribedinSection2.2.3,wechosethepixelorgrid ofasatelliteimageasourcommonRSO(ReferenceSpatialObject). Weaggregatedthemusingalinearprocedure(Section2.2.3.2.2), atthedifferentspatialorganisationallevels,inordertobeusable byenvironmentalpublicmanagersandstakeholders(farmersand theiradvisers).Todothis,weusedspatialstatisticstools(Spatial AnalystofArcGISsoftware®,whichdoesnotincludeMCEfunction) accordingtothefollowingformula(Eq.(2))

CRkwatershed=



scoresforpesticideriskinpixels



surfaceareainpixels (2) Thisisanarea-weightedaverageofriskvaluescalculatedatthe chosenscale.

4. Results

4.1. Aconceptualmodeltogeneralisethecontaminationrisk assessment

Themethoddeveloped hereaimsat assessingsurface water contaminationrisks,atdifferentorganisationallevels.Itprovides valuableinformationatscalesappropriateforenvironmental man-agersandstakeholders,inordertosupportdecisionmaking.Itis suitable indifferentareas andcountrieswhere themain water transfersaresuperficial.Thismethodisunapplicableinitspresent forms,forexampleinkarsticenvironments.Fig.6showsthe con-ceptualmodelofthegenericPIXALmethod.

Ourassessmentmethodwasusedtodeterminethelevelof pes-ticidecontaminationriskbyinthestudyarea.

4.2. Resultoftheclassificationoftheremotesensingimagesand pesticidepressureindicator

Resultsofthelanduseandconsequentlythepesticidepressure appearinFig.7andTable2.

(11)

Fig.6.ConceptualmodelofthegenericPIXALmethod.

Inthisareaof7000km2:water,buildingsandwoodsrepresent 15%,andfarmlanduse85%(6000km2).Fourcategoriesaccountfor 83%offarmlanduse:Grasslands(35%)essentiallyinthepiedmont ofPyrenees,sunflower(19%)andwheat(18%)innorthpart,where agricultureisintensive;andfallow(12%)inallthearea.

Theoverallqualityoftheclassificationwasgivenbythemean percentageofcorrectlyclassifiedpixels.Thiscorrespondstoa mea-surementoftheseparabilityofthecategoriesaccordingtovarious channels.TheKappacoefficient(Congalton,1991,citedbyDucrot, 2005)estimatestheaccuracyofaclassification,whichtakesinto

accounterrorsinrowsandcolumns.Weobtainedamean percent-ageofcorrectlyclassifiedpixelsof86%andaKappacoefficientof 0.83forthe2005landuse.Thisallowedustoaccuratelyemploythe landusecoverageobtained.TheKappacoefficientis0.92forthe wheat,0.77forthesunflower,and0.87forgrasslandsandfallow. 4.3. Levelofpesticidecontaminationriskinsurfacewater

Weobtainedasurfacewatercontaminationriskforeachpixel. Butthismosaicof7,653,255pixelscannotbeeasilyinterpretedby

(12)

Fig.8. Estimatedriskatthescaleoftheelementarywatershed.

environmentalmanagers.Itshowsthelevelofdetailofthe calcu-lation,butcannotbeusedforagri-environmentaldecisionmaking byitself.Thisisthelevelofinterventiononthefarmingparcels (farmersandadvisers).Then,weaggregatedthepixelsatthescale ofelementaryandintermediatewatersheds.

4.3.1. Aggregationn◦1

Thepixelswereaggregatedfirsttoelementarywatersheds,and thentohydrologicalareas.Consequently,Table3andFig.8 repre-sentthecontaminationrisk(afteraggregation)atthescaleofthe 2871elementarywatersheds,coveringseveralsquarekilometres

Table2

Farminglanduseandscoresofpesticidepressureindicator.

Pesticidepressureby landusetype

Farminglanduse

(km2and%) Score/ pixel Rapeseed 161 2.7 12 PeasBeans 79 1.3 11 Wheat 1078 18.0 8 Corn 430 7.2 7 Barley 188 3.1 6 Soybean 101 1.7 5 Sunflower 1153 19.2 4 Sorghum 39 0.7 2 Grasslands 2075 34.6 0 Fallow 696 11.6 0 TOTAL 6000 100.0

(severalkm2).Thisisprimarilythelocaldecision-makinglevelfor

agri-environmentalwaterpreservationmeasures.

Highandveryhighcontaminationrisks(27%ofthesurface)are locatedintheareaswhereagriculturalpressureisatitshighest (Fig.6),incontrasttoareaswhereitislower(59%ofsurface), includ-inggrasslandsorcropswithfewpesticides,likeinthePiedmontof Pyreneesmountains(southofthemap).InPiedmont,water vul-nerabilityishigherthandownstream, mainlydue toslopesand smallvalleyswhichprovideshortdistancesfromlandparcelsto streams.Theland coverisdominated bygrasslandsand forests withoutdirectpesticideapplication.Afewcerealsarecultivated, onsmallplateaux.

