• Aucun résultat trouvé

From zero to six double bonds: phospholipid unsaturation and organelle function

N/A
N/A
Protected

Academic year: 2021

Partager "From zero to six double bonds: phospholipid unsaturation and organelle function"

Copied!
10
0
0

Texte intégral

(1)

From

zero

to

six

double

bonds:

phospholipid

unsaturation

and

organelle

function

Bruno

Antonny

1

,

Stefano

Vanni

1

,

Hideo

Shindou

2,3

,

and

Thierry

Ferreira

4

1InstitutdePharmacologieMole´culaireetCellulaire,Universite´deNiceSophiaAntipolisandCentreNationaldelaRecherche

Scientifique(CNRS),660routedesLucioles,06560Valbonne,France

2DepartmentofLipidSignaling,ResearchInstitute,NationalCenterforGlobalHealthandMedicine,1-21-1Toyama,Shinjuku-ku,

Tokyo162-8655,Japan

3CREST,JapanScienceandTechnologyAgency,Kawaguchi,Saitama332-0012,Japan

4LaboratoireSignalisationetTransportsIoniquesMembranaires(STIM),CNRSEquipedeRechercheLabellise´e(ERL)7368,

Universite´dePoitiers,1rueGeorgesBonnet,86073PoitiersCEDEX9,France

Cellularphospholipids(PLs)differbythenatureoftheir polarheads aswell asbythe length and unsaturation leveloftheirfattyacylchains.Wediscusshowtheratio betweensaturated,monounsaturated,and polyunsatu-ratedPLsimpactsonthefunctionsofsuchorganellesas theendoplasmicreticulum,synapticvesicles,and pho-toreceptor discs. Recent experiments and simulations suggestthatpolyunsaturatedPLsresponddifferentlyto mechanicalstress, including membrane bending, than monounsaturatedPLsowingtotheirunique conforma-tionalplasticity. Thesefindingssuggestarationalefor PLacylchainremodelingbyacyltransferasesanda mo-lecular explanation for the importance of a balanced fattyaciddiet.

Fattyacylchain diversity:thedarkfaceofcellular membranes

Thelipidcompositionofcellularmembranesvaries signifi-cantlyamongorganisms,tissues,andorganelles,andour knowledgeofthisdiversityhasgreatlyincreasedthanksto progressinorganellefractionation,lipidanalysis,notably massspectroscopy,andtheidentificationand characteri-zationofmostenzymesresponsibleforlipidsynthesis[1– 5].However,ourunderstandingoftherolesofthevarious lipids that coexist in biological membranes has not im-provedasfast.Hundredsofdifferentlipidspeciescanbe foundinthemembraneofasingleorganelle, butwecan attributeaclearfunctiontoonlyafewofthem.

With the exception of sterols, the lipids of cellular membranes are made of three building blocks: a polar head, a central group (glycerol or sphingosin), and long hydrocarbonchains (thefattyacids). Thisschemeallows numerouscombinationsandisattherootoflipiddiversity. However,biochemistsandcellbiologistsgenerallydocare moreaboutthepolarheadthanabouttheacylchains.This

biasisreflectedinthelanguage:wenamelipidsbytheir polar head (e.g., phosphatidylcholine, PC; phosphatidyl-serine,PS;phosphatidylethanolamine,PE),butwerarely detail their acyl chaincontent. It alsoacknowledges the fact that lipid polar heads are associated with defined functionsowingtotheirspecificinteractionswithproteins

[6].

Theroleofthevarious fattyacylchainsofPLsisless wellunderstood.Fattyacidsaredividedintothreeclasses accordingtothenumberofdoublecarbonbondsalongthe carbonchain(Figure1A)[7].Saturated fattyacids(SFA) containonlysaturatedcarbonbonds(C C); monounsatu-ratedfattyacids(MUFA)containasinglecisdoublebond (C=C);polyunsaturatedfattyacids(PUFA)contain2–6cis double bonds and are themselves divided into two sub-classes,v3andv6,dependingonthepositionofthedouble bonds. Palmitate, oleate, arachidonate, and docosahexa-noicacid(DHA)arethemostabundantfattyacidsofeach class.Theirabbreviation(C16:0,C18:1-n9,C20:4-n6,and C22:6-n3, respectively) indicatesthe number of carbons, thenumberofdoublebonds,andthepositionofthefirst doublebondwith respecttotheterminalmethyl.

Onaverage,thefirstacylchainofcellularPLsis satu-ratedwhereasthesecondacylchainismonoor polyunsat-urated. However, there are large variations around this canonicalscheme.Whyistheendoplasmicreticulum(ER) richer in monounsaturated PLs than the plasma mem-brane(PM)[8,9]?WhyarepolyunsaturatedPLsso abun-dantinsomespecializedorganelles(e.g.,synapticvesicles) butabsentinsomeorganisms(e.g.,Saccharomyces cerevi-siae) [9–12]? These questions, which echo back to the discoveryintheearly1930softheessentialroleofsome PUFAsinmammaliandevelopment[13],arestilltopical: wefrequentlyhearthatoliveoilisbetterthanbutterand that v3 arebetter than v6lipids forourhealth,but the molecularbasisforthesedifferences remainselusive.

Fattyacids could have effectsontheirownor as pre-cursors ofsignaling molecules [14]. In addition, because fatty acids become in large part esterified in PLs, they should impact onthe functioning of cellular membranes

[10]. We summarize here the origin of the acyl chain Correspondingauthor:Antonny,B. (antonny@ipmc.cnrs.fr).

Keywords:polyunsaturatedphospholipid;membranecurvature;lipid-packingdefect; mechanotransduction;lipidremodeling.

http://doc.rero.ch

Published in "Trends in Cell Biology 25(7): 427–436, 2015"

which should be cited to refer to this work.

(2)

diversity in PLs and present a few examples ofmutual adaptationbetweenorganellefunctionandPLacylchain composition.Last,wediscusstheimportanceof biophysi-calapproachescoupledtomoleculardynamicssimulations torevealhowdeceptivelysimplechangesinthe hydrocar-bonstructureofPLfattyacidscanimpartbiological mem-braneswithdifferentphysicochemicalproperties.

BiochemicalpathwayspromotingPLacylchain diversity

The acylchaindiversity ofPLsresultsfrom several pro-cesses,fromdietsourcestocomplexreactionswherefatty acids are elongated,desaturated, transported,and even-tuallyesterifiedintoPLs(Figure1A)[15,16].

Almost all organisms contain a D9 desaturase, which introduces adoublebondinthe middleoftheacylchain, thusproducingmonounsaturatedfattyacidsfrom saturat-edones(e.g.,C18:0>C18:1-n9).Bycontrast,theabilityto addadditionaldoublebondsisnotuniversal.Someplants introducedoublebondsbetweentheterminalmethyland

the central carbon, whereas mammals introduce double bonds between the centralcarbon andthe terminal car-boxyl[7].Ourdietreflectsthisdivisionoflabor:weeatthe essentiallinolenicacidC18:3-n3fromplantoilsto synthe-sizeC22:6-n3,whichthenaccumulatesinourbrain mem-branes.AtransporterallowingC22:6-n3tocrossthebrain– bloodbarrierhasbeenrecentlyidentifiedanditsdeletion stronglyimpairsbraindevelopment[17].

