• Aucun résultat trouvé

Contraction and deletion blockers for perfect graphs and H-free graphs

N/A
N/A
Protected

Academic year: 2021

Partager "Contraction and deletion blockers for perfect graphs and H-free graphs"

Copied!
24
0
0

Texte intégral

(1)

Contraction

and

deletion

blockers

for

perfect

graphs

and H-free

graphs

Öznur

Ya ¸sar Diner

a

,

1

,

Daniël Paulusma

b

,

2

,

Christophe Picouleau

c

,

Bernard Ries

d

,

aKadir Has University, Istanbul, Turkey bDurham University, Durham, UK cCNAM, Laboratoire CEDRIC, Paris, France dUniversity of Fribourg, Fribourg, Switzerland

a

b

s

t

r

a

c

t

We study the following problem: for given integers d, k and graph G, can we reduce some fixed graph parameter

π

of G by at least d via

at most

k graph

operations from

some fixed set S?

As parameters we take the chromatic number

χ

, clique number

ω

and independence number

α

, and as operations we choose edge contraction ec and vertex deletion vd. We determine the complexity of this problem for S= {ec} and S= {vd} and

π

∈ {

χ

,

ω

,

α

}for a number of subclasses of perfect graphs. We use these results to determine the complexity of the problem for S= {ec} and S= {vd} and

π

∈ {

χ

,

ω

,

α

}

restricted to H-free

graphs.

1. Introduction

AtypicalgraphmodificationproblemaimstomodifyagraphG,viaasmallnumberofoperationsfromaspecifiedset S, intosome othergraph H thathasacertain desiredproperty,whichusually describesa certaingraphclass

G

towhich H

mustbelong.Inthiswayavarietyofclassicalgraph-theoreticproblemsiscaptured.Forinstance,ifonlyk vertexdeletions areallowedandH mustbeanindependentsetoraclique,weobtainthe IndependentSetor Clique problem,respectively. Now,insteadoffixing aparticular graphclass

G

,wefixacertaingraphparameter

π

.Thatis,forafixed set S of graph operations, we ask, givena graph G,integers k and d,whether G canbe transformed intoa graph G by using atmost

k operationsfrom S, such that

π

(

G

)

π

(

G

)

d.The integer d is calledthethreshold. Such problemsare calledblocker problems,asthesetofverticesoredgesinvolved“block”somedesirablegraphproperty,suchasbeingcolourablewithonly

AnumberofresultsinthispaperhaveappearedinextendedabstractsoftheproceedingsofCIAC 2016 [16],ISCO2016 [36],LAGOS2017 [35] and

TAMC2017 [37].

*

Correspondingauthor.

E-mail addresses:oznur.yasar@khas.edu.tr(Ö.Y. Diner),daniel.paulusma@durham.ac.uk(D. Paulusma),christophe.picouleau@cnam.fr(C. Picouleau),

bernard.ries@unifr.ch(B. Ries).

1 AuthorsupportedbyMarieCurieInternationalReintegrationGrantPIRG07/GA/2010/268322. 2 AuthorsupportedbyEPSRC(EP/K025090/1)andtheLeverhulmeTrust(RPG-2016-258).

Published in "Theoretical Computer Science 746 (2018) 49-72"

which should be cited to refer to this work.

(2)

afewcolours.Identifyingthepartofthegraphresponsibleforasignificantdecreaseoftheparameterunderconsideration givescrucialinformationonthegraph.

Blockerproblemshavebeengivenmuch attentionover thelastfew years[2–4,13,38,39,42,44].Graphparameters con-sideredwerethechromatic number,theindependencenumber,thecliquenumber,thematchingnumber,theweightofa minimumdominatingsetandthevertexcovernumber.Sofar,thesetS alwaysconsistedofasinglegraphoperation,which wasavertexdeletion,anedgedeletionoranedgeaddition.Inthispaper,wekeeptherestrictiononthesizeofS byletting

S consistofeitherasinglevertexdeletionor,forthefirsttime,asingleedgecontraction.Asgraphparameters,weconsider theindependencenumber

α

,thecliquenumber

ω

andthechromaticnumber

χ

.

Beforewecandefineourproblemsformally,wefirstneedtogivesometerminology.Thecontraction ofanedgeuv ofa graphG removestheverticesu and v fromG,andreplacesthembyanewvertexmadeadjacenttopreciselythosevertices that were adjacenttou or v in G (neitherintroducingself-loopsnormultipleedges).Wesay that G canbe k-contracted

ork-vertex-deleted into agraph G, ifG canbe modified into G bya sequence ofatmost k edgecontractions orvertex deletions,respectively.Welet

π

denotethe(fixed)graphparameter;asmentioned,inthispaper

π

belongsto

{

α

,

ω

,

χ

}

.

Wearenowreadytodefineourdecisionproblemsinageneralway: ContractionBlocker(

π

)

Instance: a graph G and two integers d

,

k

0

Question: can G be k-contracted into a graph Gsuch that

π

(

G

)

π

(

G

)

d?

DeletionBlocker(

π

)

Instance: a graph G and two integers d

,

k

0

Question: can G be k-vertex-deleted into a graph Gsuch that

π

(

G

)

π

(

G

)

d?

If we remove d from the input and fix it instead, then we call the resulting problems d-ContractionBlocker(

π

) and

d-DeletionBlocker(

π

),respectively.

d-ContractionBlocker(

π

)

Instance: a graph G and an integer k

0

Question: can G be k-contracted into a graph Gsuch that

π

(

G

)

π

(

G

)

d?

d-DeletionBlocker(

π

)

Instance: a graph G and an integer k

0

Question: can G be k-vertex-deleted into a graph Gsuch that

π

(

G

)

π

(

G

)

d?

The goal of our paper is to increase our understanding of the complexities of ContractionBlocker(

π

) and Dele-tionBlocker(

π

)for

π

∈ {

ω

,

χ

,

α

}.

Inorder todoso, wewill alsoconsiderthe problems d-ContractionBlocker(

π

)and

d-deletionblocker(

π

).

1.1. Knownresultsandrelationstootherproblems

Itisknownthat DeletionBlocker(

α

)ispolynomial-timesolvableforbipartitegraphs,asprovenbothbyBazgan, Touba-line and Tuza [3] andCosta, de Werra and Picouleau [13]. The former authors alsoproved that DeletionBlocker(

α

) is polynomial-timesolvableforcographsandgraphsofboundedtreewidth.Thelatterauthorsalsoprovedthatfor

π

∈ {

ω

,

χ

}

, DeletionBlocker(

π

) is polynomial-time solvable for cobipartite graphs. Moreover, they showed that for

π

∈ {

ω

,

χ

,

α

}

, DeletionBlocker(

π

)is NP-completefortheclassofsplitgraphs,butbecomespolynomial-timesolvableforthisgraphclass ifd isfixed.

Byusinganumberofexampleproblemswewillnowillustratehowtheblockerproblemsstudiedinthispaperrelateto a numberofotherproblemsknownintheliterature.Aswe willsee,thisimmediatelyleadstonewcomplexityresultsfor theblockerproblems.