4.3.2. Aggregationn◦2

Table3andFig.9representtheriskvalueatthescaleofthe

125intermediatewatersheds(tensofkm2).Thisisthe decision-makingscaleforenvironmentalmanagersinFrance.Atthislevel, theaggregationofpixelsiseasiertoreadformanagers.Ontheother hand,theinformationofferedisofamoregeneralnatureandsuited fortheimplementationofenvironmentalprotectivemeasures.

Thesecondaggregationprovidesanincreasingnumberofrisk assessmentsforhighandveryhighlevelsandattheopposite,a decreasingofthelowrates.

ThenumberofReferenceSpatialObjectsbetweenelementary watershedsandhydrologicalareasisdividedby23.

Inthisstudyarea,themanagersoftheFrenchregionalwater agency(Adour-Garonne)atthescaleofthelargewatershedcovered

Table3

Surfacecorrespondingtothelevelsofcontaminationrisks,dependingonaggregationscale:(i)2871elementarywatershedsand(ii)125hydrologicareas.

Risklevel Elementarywatershed%totalsurface Hydrologicarea%totalsurface

Verylow 28.5 58.6 12.5 31.2

Low 30.1 18.7

Intermediate 24.3 24.3 25.2 25.2

High 14.5 27.1 32.6 43.6

(13)

Fig.9.Estimatedriskatthescaleoftheintermediatewatersheds.

bythis study, decidedto choosea protective boundary forthe

zoningofanabstractionpointfordrinkingwatersupplyinga

pop-ulationof 20,000 inhabitants(the town of L’IsleJourdain). The

zoningoftheTerritorialActionPlan(TAP)ofBoulouze-Save Lis-loisewasestablishedonthebasisofthiscontaminationriskmap foranintermediatewatershedof112km2(Fig.9).TheTAPoffered

theopportunity for farmers in this areatosign upfor specific agri-environmentalmeasures,supportedbyFrenchwateragency subsidiesfrom2008to2012.OtherRegionalActionProgrammes have been created under the same conditions in order to re-establishor maintain thesurface water quality for humanand animalconsumption.

Thismethodconstitutes a step forwardin theresearchinto changesofscaleand theevaluation ofpollutioninalargeriver basin. It can therefore act as a useful decision-making sup-porttool for managersof publicservicesin differentcountries. Then, we are applying it with success, in other watersheds of differentsize (>1000km2 and <100km2) in Spainand Portugal within the framework of a European Project, Aguaflash (see

http://www.aguaflash-sudoe.eu/fordetailsMacaryetal.,2011).

5. Discussion

5.1. ApplicabilityofthePHYTOPIXALmethod

The PHYTOPIXAL method can be easily and quickly imple-mentedbyenvironmentalmanagersinanycountry,byadapting scores to each local context. However, this method has been designed predominantly for surface water contamination risks withsurfacerunofffluxes, andnoimportantinfiltration,likein karstic areas. While spatial scalesfor aggregation dependon a countries’size,thismethodologyissuitabletoallthemainfarming countriesinEurope,andevenotherregionswithsimilar character-istics,indifferentcontinentsandindeedoutsideEurope,inregions withsimilarcharacteristicsEachaggregationlevelofriskresults

will,ofcourse,dependonthesizeofcountriesandregions,but alsoonthegeographiclevelofpublicpoliciesapplication.

TheReferenceSpatialObject(gridof10m,20m,and30m)can giveverypreciseresultsforwatervulnerability,agricultural pres-sure,andcontaminationrisks.Eachstepoftheassessmentscale, withthecorrespondingindicators,leadstoagreater understand-ingofagri-environmentalprocesses,andequipsdecisionmakers tomake themostinformedchoicespossible.Aggregationofthe RSOsatappropriatedecisionlevelscanhelpmanageprioritiesin complexareas.

Thismethodcanbeusedtocompareindividualwatershedsand rankthemaccordingtotheirstreamwatercontaminationrisk.The mapsacquiredusingthismethodhelptodefinethepriorityareas foractionandfacilitatethedialoguebetweenstakeholdersby giv-ingthemcommonmethodsanddocumentation.Inaddition,these mapsallowfortheidentificationoftargetareasatdifferent lev-elsoforganisation,whichcanthenbestudiedmorespecifically (hydrologicalmeasurements,waterqualitymeasurements,specific monitoringofinputsofpesticidesinputs,cultivationmethods),or ofpriorityactionsinthefightagainstnon-pointpollution.They contributetoarisk diagnosisofpollutanttransfersintosurface waters,andhelpinidentifyingthebestremedialandprotective action.Thesebenefitshavebeenemphasisedbydifferentauthors

(Misraetal.,1996;Pattyetal.,1997;Mérotetal.,1999;Schmitt

etal.,1999;GouyandGril,2001;Carlueretal.,2009).