Fatty acids are eventually activated in the form of acyl-CoAintermediatesandesterified intoPLsthrough twoalternativepathways:thedenovopathway(or Ken-nedypathway)correspondstothecompletesynthesisofa PLfromelementarybuildingblocks,whereasthe remo-delingpathway(orLandscycle)correspondstothemere substitution of one acyl chain in a preformed PL

(Figure1A)[18].Theacyltransferasesinvolved inthese

pathwayshavebeenidentifiedandtheirsubstrate spec-ificitydeterminestheacylchaindiversityofPLs(Box1)

[15].StrikingexamplesareLPCAT1,whichis enriched in thelung and incorporates saturated fattyacids into

(A) (B) (C) Monounsaturated Saturated Secretory pathway ER Golgi PM Fay acid diversity C16:0 C18:1 C22:6 PL Glycero-3P LysoPA PA PLs LysoPL PLA2 O O O O O O Remodelling De novo synthesis Body Axon Synapc vesicles C18:2 C20:4 C22:6 Diet, transport, elongases, desaturases Acyltransferase repertoire LPAATs LPLATs

Acyl chain diversity of lipid membranes

TRENDS in Cell Biology

Figure1.Acylchaindiversityofmembranelipids.(A)Summaryofthevariouslipidmetabolicpathwaysthatleadtotheacylchaindiversityofphospholipids(PLs)in biologicalmembranes.Thediversityoffattyacidsarisesfromdietarysources,aswellasfromendogenousenzymaticactivitiesthatallowtheacylchaintobeelongatedor desaturated.Inmanyorganisms,however,theseactivitiesarelimited,hencetheimportanceofadiversediet.Fatty-acyl-CoAintermediatesarethenusedassubstratesby variouslysophospholipidacyltransferasestosynthesizeorremodelPLs[5,15].Theseenzymesformtwolargefamiliesandincludemembersdisplayingdifferentspecificity fortheirlysophospholipidandacyl-CoAsubstrates(Box1).(B,C)TheacylchainprofileofPLsvariesalongtheorganellesofthesecretorypathwayaswellasinsome differentiatedstructuressuchasaxons[9,12].

(3)

PCto promote theformationof a protectivesurfactant

[5], and tafazzin, which incorporates polyunsaturated fatty acids into cardiolipin (CL) in a curvature-depen-dentmanner[19].

ExamplesofPLfatty acylchaingradients

In mammalian cells, there is a gradual enrichment of saturatedPLspeciesattheexpenseofmonounsaturated species along the organelles of the secretory pathway (ER>Golgi>plasma membrane) [8]. This subcellular gradient, whichparallels main membrane traffic routes, also exists in yeast and results from a change in the esterifiedacylchainsofPEandPS[9](Figure1B).

Recentadvancesinlipidimagingbymassspectrometry revealanotherstrikingacylchaingradient(Figure1C).In neuronalcellcultures,whereaxonsradiatearounda clus-ter ofcell bodies, a gradient ofpolyunsaturated PChas beenimagedatmmresolution[12].PCmolecules contain-ingC20:4orC22:6PUFAsaccumulateattheaxontipbut arerareatthecellbody,whereasless-unsaturatedspecies, notablyC18:2-PC,showanoppositedistribution. Sperma-tozoaprovideanotherexampleoftheunevendistribution ofpolyunsaturatedPLs atthesubcellularlevel[20].

CellsalsochangetheirPLacylchainprofileovertime. Epitheliumdifferentiationisaccompaniedbythe appear-anceofmoresaturatedlipidspecies,probablytomakethe apicalPMa betterprotective barrier[1].The amount of C20:4-containing PC oscillates during the cell cycle

[21]. During cytokinesis, lipid species with well-defined acylchaincompositionappearinthemidbody[22].Last, theratiobetweenmonounsaturatedPLsand polyunsatu-ratedPLsincreasesinseveralcancercelllinesandtissues

[23,24].

Themetabolicpathwaysattheoriginofthe spatiotem-poralcontrolofPLacylchainunsaturationremaintobe investigated,notablytheinvolvementofspecific acyltrans-ferases [5]. However, the fact that this control exists, whereasthe multiplemembranetrafficpathwaysshould leadtoPLhomogenization[4],suggeststhatthe balance betweensaturated,monounsaturated,and polyunsaturat-edPLspecieshasdecisivefunctions.

InfluenceofPLacylchainsonproteinsynthesisand foldingattheER

TheERistheorganelleforthebiosynthesisandfolding of transmembrane and luminal proteins. To maintain thecorrectbalance betweenERclientproteinload and foldingcapacity,cellshavedevelopedapathwayknown astheunfoldedproteinresponse(UPR)[25,26].TheUPR iscontrolledbyintegralproteinsensors,suchas inositol-requiring enzyme 1 (IRE1) and protein kinase-like ER kinase (PERK) [25,26], which are maintained in an inactive monomeric form by the interaction of their luminal domainwith thechaperoneBiP.Accumulation of unfolded proteins correlates with the disruption of this repressive complex, oligomerization, and down-streamactivationoftheUPRcascade[27,28].Induction oftheUPRlimitsproteinoverloadviaageneraldecrease intranslationinitiationandcoordinatedupregulationof genesencodingproteinsinvolvedinfolding(e.g., chaper-ones)andER-associated degradation(ERAD). Interest-ingly,thesepathwaysareactivateduponcellexposureto

SFAs[29–34].

Becauseexogenouslysuppliedfattyacidsareefficiently incorporated into PLs [35–37], several studies point at saturatedPLsasthedirectcauseofER-stressasaresult of their impact on membrane properties. This includes modification ofcalcium permeation, perturbation of pro-teinfolding,andchangesintheoligomericstate ofIRE1. Forexample,palmitatepromotesdepletionofERcalcium stores[30,38] inaprocessthatcould berelated todirect effects of saturated PLs on sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA) pump activity [30]. In vitro studies demonstrate that SERCA-2b activity is inhibitedwhen reconstitutedintomicrosomescontaining saturated PLs [39].Saturated PLs alsoinduce the accu-mulationofmisfoldedproteins.TreatingSFA-intoxicated cellswith pharmacologicalchaperonesthat stabilize pro-tein conformation alleviates SFA-induced UPR [37,40– 42]. Various causes could account for misfolded protein accumulationunderSFAtreatment.First,thetranslocon, which catalyzes the translocation of newly translated proteins towards the lumen, is sensitive to membrane

Box1.AcyltransferasesandPLdiversity

The fattyacidcomposition atboth sn-1and sn-2positions ofPLs differsinvariouscelltypesandtissues.Asymmetryanddiversityof membranePLsaregeneratedthroughthedenovopathwayandthe remodelingpathway[18].PLsareformedfromglycerol-3-phosphate (G3P)bytheKennedypathway.Next,usingacyl-CoAsasdonors,the sn-2 acylmoietyofPLsisremodeledintheLands’cycle,whichis conductedbytheconcertedactionsofphospholipaseA2(PLA2)and lysophospholipid acyltransferase (LPLAT) enzymes. The Kennedy pathwayandtheLands’cyclewereproposedinthe1950s.However thecorrespondingLPLATswerediscoveredonlyrecently[15].LPLATs are divided into two families: the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and the membrane-bound O-acyl-transferase(MBOAT)family.