1. HadwidgerNumberandClubContraction. The ContractionBlocker(

α

) problemgeneralizesthewell-known Hadwiger Number problem, which isthat oftesting whethera graphcan be contractedinto thecomplete graph Kr on r vertices forsome givenintegerr. Indeed,weobtainthelatterproblemfromthefirstby restrictinginstancestoinstances

(

G

,

d

,

k

)

whered

=

α

(

G

)

1 andk

= |

V

(

G

)

|

r.NotethatthediameterandindependencenumberofKr arebothequalto 1.Hence,

one canalsogeneralize HadwigerNumberinanotherway:the ClubContractionproblem(seee.g. [21])isthatoftesting whether agraph G canbe k-contracted intoa graph withdiameteratmost s for some givenintegers k and s. As such, ContractionBlocker(

α

)canbeseenasanaturalcounterpartof ClubContraction.

(3)

2. Graphtransversals. Blocker problems generalize the so-called graph transversal problems. To explain the latter type of problems,for a family of graphs

H

, the

H

-transversal problem isto test ifa graph G can be k-vertex-deleted, for some integer k, into a graph G that has no induced subgraph isomorphic to a graph in

H

. For instance, the problem

{

K2

}

-transversalisthesameas VertexCover.Herearesomeexamplesofspecificconnectionsbetweengraphtransversals andblockerproblems.

– Let

H

be thefamily

{

Kp

|

p

2

}

ofall completegraphsonatleasttwovertices.Then

H

-transversalisequivalentto DeletionBlocker(

ω

)restrictedtoinstances

(

G

,

d

,

k

)

withd

=

ω

(

G

)

1.

– InourpaperwewillprovethatforagraphG withatleastoneedgeandaninteger k

1,theinstance

(

G

,

ω

(

G

)

1

,

k

)

isayes-instanceof DeletionBlocker(

ω

)ifandonlyif

(

G

,

k

)

isayes-instanceof VertexCover.

– The OddCycleTransversalproblemis totest whethera givengraph canbe made bipartite byremoving atmostk verticesforsome givenintegerk

0.Thisproblemis NP-complete [31],anditis equivalentto DeletionBlocker(

χ

) forinstances

(

G

,

d

,

k

)

whered

=

χ

(

G

)

2.

– The d-Transversal or d-Cover problem [13] istodecidewhetheragraphG

= (

V

,

E

)

containsaset V thatintersects eachmaximumsetsatisfyingsomespecifiedproperty

π

byatleastd vertices.Forinstance,ifthepropertyisbeingan independentset, 1-Transversal isequivalentto 1-DeletionBlocker(

α

).

3. BipartiteContraction. Theproblem BipartiteContractionistotestwhetheragraphcan bemadebipartite byatmost

k edgecontractions.Heggerneset al. [26] provedthatthisproblemis NP-complete. Itisreadilyseenthat 1-Contraction Blocker(

χ

)and BipartiteContractionareequivalentforgraphsofchromaticnumber 3.

4.Maximuminducedbipartitesubgraphs. The MaximumInducedBipartiteSubgraphproblemistodecideifagivengraph containsaninducedbipartitesubgraphwithatleastk verticesforsomeinteger k.Addario-Berryet al.[1] provedthatthis problemis NP-complete fortheclassof3-colourableperfectgraphs.Weobservethat, for3-colourablegraphs, 1-Deletion Blocker(

χ

)isequivalentto MaximumInducedBipartiteSubgraph.

5. Cores. Thetwoproblems 1-DeletionBlocker(

α

)and 1-DeletionBlocker(

ω

)areequivalenttotestingwhethertheinput graph contains a set of S of size at most k that intersects every maximum independent set orevery maximumclique, respectively.Ifk

=

1,thesetwoproblemsbecomeequivalenttotestingwhethertheinputgraphcontainsavertexthatisin everymaximumindependentset,orineverymaximumclique,respectively.Inparticular,theintersectionofall maximum independent sets isknown asthe core of a graph.Properties ofthe corehave been well studied (see,for example, [25,

29,30]). Inparticular, Boros,Golumbic andLevit [7] proved that determining ifthecoreof agraph hassize atleast



is co-NP-hardforeveryfixed



1.Taking



=

1 givesco-NP-hardnessof 1-DeletionBlocker(

α

).

6. Criticalverticesandedges. Therestrictiond

=

k

=

1 hasalsobeenstudiedwhen

π

=

χ

.Avertexofagraph G iscritical

ifits deletionreducesthechromatic numberof G by 1. Anedge ofagraphis critical orcontraction-critical if itsdeletion or contraction, respectively, reducesthe chromatic number of G by 1. The problems CriticalVertex, CriticalEdge and Contraction-Criticalaretotest ifagraphhasacriticalvertex, criticaledge orcontraction-criticaledge,respectively.We note that the first two problems are the restrictions of ContractionBlocker(

χ

) and DeletionBlocker(

χ

) to instances

(

G

,

d

,

k

)

whered

=

k

=

1.Complexitydichotomiesexistforeachofthethreeproblemson H -freegraphs,andmoreoverthe lattertwo problemsareshownto beequivalent [35]. Graphswithacritical(or equivalentlycontraction-critical) edgeare alsocalledcolour-critical (see,forinstance, [40]).

Duetolinkstoproblemsastheonesabove,itisofnosurprisethatmanyresultsforblockerproblemsareknownimplicitly intheliteraturealreadyinvarioussettings.Forexample,Belmonteetal. [5] provedthat1-ContractionBlocker(



),where



denotesthe maximumvertex-degree,is NP-completeevenforsplitgraphs.We makeuseofseveralknowncomplexity resultsforsomeoftherelatedproblemsstatedaboveforprovingourresults.

1.2. Ourresults

InSection 1.1we mentioned that DeletionBlocker(

π

) is knownto be NP-completefor

π

∈ {

α

,

ω

,

χ

}

even when re-strictedtospecialgraphclasses.Non-surprisingly, ContractionBlocker(

π

)is NP-complete for

π

∈ {

α

,

ω

,

χ

}

aswell(this followsfromourresultsinSection8,butitisalsoeasytoshowthisdirectly).

Dueto theabove, itisnaturalto restrictinputsto some specialgraphclassesinorderto obtaintractable resultsand to increase our understanding ofthe computational hardness of the problems.Note that it is not always clear whether ContractionBlocker(

π

)and DeletionBlocker(

π

)belong to NP whenrestrictedtoagraphclass

G

.However,when

G

is closedunderedgecontractionorvertexdeletion,respectively,and

π

canbeverifiedinpolynomialtime,thenmembership of NP holds:wecantakeascertificatethesequenceofedgecontractionsorvertexdeletions,respectively.

Wepresentourresultsintwoparts.

PartI. Inthe first partofour paperwe focus onthe class ofperfectgraphs anda numberof well-known subclassesof perfectgraphs.Mostoftheseclassesarenotonlyclosedundervertexdeletionbutalsounderedgecontraction.Thisenables ustogetunifiedresultsforthecases

π

=

ω

and

π

=

χ

(notethat

ω

=

χ

holdsbydefinitionofaperfectgraph).Another

(4)

Table 1

Summaryofresultsforsubclassesofperfectgraphs.Here NP-cand NP-hstandfor NP-completeand NP-hard, respec-tively,whereas P standsforpolynomial-timesolvable.Ablankentryindicatesanopencase.Allentriesapartfromthe fivereferencedonesandtheirconsequencesforchordalandperfectgraphsarenewresultsproveninPart Iofthispaper.