5.2. Comparisonwithothermethods

Differentmethodsbasedonacombinationofvariablesare gen-erallyusedatthefarmingparcelleveloratsmallwatershedlevel butrarelyonalargeterritorywiththecapacitytoaggregaterisk assessmentatthedifferentorganisationallevelsusedby stakehol-dersandenvironmentalmanagers.

Nevertheless, someauthors(Eastmanet al., 1993;Jiang and

(14)

GIS’integratedmulticriteriaevaluationfunctiontoanalyselarge territoriesandtoassessaprospectivelandcover(Section2.2.3.2.3). Theuseofsoftware likeIDRISI–a GISwhichincorporates a multi-criteriaevaluationfunction–couldthereforebeuseablefor analternativeapplicationforassessingcontaminationrisks.

Agro-hydrologicalmodellingisgenerallyusedtoimprovethe knowledgeprocessbyresearchers(Arnoldetal.,1998;Ferrantetal., 2011),butrequirealotofdata,whichareoftenunavailableina largearea.Theirimplementationisnoteasyandtime-consuming due tothecomplexity of thesoftware. Moreover,theyprovide resultswithin theirpre-programmed scales, and do not adapt thedatatosuit theneedsofenvironmentalmanagers.Someof them,likeSTICKS (Brissonet al.,2003),TNT2 (Beaujouan etal., 2002), provide results at farming parcel level, which is useful forfarmers,andinunderstandinghydrologicaltransfersinsmall watersheds. Other programs, like SWAT (Ferrant et al., 2011) deliverresultsbasedonHRUs(HydrologicalResponseUnits),which representhydrographicareasofwatersheds,withoutany connec-tionwithmanagement ReferenceSpatialObjects.Theyarealso usedbyresearchers,butseldombyenvironmentalmanagers,who prefermethodsthatcanhelpthemmakefastandeffective deci-sions.

5.3. ValidationofthePHYTOPIXALmethod

Decision-makingsupporttoolsareintendedtooffer scientif-icallyvalidatedinformationwherepossible.Theyaredesignedto conformtoarigorousapproachandtobeusedtosupportmanagers whooftenlacktheresourcesandtoolsformanagingsituationswith differentlevelsofspatialorganisation.

Like mostmethods for determiningspatial risk,it is always difficulttovalidatetheresultsproducedonalargescale,where theinstitutionalsurveynetworksforpesticidecontentsarehugely inadequate.Finally,comparisonswiththeresultsobtainedbyother researchprojectscannotbeachieved,becausethegoalsand meth-odsusedforcreatingtheindicatorsaredivergent(spatialdivisions, pressuremaps,etc.).Nevertheless,avalidationmethod,oratthe veryleastameansofcomparingtheresultsobtainedwiththoseof bio-physicalmodels,couldbeworthexploring,butdifferencesin scalescannotreallyprovideavalidation,orarelevantcomparison oftheresults.

With this in mind, we compared risk zonings at different organisationallevelswithbiologicalindicators,whicharetakeinto accounttheimpactsofpollutioninaquaticenvironments.As pesti-cidecontaminationeventsareverytransientanddifficulttocatch byspotsamplings,wecomparedPHYTOPIXALresultstobiological datathatareexpectedtoinformontheir“exposurehistory”. Com-parisonsmadetodeterminediatom(fixedmicroalgae)responses to pesticidepollution led to encouraging results (Morin et al., 2009).Weusedadatasetofabout439diatomsamples,collected fromartificialsubstrates(immersedinthewatersunder compa-rablehydrologyandlightconditions)at16sitesintheCoteauxde Gascognearea(Figs.8and9)inspring2005and2006.Biological samplingswereperformedondifferentoccasions(samplingdates) tocharacterisethediatomcommunitiesthatsettledinthestreams duringtheperiodcoveredbythepresentPHYTOPIXALcalculations. Atthesesites,PHYTOPIXALvaluesrangedfromlowtoveryhigh, with31 samples(7%) in low, 214(48.7%) inintermediate, 147 (33.5%)inhighand47(10.8%)inveryhighpotentialriskof contam-ination(nodiatomsampleintheverylowPHYTOPIXALlevel).From thisbiologicaldata,wecalculatedanindexofgeneralalteration,the IPS(IndicedePolluosensibilitéSpécifique,CosteinCemagref,1982) andspeciesdiversity(ShannonandWeaver,1949).Anovas(Fig.10) wereperformedonthedatasetusingSTATISTICAv.5.1(StatSoft, France).IPSvaluesdifferentiatedtwosetsofdata:samplescollected fromsiteswithlowcontaminationrisk(n=31)hadgoodbiological

Fig.10. Distributionof(A)IPSvaluesand(B)Shannondiversityindicesinthe4 Phytopixalcategoriestested.Valuesareminimum–lowerquartile–average–upper quartile–maximum.StatisticallysignificantdifferencesafterANOVA:**p<0.01, ***p<0.001.

quality (as shown by high index values, IPS=17.2±0.2/20), whereas those located in areas withhigher pollution risk had significantlylowerindexvalues(IPS=14.5±0.1/20,n=408).