In the AGPATfamily, GPAT1-4 and LPAAT1-4 produce lysopho-sphatidic acid (LPA) and phosphatidic acid (PA) in the Kennedy pathway,respectively,whereastheothermembersareLands’cycle enzymes.LPCAT1ismainlyexpressedinthelungandgeneratesPAF and dipalmitoyl-PC, which is a main component of pulmonary surfactantessentialforrespiration [5].LPCAT2functions in inflam-matory cells to synthesize platelet-activating factor (PAF) and PC. LPCAT2isphosphorylatedand isactivatedbyextracellular stimuli

suchasATP,PAF,andlipopolysaccharide[103].LPEAT2isexpressed in the brain and produces PE. LPGAT1 and LCLAT1 generate phosphatidylglycerol(PG)andCL,respectively.IntheMBOATfamily, LPCAT3,LPCAT4,LPEAT1,andLPIAT1havebeenidentified.LPIAT1 synthesizes phosphatidylinositides(PI) containingarachidonicacid, the main forms of PI [94]. LPCAT3 (PC, PE, and PS production), LPCAT4 (PC and PE), and LPEAT1 (PE and PS) possess several enzymaticactivitiesandshowdifferentexpressionpatterns, suggest-ingspecificrolesindifferenttissues[15].

PCisthemajorPLanddisplaysahighly-diversefattyacidprofile depending on the tissue [5]. Fatty acidenrichment of PC can be regulatedbytworeactions:theLPAATstepintheKennedypathway andtheLPCATstepintheLands’cycle.Themolecularmechanismof PCfattyaciddeterminationwasexaminedusingLPAAT1,2,and3,as wellasLPCAT1,2,3,and4.FromenzymaticassayandPCcomposition ofseveraltissues,theLPCATstepseemstocontroltheformationofPC species containing16:0 and 18:1 atsn-2, whereas the LPAATstep seemstocontroltheincorporationof18:2and22:6inPCatthesn-2 position.Furtherinvestigationswillbenecessarytounderstandthe diversityofotherPLs,suchasPS,PE,PI,PG,andCL.Regulationoffatty aciddiversityatthesn-1positionshouldbealsoclarified.

(4)

organization[43].Second,manyERchaperonesare depen-dent oncalcium[44],thehomeostasisofwhichisaltered underpalmitateaccumulation.

Intriguingly,recentstudiessuggestthat lipid disequi-librium couldinduceUPRby adirecteffectonIRE1and

PERK[45,46].Mutantsoftheseproteinslackingthe

lumi-nal unfolded protein-sensing domain still respond to in-creased lipid saturation [45]. Moreover, increasing PL saturation in reconstituted liposomes that are devoid of unfolded ER client proteins enhanced the activity of a PERK variant devoid of its luminal domain [45]. Even though the mechanism for saturated PL-induced PERK clustering is a matter ofdebate [47], these observations suggest that misfoldedprotein accumulationmaynot be the onlysignal forUPR induction underSFA accumula-tion.DimerizationofIRE1andPERKuponoverloadofthe ERmembranewithsaturated-PLsmightallowthecellto anticipate futureproteinmisfoldingproblemsinducedby theselipids.Conversely,thefactthatacomponentofthe ERAD machinery, Ubx2p, has been identified as a key activatorofyeastD9desaturase[48]suggestsafeedback loop whereby ER stress induced by misfolded proteins promotescorrectionoftheERunsaturationlevel. PLmonounsaturation,membranecurvature,and proteinadsorption

How the ratio between saturated andmonounsaturated PLs controls transmembrane helices oligomerization at the ER remains elusive, although several mechanisms havebeenproposed[49].Bycontrast,the monounsaturat-ed/saturated PL ratio has another impact that is more

straightforward to rationalize. Introducing monounsatu-ratedPLsattheexpenseofsaturatedonesfacilitatesthe membraneadsorptionofseveralcytosolicproteinsacting on the ER or ER-derivedorganelles such as autophago-somesorGolgi[2].Ingeneral,theseproteinscontainlarge amphipathicmembraneanchors,andtheirpreferencefor monounsaturatedPLscorrelateswithanacutesensitivity tomembranecurvature[2,50,51].

Themotifsthatallowperipheral proteinstosensethe combinatory effects of monounsaturated PLs ratio and membrane curvature have been reviewed elsewhere

[50]. We recall here the underlying mechanism, which revolvesaroundtheideaof‘voids’orlipid-packingdefects

(Figure2A).In thissimple geometricalmodel, lipidsare

consideredasratherstiffobjects.Whenmembrane curva-tureincreases,orwhenmonounsaturatedPLsare substi-tuted for saturated ones, the lipid geometrical arrangementis perturbedandpackingdefects gradually appear, whichcould hosthydrophobic anchorsfrom pro-teins[52,53].

Combiningtheeffectofcurvatureandlipid monounsa-turation in vitro can change protein adsorption by two ordersofmagnitude,suggestingapotentregulatory mech-anism[50–52,54].Testingtherelevanceofthismechanism invivoischallenging becauseitrequiresmasteringboth thegeometryandlipidcompositionofcellularmembranes. However, recent data are in agreement with the model. ExcesslevelsofsaturatedPLshamperprocessesasdiverse as ER-to-Golgi trafficking or autophagosome formation, andpromotethemembranedissociationofsomekey asso-ciatedproteins[54–57]. (A) Bending Saturated acyl chain Monounsaturated acyl chain Polar head

Side view Top view

10 nm

Packing defect map

Packing defects

Large and deep packing defect for hydrophobic inseron

Lipid-packing defect Topographic analysis Bending C=C C=C (B)

TRENDS in Cell Biology

Figure2.Cooperationbetweenmonounsaturatedphospholipids(PLs)andcurvatureforproteininsertion.(A)Elementaryviewoftheeffectsofmembranecurvatureand lipidmonounsaturationontheformationoflipid-packingdefects.Thisnaivemodelconsidersthegrossshapeoflipidsaswellastheirrelativetiltingduetocurvature.It accounts,atleastqualitatively,forthecumulativeeffectsofmembranecurvatureandlipidmonounsaturationontheadsorptionofmodelamphipathicmotifsatthe membrane-waterinterface[50,52,53].(B)Moleculardynamicssimulationsgiveamorerealisticviewoftheeffectoflipidcompositionandmembraneshapeonthe formationoflipid-packingdefects[54,58–60].Theexampleshownhereconsidersamembranetubemadeofasinglelipid(C16:0-C18:1-PC)thathasbeen‘coarse-grained’to minimizecalculations.Scanningthemembranesurfaceallowsidentifying‘voids’(i.e.,lipid-packingdefects).Thestatisticaldistributionofthesevoidsconfirmsthe cumulativeeffectsofmembranecurvatureandmonounsaturationonlipid-packingdefects.