Class Contraction Blocker(π) Deletion Blocker(π)

π=α π=ω=χ π=α π=ω=χ

Tree P P P[3,13] P

Bipartite (χ=2) NP-h P P[3,13] P Cobipartite d=1: NP-c NP-c; d fixed: P P P[13]

Cograph P P P[3] P

Split NP-c; d fixed: P NP-c; d fixed: P NP-c; d fixed: P [13] NP-c; d fixed: P [13]

Interval P P

Chordal NP-c d=1: NP-c NP-c d=1: NP-c

C4-free perfect &ω=3 d=1: NP-c

Perfect d=1: NP-h d=1: NP-h NP-c d=1: NP-c

reasonforconsideringsubclassesofperfectgraphsisthat

α

,

ω

,

χ

canbecomputedinpolynomialtimeforperfectgraphs; Grötschel, Lovász, andSchrijver [23] proved thisfor

χ

andthusfor

ω

,whereas theresultfor

α

followsfromcombining thisresultwiththefactthatperfectgraphsareclosedundercomplementation(thelatterobservationfollowsdirectlyfrom the Strong PerfectGraph Theorem [9];see alsoTheorem 3). Thishelpsuswith findingtractable resultsorat leastwith obtaining membershipof NP (if in additionthe subclassunder consideration isclosed underedge contraction orvertex deletion).

Table 1givesanoverviewoftheknownresultsandournewresultsfortheclassesofperfectgraphs weconsider. We have unified resultsfor thecases

π

=

ω

and

π

=

χ

even forthe perfectgraphclasses inthis table that are not closed underedgecontraction,namelytheclassesofbipartitegraphs;C4-freeperfectgraphswithcliquenumber 3;andtheclass

ofperfectgraphsitself.Astheclassofperfectgraphsisnotclosedunderedgecontractionwecouldforperfectgraphsonly deducethatthethreecontractionblockerproblemsare NP-hard(evenifd

=

1).Astheclassofcographscoincideswiththe classofP4-freegraphs(where Prdenotesther-vertexpath)andsplitgraphsare P5-free,thecorrespondingrowsinTable1

show a complexity jumpofall ourproblemsfor Pt-free graphsfromt

=

4 tot

=

5. Recallalso fromSection 1.1that the

HadwigerNumberproblemisaspecialcaseof ContractionBlocker(

α

). Assuch,ourpolynomial-timeresultinTable1for ContractionBlocker(

α

)restrictedtocographsgeneralizesaresultofGolovachetal. [21],whoprovedthatthe Hadwiger Numberproblemispolynomialtimesolvableoncographs.

PartII. Inthesecondpartofourpaperwegiveseveraldichotomyresults.Firstwegive,for

π

∈ {

α

,

ω

,

χ

}

,complete classi-ficationsof DeletionBlocker(

π

)and ContractionBlocker(

π

)dependingonthesizeof

π

,thatis,weprovethefollowing theorem.

Theorem1.Thefollowingsixdichotomieshold:

(i) ContractionBlocker(

α

)ispolynomial-timesolvableforgraphswith

α

=

1 and 1-ContractionBlocker(

α

)is NP-complete

forgraphswith

α

=

2;

(ii) ContractionBlocker(

χ

)ispolynomial-timesolvableforgraphswith

χ

=

2 and 1-ContractionBlocker(

χ

)is NP-complete

forgraphswith

χ

=

3;

(iii) ContractionBlocker(

ω

)ispolynomial-timesolvableforgraphswith

ω

=

2 and 1-ContractionBlocker(

ω

)is NP-complete

forgraphswith

ω

=

3;

(iv) DeletionBlocker(

α

)ispolynomial-timesolvableforgraphswith

α

=

1 and 1-DeletionBlocker(

α

)is NP-completeforgraphs

with

α

=

2;

(v) DeletionBlocker(

χ

)ispolynomial-timesolvableforgraphswith

χ

=

2 and 1-DeletionBlocker(

χ

)is NP-completeforgraphs

with

χ

=

3;

(vi) DeletionBlocker(

ω

)ispolynomial-timesolvableforgraphswith

ω

=

1 and 1-DeletionBlocker(

ω

)is NP-completeforgraphs

with

ω

=

2.

Inparticularweextendthehardnessproof ofTheorem1(iii)inordertoobtainthehardness resultforC4-freeperfect

graphs with

ω

=

3 inTable 1. We note that some of the resultsin Table 1,such as thisresult, may atfirst sight seem somewhat arbitrary.However, we needthe result forC4-free perfect graphs with

ω

=

3 and other results ofTable 1 to

prove ourother resultsofthesecond partofourpaper.Namely,bycombiningtheresultsforsubclassesofperfectgraphs with other results,we obtain complexity dichotomies forour six blockersproblems restricted to H -free graphs, that is, graphs that donot contain some (fixed)graph H as an inducedsubgraph. Thesedichotomies are statedinthe following summary; here, Pr is ther-vertex path, C3 is thetriangle, andthepaw is the trianglewithan extra vertexadjacent to

exactlyone vertexofthetriangle,whereas

i denotestheinducedsubgraphrelationand

denotesthedisjointunionof

(5)

Theorem2.LetH beagraph.Thenthefollowingholds:

(i) IfH

iP4,then DeletionBlocker(

α

)ispolynomial-timesolvableforH -freegraphs,otherwiseitis NP-hardorco-NP-hardfor

H -freegraphs.

(ii) If H

i P4,then ContractionBlocker(

α

)ispolynomial-timesolvableforH -freegraphs,otherwiseitis NP-hardforH -free

graphs.

(iii) IfH

iP4,then DeletionBlocker(

ω

)ispolynomial-timesolvableforH -freegraphs;otherwiseitis NP-hardorco-NP-hardfor

H -freegraphs.

(iv) LetH

=

C3

P1.IfH

iP4orH

ipaw,then ContractionBlocker

(

ω

)

ispolynomial-timesolvableforH -freegraphs,

other-wiseitis NP-hardorco-NP-hardforH -freegraphs.

(v) IfH

iP1

P3orH

iP4,then DeletionBlocker

(

χ

)

ispolynomial-timesolvableforH -freegraphs,otherwiseitis NP-hard

orco-NP-hardforH -freegraphs.

(vi) IfH

iP4,then ContractionBlocker

(

χ

)

ispolynomial-timesolvableforH -freegraphs,otherwiseitis NP-hardorco-NP-hard

forH -freegraphs.

Statements(i), (ii), (iii), (v), (vi) of Theorem2 correspond to complete complexity dichotomies, whereas there is one missingcaseinstatement (iv).Inparticularwenotethatstatements (v)and (vi)donotcoincidefordisconnectedgraphs H . WealsoobservefromTheorem2(i)that DeletionBlocker(

α

)iscomputationallyhardfortriangle-freegraphs;infactwe willshow co-NP-hardness evenifd

=

k

=

1.Thisincontrastto theproblembeingpolynomial-timesolvableforbipartite graphs,asshownin [3,13] (seealsoTable1).

1.3. Paperorganization

Section2containsnotationandterminology.