Specificdiversity,which isknowntodecreasewithpesticide pollution(e.g.Seguinetal.,2001;Morinetal.,2009),wasfairlyhigh insiteswithloworintermediatepollutionrisk(div=4.13±0.05, n=245)anddramaticallydecreasedinthemostcontaminated loca-tions(div=3.53±0.14, n=47). Althoughrough,this comparison betweenriskzoningandrealfieldobservationsconstitutesafirst steptowardsthevalidationofthePHYTOPIXALmethod.

5.4. Limitationsandpotentialimprovementsofthemethod 5.4.1. Determinationofpesticidepressure

It would have been especially useful to have differentiated betweenthelargefamiliesofpesticidemoleculesandtheir mix-tures in commercial formulas, given their different degrees of harmfulness. In the same way, unidentified inert ingredients are often forgotten in commercial preparations, whereas they canhave long-lastingtoxicologicalconsequences (Surgan etal.,

2010).

However,atascaleofseveralthousandkm2,thisdegreeof accu-racycannotbeachievedforamethoddestinedforusebymanagers, becauseitwouldbetoodifficulttointegratealltheactive ingredi-ents.

(15)

5.4.2. Incompatibilityofthescalesofanalysisandthewater contaminationprocesswiththeavailabilityofdata

Certaindataarenotavailableatthescalesincorporating vari-ables essential for the analysis of diffuse pollution risks from agriculturaloriginconcerningsuperficialwater.Forexample,some datawhichareusefulforcharacterisingenvironmental vulnera-bilityarenotavailableorareunsuitablefordiscriminatingspace (geologyorsoilatasufficientlyaccuratescale).Likewise,someof theinformationrequiredforcalculatingpressureremains impre-cise.Therefore,agriculturalproductiondataweretakenfromlocal surveysandtheresultswerethenextrapolatedtocovertheentire studyarea.

Theperformanceoffieldsurveysinordertoobtainthisdataat thelevelofalargewatershedwouldbetooconsuminginterms ofhumanresources.Appliedtoalargearea,ourmethoddoesnot takeintoaccountlocalphysicalpointssuchasgrassystripssituated alongsidewatercourses.Itwouldbeworthexploringthepossibility ofacquiringhigh-resolutionsatelliteimages(e.g.Ikonos)over a restrictedtestareainanyfutureresearch.Furthermore,withregard toagriculturalpractices,eachpixelforagivencropisprocessedin thesamewayoverthewholearea,accordingtothehypothesisthat practicesforeachcrop,arehomogenousinthisarea.

5.4.3. Transferofinformationfromonescaletoanother: limitationsoftheaggregativeapproach

Wehavepreviouslyseen(Cf.Section2.2.3)thatthe aggrega-tiveapproachreducestheperformanceoffunctionalrelationships. Thisisduetothearrivalofnewdominantprocesseswhichobscure theimpactoflocalknowledgeormeasures,whichtherefore no longerhavea numericalsignificance ontheresult.Accordingto

Puechetal.(2003),theproblemconcernstheallocationofa

numer-icalvaluetoagridcellandtherelationshipbetweenthedifferent grids.Ontheonehand,fluxesofwaterormatterareassociated withgeometricallyshapedcellswhichareoftensquareshaped.On theotherhand,thespatialaspects(descriptionofcells)and tem-poralconsiderations(link betweenthecells)areconfused.“The aggregationisoftenrenderedcomplex,orindeedimpossible,dueto non-linearitiesandlocalheterogeneitiesexacerbatedbyachange ofseveralorganisationallevels,fromm2towatershedof100km2, i.e.jumpsofseveralordersofmagnitude.Whenseverallevelsare skipped,thereisnolongeradirectlinkbetweencauseandeffect.”

(Puechetal.,2003).

Thisapproachwould probablybenefitfromfurther develop-ment,especiallyintermsofscalechange;neverthelesswemanaged heretoaggregatevulnerabilityandpressureinformationatthe dif-ferentorganisationallevelsinquestion.Theresultingestimationof pesticidecontaminationriskinthis studyareawasusedbythe regionalwateragency,andalsotestedinSpanishandPortuguese watersheds(Macaryetal.,2011).

5.4.4. Subjectivityofzoningcriteriaandchoicesofmapping representation

Duringthemodellingphase,weallocatedscorestothe indica-torsandoptedforadiscretisationmethodtoproducefinalmaps showingpotential contaminationrisks. Thesechoices were not maderandomly,butweremainlybasedonexpertopinionsand assuch,remainopentoquestion.Themostimportantpoint con-cernsthequestforoperatingthresholds.Thedifficultyresidesin identifyingthosethatappeartobevariablewithinthesamearea accordingtothecontextandthevariables orprocesses studied. Scoredindicatorsoffersbenefitsliketheirmodularityandthefact thattheyareeasytounderstandbyusers(Devillersetal.,2004). Thereareadvantagesanddisadvantagesassociatedwiththe calcu-lationofthelimitsoftheclasses.Indeed,thisstagemaysometimes berendereddifficultwhenthereislimitedknowledge.Expert opin-ionshavetobesought,withthesubjectivitythatthisimplies.The

otherlimitationofthismethodislinkedtopotentialexistenceofa “thresholdeffect”.Forvaluesclosetothethreshold,asmall varia-tioninclasschangecouldleadtoalargevariationinthefinalresult. Conversely,alargevariationthatisconfinedtothesameclasswill havenoeffectonthisresult.