(5)

Moleculardynamicssimulationsoflipid-packing defects

Although the scheme of Figure 2A is obviously naı¨ve becauselipids arenot stiff, addressingthe molecular or-ganization oflipids in bilayers of different compositions andgeometries isexperimentally very difficult. To over-come these limitations, and to investigate microscopic propertiesoflipidassemblies,a powerfulmethodologyis moleculardynamicssimulations(Box2),acomputational approach that allows investigating the behavior of lipid membraneswithatomic-levelresolution.Usingthis tech-nique it has been possible to characterize lipid-packing defectsoccurringatthemembrane–waterinterface, there-by providing a topographic description of lipid bilayers

[54,58,59](Figure2B).Despitebeingtransient(with

life-timesinthepicosecondregime),lipid-packingdefectsare ubiquitousandcanbepreciselyquantifiedforalltypesof lipidassemblies.Theirsizedisplaysacharacteristic expo-nentialdistribution(largedefectsaremuchlessfrequent thansmallones).

Molecular dynamics simulation of varying membrane geometries and compositions show that lipid-packing defects increase with positive curvature, and also with theintroductionofmonounsaturatedPLs attheexpense ofsaturatedones[54].Mostimportantly,curvatureandPL monounsaturation have a cumulative effect towards the promotion of lipid-packing defects, whereas curvature alone,in the presenceofsaturated PLs, is notsufficient topromotemembraneadsorptionofperipheralproteins,in agreementwithexperimentaldata[54,58–60].This exam-ple suggests that molecular dynamics simulations can provideanatomicviewofan intuitivebutelusivemodel of PL organization, and complements other approaches that consider membranes as continuum material

[61].The simulations show that lipid-packing defects do notnecessarilylocalizeatthepositionofthemostconical lipids[59]andneedtocoalescetoprovideenoughvolumeto host large hydrophobic insertions [58]. Nevertheless,

saturatedandmonounsaturatedPLsarerelativelysimple lipidsforwhichalargebodyofexperimentaldataexists, makingtheirsimulationsanottooriskytask.

PLpolyunsaturationinphototransduction

Phototransduction, one ofthe best-characterized trans-ductioncascades,occursinamembranerichinv3lipids. In thephotoreceptor discs, DHA (22:6-n3) accounts for 50%ofthePLacylchains[62].Theproteinsinvolvedin phototransduction,namelythelightreceptorrhodopsin, theGproteintransducin,anditseffector,acGMP phos-phodiesterase,havebeenreconstitutedintoartificial lipo-somes. This reductionist approach revealed that replacing C16:0-C18:1 by C18:0-C22:6 PLs increases the rates at which rhodopsin switches to the active state and subsequently activates GDP/GTP exchange ontransducin[57,63,64].Becausethefirstreactionisa monomolecularprocessthatoccurswithinthe hydropho-bicmatrix,whereasthesecondreactionisabimolecular processthatoccursatthesurfaceofphotoreceptordiscs, these observations suggest that polyunsaturated PLs provide two advantages: they facilitate the movements ofthehelicalsegmentsofrhodopsinandtheyaccelerate in-planediffusionofperipheralproteins.

Biophysicalmeasurementsofthebehaviorof polyunsaturatedPLsinbilayers

Studies on phototransduction have stimulated detailed biophysical studies on the behavior of polyunsaturated PLs in model membranes [65,66]. Neutron and X-ray diffractionaswellas NMRmeasurementsrevealed that, in bilayerscontainingmixedacyl chainPLs (e.g., C16:0-C18:1vsC18:0-C22:6),polyunsaturatedacylchainsoccupy morespaceatthewaterinterfacethansaturatedor mono-unsaturated chains, despitepolyunsaturated acyl chains beinggenerallylonger(e.g.,C22:6vsC18:1).This counter-intuitivefindingsuggeststhatpolyunsaturatedacylchains are not extended but are curled (Figure 3A). However,

Box2.Moleculardynamics(MD)simulations

MD isa computational methodology that isused tosimulatethe physicalmovementofsystemscomposedofseveralatoms. Origin-allydevelopedinthecontextoftheoreticalphysics,thistechniqueis nowusedinseveraldomains, fromphysicalchemistrytomaterial science, toinvestigate with high-resolution the behavior of multi-atom systemsthataredifficultorexpensive tocharacterize experi-mentally.

InaMDsimulation,allatomsinthesystemaretreatedasclassical particles(i.e.,quantumeffectsareneglected),andforcesandenergies betweenatomsaredescribedusingaso-calledmolecularmechanics force-field –in other wordsa simplified potentialenergy function wheretheinteractions betweenatomsaresubdividedintobonded (bonds,angles,anddihedrals)andnon-bonded(electrostaticandVan der Waals) terms. Specifying these interactions requires a large numberofparameters(e.g.,equilibriumvaluesandforceconstants forbonds,angles,anddihedrals;electrostaticcharges;vanderWaals parameters) that are usually obtained fromeither experiments or high-levelquantummechanicalcalculations.Oncetheseparameters havebeenset,thedynamicsofthesystemisstudiedbynumerically integratingtheequationsofmotion,uptothestatisticalconvergence ofthepropertiesofinterest.

Because ofthenumerous approximationsthatarecarriedout to maketheproblemtractable,theresultsfromMDneedtobevalidated

byexperimentaldata.Whentheagreementwithexperimentaldatais satisfactory, the simulations areused toexplain the experimental results and to study phenomena that could not be otherwise investigatedwithexperimentaltechniques.

In the past few decades,MD hasemerged asone of themost powerful tools to investigate the atomistic properties of lipid membranes becausethestructuralcharacterizationoflipidbilayers withatomic-levelresolutionishinderedbythehighdisorderoftheir physiologicalliquid-crystallinephase.

Several atomistic force-fields able to simulatelipid bilayers are currentlyavailableandunderconstantdevelopment;theyhavebeen abletosatisfactorilyreproduceseveralpropertiesoflipidbilayersthat can be measured experimentally using different diffraction or biophysicaltechniques,suchasareaperlipid,hydrophobicthickness, deuteriumorderparameters,ormembraneelasticity(see[104]and http://nmrlipids.blogspot.fr).

Coarse-grainmodels,whereseveralatomsaregroupedtogether andrepresented byasinglebead, andwherethepotentialenergy functionisfurthersimplified,arealsounderheavydevelopmentin thefieldoflipidmembranes.They havebeensuccessfullyusedto interpret and predictlarge-scale membraneremodeling processes, includingvesicleformation,membranefusion,andmembranefission [105–107].

(6)

becauseacylchainsundergofastmotionsinbilayers(inthe nsscale),biophysicalapproachescannotgivesnapshotsof theirconformationsbutinsteadrevealtrendsasdeduced from meanorientationanddensitymeasurementsacross thebilayer.