Sections3–7containtheresultsmentionedinPart I.Tobe moreprecise,Section3contains ourresultsforcobipartite graphs,bipartitegraphsandtrees.InSections4and5,weproveourresultsforcographsandsplitgraphs,respectively.In Section 5we alsoshow that our NP-hardness reductionfor splitgraphs canbe usedto provethat the threecontraction blockersproblems,restrictedtosplitgraphs,are W[1]-hardwhenparameterizedby d.Thelatterresultmeansthatforsplit graphs theseproblems areunlikely to be fixed-parameter tractable withparameter d. In Sections6 and7 we prove our resultsforintervalgraphsandchordalgraphs,respectively.

Sections8and9containtheresultsmentionedinPart II.InSection8wefirstprovedichotomiesforthethreecontraction blockerandthreevertexblockerproblemswhenweclassify onbasis ofthesizeof

π

∈ {

α

,

χ

,

ω

}

.Inthesamesection,we modifythehardness constructionfor 1-ContractionBlocker(

ω

)toprovethat 1-ContractionBlocker(

ω

) is NP-complete evenforC4-freeperfectgraphswith

ω

=

3.InSection9weproveTheorem2.

Section10containsanumberofopenproblemsanddirectionsforfutureresearch.

2. Preliminaries

We only consider finite, undirected graphs that have no self-loops and no multiple edges; we recall that when we contractanedge,noself-loopsormultipleedgesarecreated.Wereferto [14] or [45] forundefinedterminologyandto [15] formoreonparameterizedcomplexity.

LetG

= (

V

,

E

)

be agraph.Forasubset S

V ,we let G

[

S

]

denotethe subgraphof G induced by S,whichhasvertex set S andedgeset

{

uv

E

|

u

,

v

S

}

.Wewrite H

iG ifa graphH isan inducedsubgraphof G. Moreover,foravertex v

V ,wewriteG

v

=

G

[

V

\ {

v

}]

andforasubsetV

V wewrite G

V

=

G

[

V

\

V

]

.Foraset

{

H1

,

. . . ,

Hp

}

ofgraphs, G is

(

H1

,

. . . ,

Hp

)

-free ifG hasnoinducedsubgraphisomorphictoagraphin

{

H1

,

. . . ,

Hp

}

;ifp

=

1 wemaywrite H1-free

insteadof

(

H1

)

-free.Thecomplement ofG isthegraphG

= (

V

,

E

)

withvertexset V andanedgebetweentwoverticesu

andv ifandonlyif uv

/

E.Recallthatthecontractionofanedgeuv

E removestheverticesu and v fromthegraph G andreplaces themby a newvertexthat ismade adjacenttoprecisely those verticesthat were adjacentto u or v in G.

Thisnewgraphwillbedenotedby G

|

uv.Inthatcasewemayalsosaythatu iscontractedonto v,andweusev todenote thenewvertexresultingfromthe edgecontraction.Thesubdivision of anedge uv

E removestheedgeuv from G and

replacesitbyanewvertexw andtwoedgesu w andw v.

Let G and H betwo vertex-disjointgraphs. The join operation

addsan edge betweenevery vertexof G andevery vertexof H .The union operation

takesthe disjointunion of G and H ,that is, G

H

= (

V

(

G

)

V

(

H

),

E

(

G

)

E

(

H

))

. We denote the disjointunion of p copies of G by pG. For n

1, the graph Pn denotes the path on n vertices,that is, V

(

Pn

)

= {

u1

,

. . . ,

un

}

and E

(

Pn

)

= {

uiui+1

|

1

i

n

1

}

.Forn

3,thegraphCn denotes thecycle onn vertices,that is, V

(

Cn

)

= {

u1

,

. . . ,

un

}

and E

(

Cn

)

= {

uiui+1

|

1

i

n

1

}

∪ {

unu1

}

.ThegraphC3isalsocalledthetriangle.Theclaw K1,3is

the4-vertexstar,thatis,thegraphwithverticesu, v1,v2, v3andedgesuv1,uv2,uv3.

LetG

= (

V

,

E

)

bea graph.Asubset K

V iscalledaclique of G ifanytwo verticesin K areadjacenttoeach other. Thecliquenumber

ω

(

G

)

isthe numberofverticesinamaximumclique ofG.Asubset I

V iscalledanindependentset

of G ifanytwoverticesin I are non-adjacent toeach other.Theindependencenumber

α

(

G

)

isthenumberofverticesin amaximumindependentsetofG.Forapositiveintegerk, ak-colouring of G isamappingc

:

V

→ {

1

,

2

,

. . . ,

k

}

suchthat

(6)

c

(

u

)

=

c

(

v

)

wheneveruv

E.Thechromaticnumber

χ

(

G

)

isthesmallestintegerk forwhichG hasak-colouring.Asubset ofedges M

E iscalledamatching ifno twoedgesof M shareacommonend-vertex.Thematchingnumber

μ

(

G

)

isthe numberofedgesinamaximummatchingofG.Avertexv suchthat M containsanedgeincidentto v issaturated byM;

otherwise v isunsaturated byM.Asubset S

V isavertexcover ofG ifeveryedgeofG isincidenttoatleastonevertex of S.

The Coloring problemisthatoftestingifagraphhasak-colouringforsomegiveninteger k.Theproblems Clique and IndependentSetarethoseoftestingifagraphhasacliqueorindependentset,respectively,ofsizeatleast k.The Vertex Cover problemisthat oftestingifagraphhasavertexcoverofsize atmost k. Weneedthefollowinglemmaatseveral placesinourpaper.

Lemma1([41]).VertexCoveris NP-completeforC3-freegraphs.

Welet

(

∅,

∅)

betheempty graph.Anintervalgraph isagraphsuchthatonecanassociateanintervalofthereallinewith every vertexsuchthat twoverticesareadjacentifandonlyifthecorrespondingintervalsintersect.Agraphiscobipartite

ifitisthecomplementofabipartite (2-colourable)graph.Agraphischordal ifitcontainsnoinducedcycleonmorethan threevertices.Agraphisasplitgraph ifithasasplitpartition,whichisapartitionofitsvertexsetintoaclique K andan independentset I.Splitgraphscoincidewith

(

2P2

,

C4

,

C5

)

-freegraphs [18].A P4-freegraphisalsocalledacograph.

Agraphisperfect ifthechromaticnumberofeveryinducedsubgraphequalsthesizeofalargestcliqueinthatsubgraph. Ahole is aninduced cycleonatleastfiveverticesandanantihole isthecomplementofahole.Aholeorantiholeisodd

ifitcontainsan oddnumberofvertices.Weneedthefollowingwell-knowntheoremofChudnovsky,Robertson,Seymour, andThomas.ThistheoremcanalsobeusedtoverifythattheothergraphclassesinTable1areindeedsubclassesofperfect graphs.

Theorem3(StrongPerfectGraphTheorem[9]).Agraphisperfectifandonlyifitcontainsnooddholeandnooddantiholeasan inducedsubgraph.

3. Cobipartitegraphs,bipartitegraphsandtrees

Wefirstconsiderthecontractionblockerproblemsandthenthedeletionblockerproblems.

3.1. Contractionblockers

Ourfirstresultisahardnessresultforcobipartitegraphsthatfollowsdirectlyfromaknownresult.