Thisexplainsmostofmajordifficultiesthatconfrontedusinthis methodwithregardtothevalidationofmappingresults.The aggre-gationprocesscouldbeimprovedwiththeprecisequalificationof eachcategoryofrisk.Includingmulti-criteriaevaluationprocesses in aGIS softwaremayconsequentlybeuseful,leading tosome potentiallyinterestingfutureresearchtopicsoftheseresearches. 5.4.5. Amethodrestrictedtoaspecificnaturalcontext

Ourmethodisrestrictedtoareasoflowpermeability substra-tum where water and pollutant fluxes aremainly exportedby surfaceandsubsurfaceflows.Itcannotbeusedinitscurrentformin karsticareas,forexample,whereinfiltrationismorepredominant. Itmustthereforebeadaptedbyincorporatingvulnerability vari-ablesfortheenvironmentitselfintothepollutionofgroundwater andnotjustsurfacewater.Itwouldnolongerbemerelyaquestion ofconsideringthedistancetowatercourses,buttothe groundwa-teraswell.Thedifficultywouldresideinevaluatingtheproportions oftransferintosurfacewaterandgroundwater.Thevariablesfor geologicalsubstratumandsoilswouldthereforebecomeessential.

6. Conclusionsandoutlooks

This researchhasfocused on thedevelopment ofa method forestimatingagriculturalpesticidecontaminationrisksinsurface waters,andtheaggregationofriskdatatocorrespondtovarious spatial organisational levels. The method provides a decision-makingtool for publicmanagersin chargeof water qualityfor human consumption and environmentalsectors. Different spa-tialscaleswereinvestigated,conservingtheinitialdataresolution throughouttheentireprocess.Classificationthresholdsforthe lev-elsof riskwere usedfor therelative rankingofrisk areas.The finalmapsproducedinourstudyareaarebasedonprecisedata collectedinthefield and aredesigned tocorrespondto appro-priatescaleforpublicenvironmentalmanagers(allowingforthe definitionofpriorityactionzones).Agri-environmentalmeasures requiredtore-establishthewaterqualityintheenvironment,can thenbetargeted.

Thevalidation ofthemethodwasperformedbycomparison withfieldbiologicaldata,ameasurementofpollutioneffectson theaquaticenvironment.Wecompared thecontaminationrisks calculated withbiological (diatom)responses,determined from simultaneouslyperformedsurveys.Biologicaldatawerecorrelated withtherisklevelsdeterminedbythePHYTOPIXALmethod, pro-vidinganindirect,butsignificant,validationofthemethod.

Thelarge-scale,highspatialresolutionofthemethodallowsfor thecoverageofpollutionrisksatdifferentscalesandtherefore con-stitutesaninterestingalternativetotraditionaldiagnosticstudies, whicharetime-consumingandcostly.

Future developments would be to improve the aggregation processof criteria,conceivablyusinga multicriteriaevaluation functionintegratedinGIS,tobeabletoassesscontaminationrisks overalargearea.Thelinksbetweentheresultsoftheriskzoning fornon-pointpollutionofagriculturaloriginandaquaticorganisms couldbeconfirmed,eitherusingabatteryoftestorganisms(e.g. combiningdiatomsandbenthicmacro-invertebrates)thatare inte-grativeofvariousanthropogenicimpactsatdifferenttimescales, orbyconfirmingthepresentresultsinotherwatersheds.

However, this work can be already of practical interest to theenvironmentalmanagers indifferentcountries, to establish zoningprioritiesfortheimplementationofpreciselytargeted agri-environmentalwaterprotectionmeasures.

(16)

Acknowledgements

ThisresearchwascarriedoutwithintheIMAQUEProject sup-portedbyregional(CPER)andEuropean(FEDER)fundsandwithin INSOLEVIEInter-regionalprojectfundedbytheAquitaineand Midi-Pyrénéesregions.

WethankDanielUny,geomaticianatIrstea/URADBX,forhis contributiontotheworkbysupportingthedevelopmentof geo-maticsapplications.

WewouldalsoliketothankJamesEmeryforhislinguistic sup-port.

References

AlkanOlsson,J.,Bockstaller,C.,Stapleton,L.M.,Ewert,F.,Knapen,R.,Therond,O., Geniaux,G.,Bellon,S.,Correira,T.P.,Turpin,N.,Bezlepkina,I.,2009.Agoal ori-entedindicatorframeworktosupportintegratedassessmentofnewpoliciesfor agri-environmentalsystems.Environ.Sci.Policy12,562–572.