PolyunsaturatedPLsascontortionists

Polyunsaturatedacylchainswereinitiallyconsideredtobe morerigidthansaturatedacylchainsbecauseaC=Cbond cannot rotate about its axis. In polyunsaturated acyl chains,however,theC=Cbondsaresystematicallyflanked by two saturated bonds. Calculations and simulations revealed that this regular pattern of one non-rotating and two rotatingbonds decreases the energyof rotation about the saturated carbons [32,67,68] (Figure 3A). The exceptionalflexibilityofpolyunsaturatedacylchainsgives a straightforward explanation for their benefit on the activation of rhodopsin and, more generally, on many membrane-embedded proteins as well as onthe orienta-tionoffluorescentprobes[69–71](Figure3B). Polyunsat-uratedPLsquicklyadapttheirconformationtofollowthe rapidstructuraltransitionsoftheruggedsurfaceof trans-membranehelixbundles[66,72].

PLpolyunsaturationinsynapticfunctions

Synaptic vesicles (SV) deliver neurotransmitters in the synaptic cleft in response to action potentials.Although the abundance of polyunsaturated PLs is a remarkable featureofSVs[11](Figure1C),studiesontheroleoflipids in the cycling of theseorganelles have focused on other aspects[73].Inthissectionwepresentahypothesisforthe roleofpolyunsaturatedPLsinSVs,whichwasinspiredby observations made years ago but was formulated only recently[74].

In 1986, electron microscopy studies revealed that, amongallexogenous factors that promotethe formation ofsynapticvesiclesinculturesoffetalhypothalamiccells, thepolyunsaturatedfattyacidsC20:4andC22:6werethe mostefficient[75].Theauthorsproposedthatthefeatures ofSVsinPUFA-supplementedmedia,notablytheir regu-larshapeandsmalldiameter,aswellastheirabundance, reflectanenhancementofmembranefluidityinagreement with the model of Singer and Nicolson. Despite its pre-science, this study was largely ignored. Later, other researchers reported that deficiency in polyunsaturated fatty acid synthesis in Caenorhabditis elegans leads to abnormally low levelsofsynaptic vesiclesanddefectsin neurotransmitterrelease[76].

In 2000, physicists reported a striking effect of acyl chain polyunsaturation on the mechanical properties of giantliposomesmadeofsyntheticPC.WhenPCcontained atleastonepolyunsaturatedacylchain,theresistanceof thebilayeragainstbendingdroppedabruptlybytwofold, irrespectiveoftheexactchemistryoftheacylchain[77].

Together,theseseeminglydisparateobservationsoffer astraightforwardexplanationforthebenefitof polyunsat-uratedPLsinSVs:theselipidswouldmaketheneuronal membranemoreflexibleandthusmorepronetorespondto themechanicalworkexertedbyproteins(Figure3C).This would explain why SVs are the smallest membrane-enclosed organelles (diameter = 40nm) and why their formation is so fast [78]. Recent experiments conducted withmodellipidbilayersandwithproteinsinvolvedinSV retrieval support this hypothesis [74]. First, the fission activityofthedynamin–endophilincomplex,whichformsa transientspiralattheneckofendocyticstructuresinthe presenceofGTP,increaseddramaticallyuponthe incorpo-rationofC18:0-C22:6-n3PLsattheexpenseofC16:0-C18:1

Bending Light C C C C C C C Rhodopsin C16:0-C18:1 C18:0-C22:6 Energy Conformaonal adaptaon Super-flexible Conformaonal adaptaon α-helix movement (A) (C) (B)

TRENDS in Cell Biology

Figure 3.The conformational flexibility of polyunsaturated phospholipids (PLs) facilitates fast protein movements and membrane bending. (A) In contrast to monounsaturatedacylchains,whichhaveasingleoptimalconformation,polyunsaturatedacylchainsswitcheasilybetweendifferentconformationsofequivalentenergy butdrasticallydifferentgeometry.(B)TheflexibilityofpolyunsaturatedPLsallowsthemtoeasilyaccommodatethesuddenconformationalchangeofproteins,suchasthe movementsofthetransmembranehelicesfromtheGPCRrhodopsindepictedhere.(C)Similarly,polyunsaturatedPLsadapttheirconformationtomembraneshape,hence facilitatingthemechanicalactionofproteinsthatbendandfissionmembranes.

(7)

PLs [74]. Second,the PM ofnon-neuronal cells that are forced to incorporate C22:6 in their PLs becomes more deformablebyanexternalpullingforceandmore permis-sivetoendophilin-drivenendocytosis[74].

The shape and function of SVs and of photoreceptor discs are anything but similar. However, the benefits provided by polyunsaturated PLs in both membranes might originate from the same property: the ability of polyunsaturated chains to change their conformation

(Figure3Band3C).Biochemicalexperimentsand

molecu-lar dynamics simulations suggest that polyunsaturated PLscorrectthelipid-packingdefectsinducedbymembrane curvaturebyfillingthedefectsthroughtheirhyperflexible

tail[74,79,80].Thisfindinggivesamolecularexplanation

forthedecreaseinmembranebendingrigidity[74,77],and mayalsoexplainsomepuzzlingeffectsofpolyunsaturated PLsonthetargetingoflipidatedproteins[81].Moreover,it underlinesakeyqualitativedifferencebetween polyunsat-uratedPLsandotherlipids.Whereasmostlipidsdisplay an intrinsic shape (e.g., conical, cylindrical, or inversely conical), polyunsaturated PLs escape this classification. Likecontortionists,theyadoptdifferentshapesofsimilar energy,therebysoftening variousmembrane mechanical stresses(Figure3A–C).

TheproteinsinvolvedinSVsretrievalarewellknown, buttheorderinwhichtheyshapethesynapticmembrane remainsunderintenseinvestigation[82,83].Recent stud-ies suggest a two-step process in which endophilin and dynaminactfirsttopromotetheproductionofatransient endosome,whichisthentransformed intoauthentic SVs throughtheactionoftheAP2–clathrincoat[84–86].The firststepissuper-fast[78]and,giventheprominentroleof endophilin and dynamin at this stage, it is tempting to associatethisfeaturewiththe abundanceof polyunsatu-ratedPLsatthesynapse[74].

Tworecentstudiesnicelyillustratetheeffectof polyun-saturatedPLsonmembranemechanicsinotherneuronal contexts.InC.elegans,mutatingtheenzymesinvolvedin thesynthesisofC20:4-n6orinitsincorporation intoPLs causesadefectintouchsensation[87].However,thedefect is not complete, suggesting that polyunsaturated PLs merely make the membrane of sensory neurons more permissive tomechanotransduction.Thiseffect could re-sultfromareductionintheforcethresholdthat leadsto membrane deformation and/or from a facilitation of the conformationalchangeofthechannel.InDrosophila, ma-nipulatingthediettodecreasetheamountof polyunsatu-rated PLs in the rhabdomere causes a decrease in the speed and gain of phototransduction [88]. Because this defectcorrelateswithastiffermembrane,thisobservation suggeststhatthemembranephysicalpropertiesaffectthe gatingofamechanosensitivechanneldownstreamofthe phototransduction cascade. More generally, many chan-nelsexhibit strong sensitivity toboth mechanical stress and lipid composition, and are excellent candidates to detectsubtlechanges inthehydrophobicmembrane

ma-trix[89–91].