Theorem4.1-ContractionBlocker(

α

)is NP-completeforcobipartitegraphs.

Proof. Golovach,Heggernes,van ’t HofandPaul [21] consideredthe s-ClubContractionproblem.Recallthatthisproblem takesasinputa graph G andan integerk andaskswhetherG canbek-contracted intoagraphwithdiameteratmost s for some fixed integer s. They showed that 1-ClubContraction is NP-complete even forcobipartite graphs. Graphs of diameter 1 are complete graphs, that is, graphs with independence number 1, whereas cobipartite graphs that are not completehaveindependencenumber 2.

2

We nowfocuson

π

=

χ

and

π

=

ω

.Forournextresult(Theorem5) weneedsomeadditionalterminology.Abiclique

isacompletebipartitegraph,whichisnontrivial ifithasatleastoneedge.Abicliquevertex-partition ofagraphG

= (

V

,

E

)

isa set

S

ofmutuallyvertex-disjoint bicliquesin G suchthatevery vertexofG iscontainedinoneofthebicliquesof

S

. The BicliqueVertex-PartitionproblemconsistsintestingwhetheragivengraphG hasabicliquevertex-partitionofsizeat most k,forsomepositiveintegerk.Fleischneretal. [17] showedthatthisproblemis NP-completeevenforbipartitegraphs andk

=

3.

WearenowreadytoproveTheorem5.

Theorem5.For

π

∈ {

χ

,

ω

}

, ContractionBlocker(

π

)is NP-completeforcobipartitegraphs.

Proof. Sincecobipartitegraphsareperfectandclosedunderedgecontractions,wemayassumewithoutlossofgenerality that

π

=

χ

.The problemisin NP, as Coloring ispolynomial-timesolvableon cobipartitegraphs andthen we cantake the sequence ofedge contractions ascertificate. We reduce from BicliqueVertex-Partition. Recallthat thisproblem is NP-completeevenforbipartitegraphsandk

=

3 [17].Astheproblemispolynomial-timesolvableforbipartitegraphsand

k

=

2 (see [17]),wemayaskforabicliquevertex-partitionofsizeexactly 3,inwhicheachbicliqueisnontrivial.

Let(G

,

3) be an instanceof BicliqueVertex-Partition, whereG is a connectedbipartite graphonn verticesthat has partition classes X and Y .We claimthat G hasa bicliquevertex-partitionconsistingofthree non-trivialbicliquesifand onlyifG canbe

(

n

6

)

-contractedintoagraphGwith

χ

(

G

)

3 (sod

=

χ

(

G

)

3).

(7)

FirstsupposethatG hasabicliquevertex-partition

S

ofsize3.LetS1

,

S2

,

S3bethethree(nontrivial)bicliquesin

S

.Let Ai

,

Bi bethe twobipartitionclassesof Si fori

=

1

,

2

,

3.So,in G,we havethat A1

,

A2

,

A3, B1

,

B2

,

B3 are sixcliques that

partitionthe verticesof G,andmoreover,thereisnoedgebetweenavertexof Ai anda vertexof Bi,fori

=

1

,

2

,

3.In G

wecontract eachclique Ai toasingle vertexthatwe givecolour i,andwecontracteachclique Bi toasingle vertexthat

wegivecolour i aswell.Inthiswaywehaveobtaineda6-vertexgraphG(sothenumberofcontractionsisn

6)witha 3-colouring.Thus,

χ

(

G

)

3.

Now suppose that G can be

(

n

6

)

-contracted into a graph G with

χ

(

G

)

3. We first observe that the class of cobipartite graphsis closedunder takingedge contractions; indeed,ife is an edge connectingtwo verticesof thesame partition class,thencontractinge results inasmallerclique,andife isanedge connectingtwoverticesoftwo different partition classes, then contracting e is equivalent to removing one of its end-vertices and making its other end-vertex adjacenttoeveryothervertexintheresultinggraph.

Astheclassofcobipartitegraphsisclosedundertakingcontractions,Giscobipartite.Ascobipartitegraphshave inde-pendencenumberatmost 2,eachcolourclassinacolouringofG musthavesizeatmost 2.Consequently,G musthave exactlysixverticesa1

,

a2

,

a3,b1

,

b2

,

b3 suchthat a1

,

a2

,

a3 formaclique,b1

,

b2

,

b3 formaclique,andmoreover,ai andbi

are notadjacent,for i

=

1

,

2

,

3.Thismeans that wedid notcontract an edge uv with u

X and v

Y (as theresulting vertexwouldbeadjacenttoallothervertices).Hence,wemayassumewithoutlossofgeneralitythatfori

=

1

,

2

,

3,each ai

corresponds to a setofvertices Ai

X (that we contractedinto thesingle vertexai) andthat each bi corresponds toa

setofvertices Bi

Y (thatwecontractedintothesingle vertexbi).Aseach pairai

,

bi isnon-adjacent,novertexof Ai is

adjacentto avertexof Bi.Consequently,in G,we findthat eachset Ai

Bi induces abiclique. Hence, thesets A1

B1, A2

B2and A3

B3 formabicliquevertex-partitionofG thathassize 3.

2

Wenowassumethatd isfixed.Weshowthat d-ContractionBlocker(

π

)becomespolynomial-timesolvableon cobipar-titegraphsfor

π

∈ {

χ

,

ω

}.

For

π

=

χ

,wecanprovethisevenfortheclassofgraphswithindependencenumberatmost 2, orequivalently,theclassof3P1-freegraphs,whichproperlycontainstheclassofcobipartitegraphs.

Theorem6.Foranyfixedd

0,the d-ContractionBlocker(

χ

)problemcanbesolvedinpolynomialtimefor3P1-freegraphs.

Proof. LetG beagraphwith

α

(

G

)

2.Consideracolouringwith

χ

(

G

)

colours.Thesizeofeverycolourclassisatmost2. HenceeverysubgraphofG inducedbytwocolourclasseshasatmost4 vertices,andassuchhasaspanningforestwithin totalatmost3 edges.Thismeansthat wecancontracttwocolourclassestoanindependentset(thatis,toa newcolour class)byusingatmostthreeedgecontractions.Thisobservationgivesusthefollowingalgorithm.Weconsidereach setof atmostthreeedgecontractions,whichweperform.Afterwardswedecreased by 1andrepeatthisprocedureuntild

=

0. ForeachresultinggraphG obtainedinthiswaywecheck whether

χ

(

G

)

χ

(

G

)

d.Ifso,thenthealgorithmreturnsa yes-answer.Otherwise,thatis,if

χ

(

G

)

>

χ

(

G

)

d foreachresultinggraph G,ouralgorithmreturnsano-answer.

Letm bethenumberofedges ofG.Thenthetotalnumberofresultinggraphs Gisatmostm3d,whichispolynomial asd isfixed.Because Coloring ispolynomial-timesolvableongraphswithindependencenumberatmost 2 [28] andthis classisclosedunderedgecontractions,ouralgorithmrunsinpolynomialtime.

2

Corollary1.Let

π

∈ {

χ

,

ω

}

.Foranyfixedd

0,the d-ContractionBlocker(

π

)problemcanbesolvedinpolynomialtimeon

cobipartitegraphs.