Arnold,J.,Srinivasan,R.,Muttiah,R.S.,Williams,J.R.,1998.Large-areahydrologic modellingandassessment.J.Am.WaterResour.34,73–89.

Aspinall,R.,Pearson,D.,2000.Integratedgeographicalassessmentof environmen-talconditioninwatercatchments:Linkinglandscapeecology,environmental modellingandGIS.J.Environ.Manage.59,299–319.

Aurousseau,P.,Gascuel-Odoux,C.,Squividant,H.,1998.Élémentspouruneméthode d’évaluationd’unrisqueparcellairepourlacontaminationdeseaux super-ficiellesparlespesticides.Applicationaucasde lacontaminationparles herbicidesutiliséssurculturedemaïssurdesbassinsversantsarmoricains. Étudeetgestiondessols5(3),14.

Balram,S.,Dragicevic,S.,Feick,R.,2009.CollaborativeGISforspatialdecisionsupport andvisualization.J.Environ.Manage.90,1963–1965.

Barriuso,E.coord,2004.Estimationdesrisquesenvironnementauxdespesticides. INRAEd.

Beaujouan,V.,Durand,P.,Ruiz,L.,Aurousseau,P.,Cotteret,G.,2002.A hydrolog-icalmodeldedicatedtotopography-basedsimulationofnitrogentransferand transformation:rationaleandapplicationtothegeomorphology–denitrification relationship.Hydrol.Process.16,493–507.

Bechmann,M.T.,Krogstad,T.,Sharpley,A.N.,2005.AphosphorusindexforNorway. ActaAgr.Scand.55(3),205–213.

Blöschl,G.,Sivapalan,M.,1995.ScaleIssuesinHydrologicalModelling:AReview. JohnWiley&sons,Chichester,GBR.

Bock,M.,Rossner,G.,Wissen,M.,Remm,K.,Langanke,T.,Lang,S.,Klug,H.,Blaschke, T.,Vrscaj,B.,2005.SpatialindicatorsfornatureconservationfromEuropeanto localscale.Ecol.Indic.5,322–338.

Bockstaller,C.,Girardin,P.,VanderWerf,H.M.G.,1997.Useofagro-ecological indi-catorsfortheevaluationoffarmingsystems.Eur.J.Agric.7,261–270.

Boithias,L.,Sauvage,S.,Taghavi,L.,Merlina,G.,Probst,J.L.,Sanchez-Perez,J.M., 2011.OccurrenceofmetolachlorandtrifluralinintheSaveriveragricultural catchmentduringfloods.J.Harzard.Mater.196,210–219.

Brisson,N.,Gary,C.,Justes,E.,Roche,R.,Mary,B.,Ripoche,D.,etal.,2003.Anoverview ofthecropmodelSTICS.Eur.J.Agric.18(3–4),309–332.

Buczko,U.,Kuchenbuch,R.O.,2010.EnvironmentalIndicatorstoassesstheriskof diffusenitrogenlossesfromagriculture.Environ.Manage.45,1201–1222.

Carluer,N.,Tournebize,J.,Gouy,V.,Margoum,C.,Vincent,B.,Gril,J.J.,2009.Roleof bufferzonesincontrollingpesticidesfluxestosurfacewaters.Proc.Environ.Sci. 9,21–26.

Cemagref,1982.Étudedesméthodesbiologiquesd’appréciationquantitativedela qualitédeseaux.RapportQ.E.LyonA.F.–BassinRhône-Méditerranée-Corse.

Cemagref,2006.DigitalsoilmapoftheSaveobtainedfromthemappreparedby pedologistsoftheCACGinthe1960s.In:Cemagref,URADBX,Bordeaux,p.1.

CEE,1991a.Directiven◦91/414/CEEdu15/07/91concernantlamisesurlemarché desproduitsphytopharmaceutiques.JOCEn◦L230du19août1991etrectifié auJOCEn◦L170du25juin1992.

CEE,1991b.Directiveduconseiln◦91/676/CEEdu12décembre1991concernantla protectiondeseauxparlesnitratesàpartirdesourcesagricoles.JOCEn◦L375 du31décembre1991.

CEE,1998.Directiven◦98/83/CEdu03/11/98relativeàlaqualitédeseauxdestinées

àlaconsommationhumaine.JOCEn◦L330du5décembre1998etrectifiéau

JOCEn◦L111du20avril2001.

CORPEN(Ed.),2003.Diagnosticrégionaldelacontaminationdeseauxliéeàl’usage desproduitsphytosanitaires:élémentsméthodologiques.Ministèresencharge del’agricultureetdel’environnement,Paris,p.84.

Cotter,A.S.,Chaubey,I.,Costello,T.A.,Soerens,T.S.,Nelson,M.A.,2003.Waterquality modeloutputuncertaintyasaffectedbyspatialresolutionofinputdata.J.Am. WaterResour.Assoc.39(4),977–986.