Concludingremarks

Simpleorganismscontainonlysaturatedand monounsat-urated lipids, highlighting a fundamental role of the

monounsaturated/saturated ratio for elementary func-tions. This ratio ranges from low valuesin membranes with a protective barrier function (apical membrane of epithelial cells, lung surfactant) [1], to high values in membranes withabiosyntheticfunction, asexemplified

bytheER(Figure1B).Theevolutionarypressureforthe

conservationofD9desaturaseandtheresultingselection ofoleate(C18:1-n9)mightthenreflectaneconomicalway to synthesize an acyl chain whose structure creates enough packingdefects inmembranes to hostreactions associated with a huge transfer of material, such as the foldingof transmembranehelices. Not surprisingly, this featureis hijacked bysome pathogens, which take advantageoflooselipid-packingattheER fortheirown replication[92].

The concepts that are operational to understand the differencesbetweensaturatedandmonounsaturatedPLs (cylindricalvsconicalshape,tightvsloosepacking,barrier vsbiogenicfunction)arenotadaptedtounderstandingthe propertiesofpolyunsaturatedPLs.Functionally,the hall-markofthesePLsistheirabundanceinmembranesthat hostsuper-fastandefficientreactions(e.g., phototransduc-tion, ATP synthesis, neurotransmission). Molecularly, theirdistinguishablefeatureistheirfastadaptation:like contortionists, theyare alternatively cones, cylinders, or hairpinstominimizethepackingstressthatresultsfrom thefastswitchoftransmembraneproteinsorthe mechan-icalworkofmembrane-bendingproteins. Inotherwords, polyunsaturatedPLsarenotatypeof‘super’ monounsat-uratedPLs;theyarejustdifferent.

Theexamplesevokedheremighthelpinunderstanding the traits imparted by saturated, monounsaturated and polyunsaturated lipidsin other organisms,cells, or orga-nelles(Box3).Suchstudieswillrequirecarefullipid analy-sis, notably at the subcellular level, as wellas sensitive functionalassaysand tediousreconstitutionexperiments, notablyofstructuralfissionandfusionintermediates[93], because the effects are likely to be subtler than those observedbythedeletionofessentialproteins.Thenematode C.elegans,whichisamenabletogeneticmanipulationand displaysalargesetofenzymesforlipidremodeling,provides ausefulmodel[7,76,78,94–96].Inaddition,recentadvances ingene-editingtechnologyopenthepossibilityof compre-hensivestudiesoftheimpactoflipidremodelingincultured cells. Another challenge is to determine the spatial and temporalcontroloflipidremodelingatthesubcellularlevel: most lipid remodeling enzymes have been reported to

Box3.Outstandingissues

Lysophospholipid acyltransferase specificity, regulation and structure

SpatiotemporalcontrolofPLacylchainremodeling

Control of the monounsaturated/saturated PL ratio along the secretorypathway

OriginofthegradientofpolyunsaturatedPLsalongaxons StructureofpolyunsaturatedPLsinfissionandfusion

intermedi-ates

Correlation between fastendocytosisat thesynapseand poly-unsaturatedPLs

Differencesbetweenv3andv6PLsinsynapticfunctions Impact of the acyl chain remodeling of phosphoinositides on

cancercells

(8)

localizeattheER,buttheirlipidproductsclearly concen-trateatspecificlocations.Last,wearefarfrom understand-ingallsubtlechangesthatdistinguishfattyacylchainsin PLs.Forexample,thedifferencebetweenv3andv6PLsis not clear-cut: both seem prone to rapid conformational changes,butthecurrentexperimentaldataandsimulations arefragmentary[65,66,97,98].

Counterexamples of the general trends of acyl chain distributionwillalsodeservespecialattention.TheERis notmadeexclusivelyofmonounsaturatedlipids:long sat-uratedlipidsmightparticipateinthecreationofdiffusion barriersimportantforthesegregationofproteins[99]. Con-versely,monounsaturatedlipidsintheexoplasmicleaflet ofthePMmembraneareprivilegedtargetsfortoxinsthat drivemembraneinvagination[100].Overall,lipidspecies whoseacylchainsdifferinlengthandunsaturationfrom bulklipidsaremorelikelytohavespecificroles,a promi-nentexamplebeingphosphoinositides(PI)[94,101].During nuclearenvelopeformation,polyunsaturatedPIsare cru-cialformembranefusionevents[102].Incancercelllines,a marked shiftin the lengthand unsaturation of PIs has beenreportedrecently,butitsimpactoncellularfunctions isunknown[24].

Acknowledgments

WorkinthelaboratoryofB.A.issupportedbytheCNRS,theEuropean ResearchCouncil(advancedgrant268888),andtheAgenceNationalede laRecherche(ANR-11-LABX-0028-01).

References

1Sampaio,J.L.etal.(2011)Membranelipidomeofanepithelialcell line.Proc.Natl.Acad.Sci.U.S.A.108,1903–1907

2Bigay, J. and Antonny, B. (2012) Curvature, lipid packing, and electrostatics ofmembrane organelles:definingcellular territories indeterminingspecificity.Dev.Cell23,886–895

3Brugger,B.(2014)Lipidomics:analysisofthelipidcompositionofcells and subcellular organelles by electrospray ionization mass spectrometry.Annu.Rev.Biochem.83,79–98

4Holthuis,J.C.andMenon,A.K.(2014)Lipidlandscapesandpipelines inmembranehomeostasis.Nature510,48–57

5Harayama,T.etal.(2014)Lysophospholipidacyltransferasesmediate phosphatidylcholinediversificationtoachievethephysicalproperties requiredinvivo.CellMetab.20,295–305

6Lemmon,M.A.(2008)Membranerecognitionbyphospholipid-binding domains.Nat.Rev.Mol.CellBiol.9,99–111

7Wallis,J.G.etal.(2002)Polyunsaturatedfattyacidsynthesis:what willtheythinkofnext?TrendsBiochem.Sci.27,467

8Keenan,T.W.andMorre,D.J.(1970)Phospholipidclassandfattyacid compositionofgolgiapparatusisolatedfromratliverandcomparison withothercellfractions.Biochemistry9,19–25

9Schneiter, R. et al. (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis ofthelipid molecular species composition of yeast subcellular membranes reveals acyl chain-basedsorting/remodeling ofdistinctmolecularspecies en routeto theplasmamembrane.J.CellBiol.146,741–754

10 Salem,N.,Jretal.(2001)Mechanismsofactionofdocosahexaenoic acidinthenervoussystem.Lipids36,945–959

11 Takamori, S. et al. (2006) Molecular anatomy of a trafficking organelle.Cell127,831–846

12 Yang,H.J.etal.(2012)Axonalgradientofarachidonicacid-containing phosphatidylcholineanditsdependenceonactindynamics.J.Biol. Chem.287,5290–5300