Proof. For

π

=

χ

thisfollowsimmediatelyfromTheorem6.Ascobipartitegraphsareperfectandclosedunderedge con-traction,weobtainthesameresultfor

π

=

ω

.

2

Wenowconsidertheclassofbipartitegraphs.If

π

∈ {

χ

,

ω

}

,then ContractionBlocker(

π

)istrivialforbipartitegraphs (andthus alsofortrees).Tothe contrary,for

π

=

α

,we willshow that ContractionBlocker(

π

) is NP-hardforbipartite graphs. The complexity of d-ContractionBlocker(

α

) remains open forbipartite graphs. Bipartite graphs are not closed underedgecontraction.Therefore membershipto NP cannotbeestablished bytakinga sequenceofedgecontractions as thecertificate,eventhough dueto König’sTheorem(see,forexample,[14]), IndependentSetispolynomial-timesolvable forbipartitegraphs.

Theorem7.ContractionBlocker(

α

)is NP-hardonbipartitegraphs.

Proof. WeknowfromTheorem4that 1-ContractionBlocker(

α

)is NP-completeon cobipartitegraphs.Consider a cobi-partitegraphG withm edgesandan integerk,whichtogetherforman instanceof 1-ContractionBlocker(

α

).Subdivide eachofthem edgesofG inorderto obtainabipartitegraphG.We claimthat

(

G

,

k

)

isayes-instanceof 1-Contraction Blocker(

α

)ifandonlyif

(

G

,

α

(

G

)

1

,

k

+

m

)

isayes-instanceof ContractionBlocker(

α

).

Firstsupposethat

(

G

,

k

)

isa yes-instanceof 1-ContractionBlocker(

α

).InG wefirstperformm edgecontractionsto get G back.Wethenperformk edgecontractionstogetindependencenumber1

=

α

(

G

)

−(

α

(

G

)

1

)

.Hence,

(

G

,

α

(

G

)

1

,

(8)

Now suppose that

(

G

,

α

(

G

)

1

,

k

+

m

)

isayes-instanceof ContractionBlocker(

α

).Then thereexistsa sequenceof

k

+

m edge contractions that transform G intoa complete graph K . We may assume that K hassize at least 4(aswe could haveaddedwithoutlossofgeneralitythreedominatingverticestoG withoutincreasingk).As K hassizeatleast 4, each subdividededgemustbecontractedbacktotheoriginaledgeagain.Thisoperationcostsm edgecontractions,sowe contract G toK usingatmostk edgeoperations.Hence,

(

G

,

k

)

isayes-instanceof 1-ContractionBlocker(

α

).Thisproves theclaimandhencethetheorem.

2

WecomplementTheorem7byshowingthat ContractionBlocker(

α

)islinear-timesolvableontrees.Inordertoprove thisresultwemakeaconnectiontothematchingnumber

μ

ofagraph.

Theorem8.ContractionBlocker(

α

)islinear-timesolvableontrees.

Proof. Let

(

T

,

d

,

k

)

beaninstanceof ContractionBlocker(

α

),whereT isatreeonn vertices.Wefirstdescribeour algo-rithm andproveits correctness.Afterwards,we analyzeits runningtime.Throughouttheprooflet M denoteamaximum matchingofT .

As

α

(

T

)

+

μ

(

T

)

=

n byKönig’sTheorem(see,forexample,[14]),we findthat

(

T

,

d

,

k

)

isano-instanceifd

>

n

μ

(

T

)

. Assumethatd

n

μ

(

T

)

.Weobservethattreesareclosedunderedgecontraction.Hence,contractinganedgeofT results

inanewtreeT.Moreover, Thasn

1 verticesandtheedgecontractionneitherincreasedtheindependencenumbernor thematchingnumber.As

α

(

T

)

+

μ

(

T

)

=

n andsimilarly

α

(

T

)

+

μ

(

T

)

=

n

1,thismeansthateither

α

(

T

)

=

α

(

T

)

1 or

μ

(

T

)

=

μ

(

T

)

1.

Firstsupposethatd

n

2

μ

(

T

)

.Thereareexactly

σ

(

T

)

=

n

2

μ

(

T

)

verticesthatareunsaturatedbyM. Letuv bean edge,suchthatu isunsaturated.AsM ismaximum,v mustbesaturated.Then,bycontractinguv,weobtainatreeTsuch that

μ

(

T

)

=

μ

(

T

)

.Itfollowsfromtheabovethat

α

(

T

)

=

α

(

T

)

1.Saythatwecontractedu ontov.TheninT wehave that v issaturatedby M,whichisamaximummatchingofT aswell.Thus,ifd

n

2

μ

(

T

)

,contractingd edges,oneof the end-vertices ofwhichis unsaturatedby M, yields atree T with

μ

(

T

)

=

μ

(

T

)

and

α

(

T

)

=

α

(

T

)

d.Since an edge contractionreducestheindependencenumberbyatmost 1,itfollowsthatthisisoptimal.Hence,asd

n

2

μ

(

T

)

,wefind that

(

G

,

T

,

k

)

isayes-instanceifk

d andano-instanceifk

<

d.

Now supposethatd

>

n

2

μ

(

T

)

.Supposethatwefirstcontractthen

2

μ

(

T

)

edgesthathaveexactlyoneend-vertex that isunsaturatedby M.Itfollowsfromtheabove thatthisyields atreeT with

μ

(

T

)

=

μ

(

T

)

and

α

(

T

)

=

α

(

T

)

− (

n

2

μ

(

T

))

.SinceT doesnotcontainanyunsaturatedvertex, M isaperfectmatchingofT.Then,contractinganyedgeinT

resultsinatree T with

μ

(

T

)

=

μ

(

T

)

1 andthus,

α

(

T

)

=

α

(

T

)

.Ifwe contractanedge uv

M,theresultingvertex

uv isunsaturatedby M

=

M

\ {

uv

}

in T.Hence, asexplainedabove,ifinadditionwe contractnowanedge

(

uv

)

w,we obtainatreeT with

α

(

T

)

=

α

(

T

)

1 and

μ

(

T

)

=

μ

(

T

)

.Repeatingthisprocedure,wemayreducetheindependence number of T byd with n

2

μ

(

T

)

+

2

(

d

n

+

2

μ

(

T

))

=

2

(

d

+

μ

(

T

))

n edge contractions.Below we show that thisis optimal.

Supposethatwecontractp edgesinT .LetTbetheresultingtree.Wehave

α

(

T

)

+

μ

(

T

)

=

n

p.As

μ

(

T

)

12

(

n

p

)

, thismeansthat

α

(

T

)

12

(

n

p

)

.Ifp

<

2

(

d

+

μ

(

T

))

n wehave

p2

>

−(

d

+

μ

(

T

))

+

n2,andthus

α

(

T

)

12

(

n

p

)

>

n2

d

μ

(

T

)

+

n2

=

α

(

T

)

d

.

Soatleast2

(

d

+

μ

(

T

))

n edgecontractionsarenecessarytodecreasetheindependencenumberbyd.Itremainstocheck ifk issufficientlyhighforustoallowthisnumberofedgecontractions.