Dalgaard,T.,Hutchings,N.J.,Porter,J.R.,2003.Agroecology,scalingand interdisci-plinarity.Agri.Ecosyst.Environ.100,39–51.

Deneux,M.,Emorine,J.P.,1998.AvenirdelaréformedelaPolitiqueAgricole Com-mune.ReportNo.466.Sénat,Paris.

Devillers,J.,Farret,R.,etal.,2004.Indicateurs pourévaluerlesrisquesliésà l’utilisationdespesticides.ouvragecollectif.Lavoisier,EditionsTecetDoc.

Dixon,B.,Earls,J.,2009.Resampleornot?EffectsofresolutionofDEMsinwatershed modeling.Hydro.Process.23(12),1714–1724.

Ducrot,D.,2005.Méthodesd’AnalysesetD’interprétationD’imagesMulti-Sources. ExtractiondeCaractéristiquesduPaysage,MémoiredeRecherche.CESBIO, Toulouse.

Dumanski,J.,Pettapiece,W.,McGregor,R.J.,1998.Relevanceofscaledependent approachesforintegratingbiophysicalandsocio-economicinformationand developmentofagroecologicalindicators.Nutr.Cycl.Agroecosyst.50,13–22.

Eastman,J.R.,2001.Idrisi32Release2Tutorial.Clarklabs,Worcester.

Eastman,J.R.,Kyem,P.A.K.,Toedano,J.,Jin,W.,1993.ExplorationsinGeographic SystemsTechnology,4,GISandDecisionMaking.UNITAR,Geneva.

Ernoult,A.,Bureau,F.,Poudevigne,I.,2003.Patternsoforganisationinchanging landscapes:implicationsforthemanagementofbiodiversity.LandscapeEcol. 18,239–251.

EC,2000.Directive2000/60/ECoftheEuropeanParliamentandoftheCouncilof23 October2000EstablishingaFrameworkforCommunityActionintheFieldof WaterPolicy.

FAO,2006.WorldReferenceBaseforSoilResources,AFrameworkforInternational Classification,CorrelationandCommunication,WorldSoilsResourcesReport 106.

Ferrant,S.,Oehler,F.,Durand,P.,Ruiz,L.,Salmon-Monviola,J.,Justes,E.,Dugast,P., Probst,A.,Probst,J.L.,Sanchez-Perez,J.M.,2011.Understandingnitrogentransfer dynamicsinasmallagriculturalcatchment:Comparisonofadistributed(TNT2) andasemidistributed(SWAT)modelingapproaches.J.Hydrol.406,1–15.

Gardi,C.,2001.Landuse,agronomicmanagementandwaterqualityinasmall NorthernItalianwatershed.Agric.Ecosyst.Environ.87,1–12.

Gascuel-Odoux,C.,Aurousseau,P.,Cordier,M.O.,Durand,P.,Garcia,F.,Masson,V., Salmon-Monviola,J.,Tortrat,F.,Trepos,R.,2009a.Adecision-orientedmodel toevaluatetheeffectoflanduseandagriculturalmanagementonherbicide contaminationinstreamwater.Environ.Modell.Softw.24,1433–1446.

Gascuel-Odoux,C.,Massa,F.,Durand,P.,Merot,P.,Troccaz,O.,Baudry,J.,Thenail,C., 2009b.Frameworkandtoolsforagriculturallandscapeassessmentrelatingto waterqualityprotection.Environ.Manage.43,921–935.

Gouy,V.,Gril,J.J.,2001.Diagnosisofpesticidediffusepollutionandmanagement practicestoreducetransfertowater.Ing.EAT,specialpesticides:81–90.

Henin,S.,1980.Rapportdugroupedetravailactivitésagricolesetqualitédeseaux. Synthèse.Ministèresenchargedel’agricultureetdel’environnement,pp.59.

Jiang,H.,Eastman,J.R.,2000.Applicationoffuzzymeasuresinmulti-criteria evalu-ationinGIS.Int.J.Geogr.Inf.Sci.14(2),173–184.

LeBissonnais,Y.,Montier,C.,Daroussin,J.,King,D.,1998.Cartographiedel’aléa “Erosiondessols”enFrance.CollectionEtudesetTravauxn◦18.IFEN,INRA,

Orléans.

Lepinard,P.,2008.LesméthodesdediscrétisationdansArcGIS9.2.Didacticielde formationESRI,45pp.

Lescot,J.M.,Bordenave,P.,Petit,K.,Leccia,O.,Sanchez-Perez,J.,Sauvage,S.,Probst, J.L.,2011.Cost-effectivenessanalysisforcontrollingwaterpollutionby pes-ticidesusingSWATandbio-economicalmodelling.In:SWATInternational Conference.UniversityofCastillalaMancha,Toledo,Spain.