13 Smith,W.andMukhopadhyay,R.(2012)Essentialfattyacids:the workofGeorgeandMildredBurr.J.Biol.Chem.287,35439–35441 14 Bazinet,R.P.andLaye,S.(2014)Polyunsaturatedfattyacidsand theirmetabolitesinbrainfunctionanddisease.Nat.Rev.Neurosci. 15,771–785

15Shindou, H. et al. (2013) Generation of membrane diversity by lysophospholipidacyltransferases.J.Biochem.154,21–28

16Watts, J.L. and Browse, J. (2002) Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc.Natl.Acad.Sci.U.S.A.99,5854–5859

17Nguyen,L.N.etal.(2014)Mfsd2aisatransporterfortheessential omega-3fattyaciddocosahexaenoicacid.Nature509,503–506 18Shindou, H. and Shimizu, T. (2009) Acyl-CoA:lysophospholipid

acyltransferases.J.Bio.Chem.284,1–5

19Schlame, M. et al. (2012) The physical state of lipid substrates providestransacylationspecificityfortafazzin.Nat.Chem.Biol.8, 862–869

20Connor,W.E.etal.(1998)Unevendistributionofdesmosteroland docosahexaenoicacidintheheadsandtailsofmonkeysperm.J.Lipid Res.39,1404–1411

21Koeberle, A. et al. (2013) Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressingAktmembranebinding.Proc.Natl.Acad.Sci.U.S.A. 110,2546–2551

22Atilla-Gokcumen,G.E.etal.(2014)Dividingcellsregulatetheirlipid compositionandlocalization.Cell156,428–439

23Guo,S.etal.(2014)Significantlyincreasedmonounsaturatedlipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci.Rep.4,5959

24Naguib,A.etal.(2015)P53mutationschangephosphatidylinositol acylchaincomposition.CellRep.10,8–19

25Kincaid,M.M.andCooper,A.A.(2007)ERADicateERstressordie trying.Antioxid.RedoxSignal.9,2373–2387

26Karaskov,E.etal.(2006)Chronicpalmitatebutnotoleateexposure inducesendoplasmicreticulumstress,whichmaycontributetoINS-1 pancreaticbeta-cellapoptosis.Endocrinology147,3398–3407 27Bertolotti,A.etal.(2000)DynamicinteractionofBiPandERstress

transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332

28Gardner, B.M.and Walter,P. (2011) Unfoldedproteins are Ire1-activating ligands that directly induce the unfolded protein response.Science333,1891–1894

29Diakogiannaki, E. et al. (2008) Differential regulation of the endoplasmic reticulum stress response in pancreatic beta-cells exposedtolong-chainsaturatedand monounsaturatedfattyacids. J.Endocrinol.197,553–563

30Cunha,D.A.etal. (2008)Initiationand executionof lipotoxicER stressinpancreaticb-cells.J.CellSci.121,2308–2318

31Ariyama, H. et al. (2010) Decrease in membrane phospholipid unsaturation induces unfolded protein response. J. Biol. Chem. 285,22027–22035

32Deguil,J.etal.(2011)Modulationoflipid-inducedERstressbyfatty acidshape.Traffic12,349–362

33Dhayal,S.andMorgan,N.G.(2011)Structure–activityrelationships influencinglipid-inducedchangesineIF2alphaphosphorylationand cellviabilityinBRIN-BD11cells.FEBSLett.585,2243–2248 34Achard, C.S. andLaybutt, D.R.(2012) Lipid-inducedendoplasmic

reticulum stress in liver cells results in two distinct outcomes: adaptation with enhanced insulinsignaling or insulinresistance. Endocrinology153,2164–2177

35Busch, A.K. et al. (2005) Increased fatty acid desaturation and enhanced expression of stearoyl coenzyme a desaturase protects pancreaticb-cellsfromlipoapoptosis.Diabetes54,2917–2924 36Borradaile,N.M.etal.(2006)Disruptionofendoplasmicreticulum

structureandintegrityinlipotoxiccelldeath.J.LipidRes.47,2726– 2737

37Pineau,L.etal.(2009)Lipid-inducedERstress:synergisticeffectsof sterolsandsaturatedfattyacids.Traffic10,673–690

38Gwiazda,K.S.etal.(2009)EffectsofpalmitateonERandcytosolic Ca2+homeostasisinb-cells.Am.J.Physiol.Endocrinol.Metab.296, E690–E701

39Li, Y. et al. (2004) Enrichment of endoplasmic reticulum with cholesterol Inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activityin parallelwith increased orderofmembrane lipids:implicationsfordepletionofendoplasmicreticulumcalcium stores and apoptosis in cholesterol-loaded macrophages. J. Biol. Chem.279,37030–37039

(9)

40 Akerfeldt, M.C. et al. (2008) Cytokine-induced beta-cell death is independent of endoplasmic reticulum stress signaling. Diabetes 57,3034–3044

41 Choi, S-E.et al.(2008) Achemical chaperone 4-PBA ameliorates palmitate-inducedinhibitionofglucose-stimulatedinsulinsecretion (GSIS).Arch.Biochem.Biophys.475,109–114

42 Ozcan,U.etal.(2006)ChemicalchaperonesreduceERstressand restore glucosehomeostasis inamouse modeloftype 2diabetes. Science313,1137–1140

43 Nilsson,I.etal.(2001)Inhibitionofproteintranslocationacrossthe endoplasmic reticulum membrane by sterols. J. Biol.Chem. 276, 41748–41754

44 Michalak, M. et al. (2002) Ca2+ signaling and calcium binding chaperonesoftheendoplasmicreticulum.CellCalcium32,269–278 45 Volmer, R. et al. (2013) Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl. Acad. Sci. U.S.A.110,4628–4633

46 Hou, N.S. et al. (2014) Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasisin vivo. Proc. Natl. Acad. Sci.U.S.A. 111, E2271–E2280

47 Kitai,Y.etal.(2013)MembranelipidsaturationactivatesIRE1alpha withoutinducingclustering.GenesCells18,798–809

48 Surma,M.A.etal.(2013)AlipidE-MAPidentifiesUbx2asacritical regulatoroflipidsaturationandlipidbilayerstress.Mol.Cell51,519– 530

49 Volmer, R.and Ron, D.(2014)Lipid-dependent regulation of the unfoldedproteinresponse.Curr.Opin.CellBiol.33C,67–73 50 Antonny, B. (2011)Mechanisms of membrane curvature sensing.