As we can find a maximum matching of tree T (and thus compute

μ

(

T

)

) in O

(

n

)

time by using the algorithm of Savage [43],ouralgorithmrunsinO

(

n

)

time.

2

Remark1.ByKönig’sTheorem,wehavethat

α

(

G

)

+

μ

(

G

)

= |

V

(

G

)

|

foranybipartitegraphG,butwecanonlyusetheproof ofTheorem8to obtainaresultfortrees forthefollowingreason:treesformthelargestsubclassof(connected)bipartite graphsthatareclosedunderedgecontraction,andthispropertyplaysacrucialroleinourproof.

3.2. Deletionblockers

We firstshow thatall threedeletion blockerproblemsarepolynomial-timesolvableforbipartite graphs(andthus for trees).Itisknownalreadythat DeletionBlocker(

α

)ispolynomial-timesolvableforbipartitegraphs [3,13].Henceitsuffices to provethatthesameholdsfor DeletionBlocker(

π

) when

π

∈ {

χ

,

ω

}

.Inordertodosoweneedthefollowingrelation between 1-DeletionBlocker(

ω

)and VertexCover.

Proposition1.LetG beagraphwithatleastoneedgeandletk

1 beaninteger.Then

(

G

,

ω

(

G

)

1

,

k

)

isayes-instanceof Deletion

(9)

Proof. Let G

= (

V

,

E

)

be a graph with

|

E

|

1. Thus,

ω

(

G

)

2. Letk

1 be an integer. First suppose that

(

G

,

k

)

is a yes-instanceof VertexCover,thatis,G hasavertexcoverVofsizeatmostk. So,every edgeofG isincidenttoatleast one vertexof V.Then, deletingall verticesof V yieldsa graph G withno edges.This meansthat

ω

(

G

)

1,andthus

(

G

,

ω

(

G

)

1

,

k

)

isayes-instancefor DeletionBlocker(

ω

).Nowsupposethat

(

G

,

ω

(

G

)

1

,

k

)

isayes-instanceof Deletion Blocker(

ω

).ThenthereexistsasetV

V ofsize

|

V

|

k suchthat

ω

(

G

V

)

1.ThisimpliesthatG

Vhasnoedges. Thus VisavertexcoverofG ofsizeatmostk.So,

(

G

,

k

)

isayes-instancefor VertexCover.

2

Proposition1hasthefollowingcorollary,whichwewillapplyinthissectionandatsomeotherplacesinourpaper.

Corollary2.LetG be atriangle-freegraph withatleastoneedgeandletk

1 beaninteger.Then

(

G

,

k

)

isayes-instance of

1-DeletionBlocker(

ω

)ifandonlyif

(

G

,

k

)

isayes-instanceof VertexCover. Wearenowreadytoprovethefollowingresult.

Theorem9.For

π

∈ {

χ

,

ω

}

, DeletionBlocker(

π

)canbesolvedinpolynomialtimeonbipartitegraphs.

Proof. Asbipartite graphsareperfectandclosedundervertexdeletion,theproblems DeletionBlocker(

ω

) and Deletion Blocker(

χ

) are equivalent. Therefore, we only have to consider the case where

π

=

ω

. As bipartite graphs have clique numberatmost 2, DeletionBlocker(

ω

) and 1-DeletionBlocker(

ω

) are equivalent. Asbipartite graphs are triangle-free, we can apply Corollary 2. To solve VertexCoveron bipartite graphs, König’sTheorem tells usthat it suffices to find a maximummatching,whichtakesO

(

n2.5

)

timeonn-vertexbipartitegraphs [27].

2

Wenowconsiderthe classofcobipartitegraphs.Itisknownthat DeletionBlocker(

π

)ispolynomial-timesolvableon cobipartitegraphsif

π

∈ {

ω

,

χ

}

[13].Henceweonlyhavetodealwiththecase

π

=

α

.Forthiscaseweprovethefollowing result,whichfollowsimmediatelyfromTheorem9byconsideringthecomplement.

Theorem10. DeletionBlocker(

α

)canbesolvedinpolynomialtimeoncobipartitegraphs.

4. Cographs

It is well known (see forexample [8]) that a graph G isa cograph ifandonly if G can be generatedfrom K1 by a

sequenceofoperations, whereeachoperation iseithera joinoraunion operation.RecallfromSection 2that we denote theseoperationsby

and

,respectively.SuchasequencecorrespondstoadecompositiontreeT ,whichhasthefollowing properties:

1. itsrootr correspondstothegraphGr

=

G;

2. every leaf x of T corresponds to exactly one vertex of G, and vice versa, implying that x corresponds to a unique single-vertexgraphGx;

3. every internal node x of T hasatleast twochildren, iseither labelled

or

, andcorresponds toan induced sub-graph GxofG definedasfollows:

ifx isa

-node,thenGx isthedisjointunionofallgraphsGy where y isachildofx;

ifx isa

-node,thenGx isthejoinofallgraphsGy where y isachildofx.

A cograph G may have morethan one such tree buthas exactlyone uniquetree [11], called thecotree TG of G,ifthe

followingadditionalpropertyisrequired:

4. Labelsofinternalnodesonthe(unique)pathfromanyleaftor alternatebetween

and

.

Notethat TG has O

(

n

)

vertices.Forourpurposeswe mustmodify TG byapplyingthefollowingknownprocedure(see

forexample [6]).Wheneveran internal node x of TG hasmorethan two children y1 and y2,we remove the edges xy1

and xy2andaddanewvertexxwithedges xx,xy1 andxy2.If x isa

-node,thenxisa

-node,andifx isa

-node,

thenxisa

-node.Applyingthisruleexhaustivelyyieldsatreeinwhicheachinternalnodehasexactlytwochildren.We denotethistreebyTG.BecauseTG has O

(

n

)

vertices,modifying TG intoTG takeslineartime.

Corneil, PerlandStewart [12] provedthat theproblemofdecidingwhethera graphwithn verticesandm edges isa cographcanbesolvedintime O

(

n

+

m

)

.Theyalsoshowedthatinthesametimeitispossibletoconstructitscotree(ifit exists).AsmodifyingTG intoTG takes O

(

n

+

m

)

time,weobtainthefollowinglemma.

Lemma2.LetG beagraphwithn verticesandm edges.DecidingifG isacographandconstructingTG (ifitexists)canbedonein timeO

(

n

+

m

)

.

(10)

Fortwointegersk and



wesaythatagraphG canbe

(

k

,

)

-contracted intoagraphH ifG canbemodifiedintoH bya sequencecontainingk edgecontractionsand



vertexdeletions.Notethatcographsareclosedunderedgecontractionand undervertexdeletion.Infact,toproveourresultsforcographs,wewillprovethefollowingmoregeneralresult.

Theorem11.Let

π

∈ {

α

,

χ

,

ω

}

.Theproblemofdeterminingthelargestinteger d suchthatacographG withn verticesandm edges canbe

(

k

,

)

-contractedintoacographH with

π

(

H

)

π

(

G

)

d canbesolvedinO

(

n2

+

mn

+ (

k

+ )

3n

)

time.

Proof. Firstconsider

π

=

α

.LetG beacographwithn verticesandm edgesandletk

,



betwopositiveintegers.Wefirst constructTG.WethenconsidereachnodeofTG byfollowingabottom-upapproachstartingattheleavesofTG andending initsrootr.