Lim,K.J.,Engel,B.A.,2003.Extensionandenhancementofnationalagricultural pesti-cideriskanalysis(NAPRA)WWWdecisionsupportsystemtoincludenutrients. Comput.Elect.Agric.38,227–236.

Macary,F.,Vernier,F.,2007a.Zonagederisquepotentieldetransfertsdepesticidesà l’échelledebassinsversants:quellesméthodespouruntransfertd’échelles spa-tiales?Pesticides:impactsenvironnementaux,gestionettraitements.Pressesde l’EcoleNationaledesPontsetChaussées,pp.245–259.

Macary,F.,Balestrat,M.,Puech,C.,Saudubray,F.,2007.In:Batton-Hubert,M., Joliveau,T.,Lardon,S.(Eds.),Méthoded’estimationd’unrisquepotentiel spatial-isédelacontaminationdeseauxdesurfaceparlesintrantsagricolesàdifférentes échellesspatiales:applicationsurlescoteauxdeGascogne.SAGEO,Rencontres InternationalesGéomatiqueetTerritoire.

Macary,F.,Leccia,O.coord,etal.,2011.EuropeanProjectAGUAFLASH: Deliver-ableGT3.2.IdentificationofContaminationRiskAreasofSurfaceWatersonthe WatershedsofFlumen(Spain),Alegria(Spain)andEnxoé(Portugal).

Malczewski,J.,1999.GISandMulticriteriaDecisionAnalysis.JohnWileyandSons, NewYork.

Malczewski,J.,2006.GIS-basedMulticriteriadecisionanalysis:asurveyofthe lit-erature.Int.J.Geogr.Inf.Sci.20(7),703–726.

Maystre,L.Y.,Pictet,J.,Simos,J.,1994.MéthodesMulticritèresELECTRE:Description, ConseilsPratiquesetCasD’applicationàlaGestionEnvironnementale.Lavoisier, TECandDOC,Paris.

Mérot,P.,Gascuel-Odoux,C.,Walter,C.,Zhang,X.,Molénat,J.,1999.Theinfluenceof hedgerownetworksinbocagelandscapesonsurfacewaterpathways.J.Water Sci.12,23–44.

Misra,A.K.,Baker,J.L.,Mickelson,S.K.,Shang,H.,1996.Contributingareaand concen-trationeffectsonherbicideremovalbyvegetativebufferstrips.Am.Soc.Agric. Biol.Eng.39,2105–2111.

Morin,S.,Bottin,M.,Mazzella,N.,Macary,F.,Delmas,F.,Winterton,P.,Coste,M., 2009.Linkingdiatomcommunitystructuretopesticideinputasevaluated throughaspatialcontaminationpotential(Phytopixal):acasestudyintheNeste riversystem(South-WestFrance).Aquat.Toxicol.94,28–39.

Paegelow,M.,Olmedo-Camacho,M.T.,2005.Possibilitiesandlimitsofprospective GISlandcovermodelling-acomparedcasestudy:Garrotxes(France)andAlta AlpujarraGranadina(Spain).Int.J.Geogr.Inf.Sci.19(6),697–722.

Paegelow,M.,Camacho-Olmedo,M.T.,2008.ModellingEnvironmentalDynamics: AdvancesinGeomaticsSolutions.Springer,Berlin.

Patty,L.,Réal,B.,Gril,J.J.,1997.TheuseofgrassedbufferStripstoremovepesticides, nitrateandsolublephosphoruscompoundsfromrunoffwater.Pest.Sci.49(3), 243–251.

Figure

Fig. 1. Different spatial organisational levels, data and methods.
Fig. 3. Example of different spatial organisational levels in the “Coteaux de Gascogne” area.
Table 1 summarises the scores of the three vulnerability indica- indica-tors.
Fig. 5. Distance to watercourses.
+5

Références

Documents relatifs

Such simplified modules can then provide efficiencies of pesticides dissipation in ponds as a function of parameters available at the headwater catchment scale, including

Its contamination by a nematicide applied in banana cropping (Charlier et al, 2009, Journal of Environmental Quality, 38, 3, p.1031-1041) showed two successive phases, which

Distribution of watershed outlet (100%) water volumes (Water) or loads for isoproturon (IPU), chlorotoluron (CTU), metazachlor (MTZ), diflufenican (DFF) and epoxiconazole (EPX)

Considering the facts that (i) the concentrations of pesticides in pollen collected in agricultural areas are usually lower than in our experiment and that (ii) only traces of

In 2015, we sampled bee bread from hives across western New York during the maize flowering period, and we related pesti- cide residues to landscape context and percent maize

1) Document the PLM solution in a layered PLM architecture model [10]. 2) Analyse the PLM architecture model regarding its elements’ coverage of the archi- tectural layers,

- Some studies in which PPE wearing practices were not controlled show that the measured level of protection is nowhere near the an- ticipated level, and this for protective

Discussion and conclusion: This review highlights that the following study design characteristics may be more appropriate than others to measure pesticide spray drift exposure