Let x be a node of TG. Recall that Gx is the subgraph ofG induced by all vertices that corresponds to leavesin the

subtree of TG rooted at x. With node x we associatea table that records the following data: for each pair of integers

i

,

j

0 with i

+

j

k

+ 

we compute thelargest integer d suchthat Gx can be

(

i

,

j

)

-contracted intoa graph Hx with

α

(

Hx

)

α

(

Gx

)

d.Wedenotethisintegerd byd

(

i

,

j

,

x

)

.Leti

,

j

0 withi

+

j

k

+ 

. Case1. x isaleaf.

Then Gx isa1-vertexgraphmeaningthatd

(

i

,

j

,

x

)

=

0 if j

=

0,whereasd

(

i

,

j

,

x

)

=

1 if j

1. Case2. x isa

-node.

Let y andz bethetwochildrenofx.Then,asGx isthedisjointunionofGy andGz,wefindthat

α

(

Gx

)

=

α

(

Gy

)

+

α

(

Gz

)

.

Hence,wehave

d

(

i

,

j

,

x

)

=

max

{

α

(

Gx

)

− (

α

(

Gy

)

d

(

a

,

b

,

y

)

+

α

(

Gz

)

d

(

i

a

,

j

b

,

z

))

|

0

a

i

,

0

b

j

}

=

max

{

d

(

a

,

b

,

y

)

+

d

(

i

a

,

j

b

,

z

)

|

0

a

i

,

0

b

j

}.

Case3. x isa

-node.

Since x isa

-node, Gx isconnectedandassuchhasaspanningtreeT .Ifi

+

j

≥ |

V

(

Gx

)

|

and j

1,thenwecancontract i edgesof T inthegraph Gx followedby j vertexdeletions.As eachoperationwillreduce Gx byexactlyone vertex,this

resultsintheemptygraph.Hence,d

(

i

,

j

,

x

)

=

α

(

Gx

)

.Fromnowonassumethati

+

j

<

|

V

(

Gx

)

|

or j

=

0.Assuch,anygraph

we can obtain from Gx by using i edge contractions and j vertexdeletions is non-empty and hencehas independence

numberatleast 1.

Let y andz bethetwochildrenofx.Then,asGx isthejoinofGyandGz,wefindthat

α

(

Gx

)

=

max

{

α

(

Gy

),

α

(

Gz

)

}

.In

ordertodetermined

(

i

,

j

,

x

)

wemustdosomefurtheranalysis.LetS beasequencethatconsistsofi edgecontractionsand

j vertexdeletionsofGx such thatapplying S onGx resultsina graphHx with

α

(

Hx

)

=

α

(

Gx

)

d

(

i

,

j

,

x

)

.We partition S

into five sets Sey, Sez, Seyz, Svy, Szv, respectively, asfollows. Let Sey and Sez be the set ofcontractions ofedges withboth end-vertices in Gy andwithboth end-vertices in Gz, respectively. Let Seyz be the setof contractions of edges withone

end-vertex in Gy andtheother one in Gz (notice that, without lossof generality, thenew vertexresultingfrom such a

contraction maybe consideredto belong to Gy).Letay

= |

Sey

|

andletaz

= |

Sze

|

.Then

|

Seyz

|

=

i

ay

az.Let Svy and Szv

be thesetofdeletionsofverticesinGy andGz,respectively.Letb

= |

Svy

|

.Then

|

Svz

|

=

j

b.Wedistinguishbetweentwo

cases.

Firstassumethat Se

yz

= ∅

.Thenay

+

az

=

i.LetHybethegraphobtainedfromGy afterapplyingthesubsequenceofS,

consistingofoperationsinSe

y

Svy,onGy.LetHzbedefinedanalogously.Thenwehave

α

(

Hx

)

=

max

{

α

(

Hy

),

α

(

Hz

)

}

=

max

{

α

(

Gy

)

d

(

ay

,

b

,

y

),

α

(

Gz

)

d

(

az

,

j

b

,

z

)

}

=

max

{

α

(

Gy

)

d

(

ay

,

b

,

y

),

α

(

Gz

)

d

(

i

ay

,

j

b

,

z

)

},

wherethesecondequalityfollowsfromthedefinitionofS.

Nowassumethat Seyz

= ∅

.Recallthati

+

j

<

|

V

(

Gx

)

|

or j

=

0.Hence

α

(

Hx

)

1.Ourapproachisbasedonthefollowing

observations.

First, contractingan edge with one end-vertex in Gy andthe other one in Gz is equivalent to removing these two

end-verticesandintroducinganewvertexthatisadjacenttoallotherverticesofGx (suchavertexissaidtobeuniversal).

Second,assumethat Gy containstwodistinctverticesu anduandthatGz containstwodistinctverticesv and v.Now

supposethatwearetocontracttwoedgesfrom

{

uv

,

uv

,

uv

,

uv

}

.Contractingtwoedgesofthissetthathaveacommon end-vertex, sayedgesuv and uv,isequivalenttodeleting u

,

v

,

v fromGx andintroducing anewuniversalvertex.

Con-tracting two edges with no common end-vertex, say uv and uv, is equivalent to deleting all four vertices u

,

u

,

v

,

v

from Gx and introducing two new universal vertices. Because the two new universal vertices in the latter choice are

adjacent,whereasthevertexumaynotbeuniversalaftermakingtheformerchoice,thelatterchoicedecreasesthe inde-pendence numberbythesameoralargervaluethantheformerchoice.Hence,wemayassume withoutlossofgenerality that thelatterchoicehappened.Moregenerally,thecontractededgeswithoneend-vertexinGy andtheotheronein Gz

can beassumedtoformamatching.Wealsonote thatintroducing anewuniversalvertextoagraphdoesnotintroduce anynewindependentsetotherthanthesingletonsetcontainingthevertexitself.

Figure

Fig. 1. The graph G encoding I = ( x , y ,¯ z ) ∨ (¯ x , y , z ) . Bold lines correspond to true literals.
Fig. 3. (a) Paw. (b) Cobanner. (c) Bull. (d) Butterfly.

Références

Documents relatifs

The temporal and spatial scales of the variability of these two processes control the degree of heterogeneity of the oceanic lithosphere, represented by two

This chapter examines the establishment of Sapporo Agricultural College on Hokkaido Island and its connection to the development of the commercial nursery system through

supported dipole and uniform when Ref: Boxer et al.,Nature Physics, (2010). Frequency swept reflectometery would be a practical density diagnostic tool because it is easy to

Total construction fees increase and decrease based on the total square foot of building multiplied by the average square foot of construction cost, minus

Pronoto con los lados fuertemente arqueados y el borde apical un poco más ancho que el borde basal; ángulos posteriores obtusos pero bien marcados y vivos, precedidos por una

Cinq des sujets actifs, suite à la formation, précisent avoir publicise leur expérience, deux par une présentation lors d'une manifestation (ex. colloque), deux autres par un

Jobs seen as more likely to command high salaries also tend to be seen as those which are the most likely to provide opportunities to work outside and have free time.. These

One unique contribution is the emphasis on at-risk populations, particularly the extensive references to women—addressing societal values, traditional approaches dealing