Annu.Rev.Biochem.80,101–123

51 Nath, S.et al.(2014) Lipidation ofthe LC3/GABARAP familyof autophagy proteins relies on a membrane-curvature-sensing domaininAtg3.Nat.CellBiol.16,415–424

52 Drin,G.etal.(2007)Ageneralamphipathicalpha-helicalmotiffor sensingmembranecurvature.Nat.Struct.Mol.Biol.14,138–146 53 Hatzakis, N.S. et al. (2009) How curved membranes recruit

amphipathichelicesandproteinanchoringmotifs.Nat.Chem.Biol. 5,835–841

54 Vanni, S. etal. (2014) A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment.Nat.Commun.5,4916

55 Ogasawara, Y.etal. (2014)Stearoyl-CoA desaturase 1 activityis requiredforautophagosomeformation.J.Biol.Chem.289,23938– 23950

56 Preston,A.M.etal.(2009)Reducedendoplasmicreticulum (ER)-to-GolgiproteintraffickingcontributestoERstressinlipotoxicmouse betacellsbypromotingproteinoverload.Diabetologia52,2369–2373 57 Payet,L.A.etal.(2013)Saturatedfattyacidsalterthelatesecretory pathwaybymodulatingmembraneproperties.Traffic14,1228–1241 58 Cui,H.etal.(2011)Mechanismofmembranecurvaturesensingby amphipathichelixcontainingproteins.Biophys.J.100,1271–1279 59 Vamparys,L.etal.(2013)Conicallipidsinflatbilayersinducepacking

defectssimilartothatinducedbypositivecurvature.Biophys.J.104, 585–593

60 Vanni, S. et al. (2013) Amphipathic lipid packing sensor motifs: probingbilayerdefectswithhydrophobicresidues.Biophys.J.104, 575–584

61 Campelo,F.andKozlov,M.M.(2014)Sensingmembranestressesby proteininsertions.PLoSComput.Biol.10,e1003556

62 Stone,W.L.etal.(1979)Areinvestigationofthefattyacidcontent ofbovine,ratandfrogretinalrodoutersegments.Exp.EyeRes.28, 387–397

63 Mitchell, D.C. et al. (2001) Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducinbinding.J.Biol.Chem.276,42801–42806

64 Niu,S.L.etal.(2004)ReducedGprotein-coupledsignalingefficiency inretinalrodoutersegmentsinresponseton-3fattyaciddeficiency. J.Biol.Chem.279,31098–31104

65 Rajamoorthi, K. et al. (2005) Packing and viscoelasticity of polyunsaturatedomega-3andomega-6lipidbilayersasseenby2H NMRandX-raydiffraction.J.Am.Chem.Soc.127,1576–1588

66 Eldho, N.V. et al. (2003) Polyunsaturated docosahexaenoic vs docosapentaenoic acid-differences in lipid matrix properties fromthelossof onedoublebond.J.Am.Chem.Soc.125,6409– 6421

67 Applegate,K.R.andGlomset,J.A.(1986)Computer-basedmodeling oftheconformationandpackingpropertiesofdocosahexaenoicacid.J. LipidRes.27,658–680

68 Feller,S.E.etal.(2002)Polyunsaturatedfattyacidsinlipidbilayers: intrinsicandenvironmentalcontributionstotheiruniquephysical properties.J.Am.Chem.Soc.124,318–326

69 Mitchell,D.C.andLitman,B.J.(1998)Molecularorderanddynamics in bilayers consisting of highly polyunsaturated phospholipids. Biophys.J.74,879–891

70 Grossfield, A. et al. (2006) A role for direct interactions in the modulationofrhodopsinby omega-3polyunsaturatedlipids.Proc. Natl.Acad.SciU.S.A.103,4888–4893

71 Soubias,O.etal.(2006)Evidenceforspecificityinlipid-rhodopsin interactions.J.Biol.Chem.281,33233–33241

72 Soubias,O.etal.(2010)Contributionofmembraneelasticenergyto rhodopsinfunction.Biophys.J.99,817–824

73 Puchkov,D.andHaucke,V.(2013)Greasingthesynapticvesiclecycle bymembranelipids.TrendsCellBiol.23,493–503

74 Pinot, M. et al. (2014) Polyunsaturated phospholipids facilitate membrane deformationand fission by endocyticproteins. Science 345,693–697

75 Tixier-Vidal, A. et al. (1986) Effects of polyunsaturated fatty acids and hormones on synaptogenesis in serum-free medium cultures of mouse fetal hypothalamic cells. Neuroscience 17, 115–132

76 Lesa,G.M.etal.(2003)Longchainpolyunsaturatedfattyacidsare requiredforefficientneurotransmissioninC.elegans.J.CellSci.116, 4965–4975

77 Rawicz,W.etal.(2000)Effectofchainlengthandunsaturationon elasticityoflipidbilayers.Biophys.J.79,328–339

78 Watanabe,S.etal.(2013)UltrafastendocytosisatCaenorhabditis elegansneuromuscularjunctions.Elife2,e00723

79 Risselada,H.J.andMarrink,S.J.(2009)Curvatureeffectsonlipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Phys. Chem. Chem. Phys. 11, 2056–2067

80 Hishikawa,D.etal.(2013)IdentificationofSec14-like3asanovel lipid-packingsensorinthelung.FASEBJ.27,5131–5140 81 Seo, J. et al. (2006) Docosahexaenoic acid selectively inhibits

plasma membrane targeting of lipidated proteins. FASEB J. 20,770

82 Saheki,Y.and DeCamilli,P. (2012)Synapticvesicleendocytosis. ColdSpringHarb.Perspect.Biol.4,a005645

83 Kononenko,N.L.and Haucke,V.(2015)Molecular mechanismsof presynapticmembrane retrieval and synapticvesicle reformation. Neuron85,484–496

84 Boucrot,E.etal.(2015)Endophilinmarksandcontrolsa clathrin-independentendocyticpathway.Nature517,460–465

85 Watanabe,S.etal.(2014)Clathrinregeneratessynapticvesiclesfrom endosomes.Nature515,228–233

86 Kononenko, N.L. et al. (2014) Clathrin/AP-2 mediate synaptic vesicle reformation from endosome-like vacuoles but are not essentialformembraneretrievalatcentralsynapses.Neuron82, 981–988

87 Vasquez,V.etal.(2014)Phospholipidsthatcontainpolyunsaturated fattyacidsenhanceneuronalcellmechanicsandtouchsensation.Cell Rep.6,70–80

88 Randall,A.S.etal.(2015)Speedandsensitivityofphototransduction in Drosophila depend on degree of saturation of membrane phospholipids.J.Neurosci.35,2731–2746

89 Nilius,B.andHonore,E.(2012)Sensingpressurewithionchannels. TrendsNeurosci.35,477–486

90 Fink,M.etal.(1998)AneuronaltwoPdomainK+channelstimulated byarachidonicacidandpolyunsaturatedfattyacids.EMBOJ.17, 3297–3308

91 Brohawn, S.G. et al. (2014) Physical mechanism for gating and mechanosensitivityofthehumanTRAAKK+channel.Nature516, 126–130

(10)

92 Lyn, R.K. etal. (2014) Stearoyl-CoAdesaturase inhibition blocks formationofhepatitisCvirus-inducedspecializedmembranes.Sci. Rep.4,4549

93 Aeffner,S.etal.(2012)Energeticsofstalkintermediatesinmembrane fusionarecontrolledbylipidcomposition.Proc.Natl.Acad.SciU.S.A. 109,E1609–E1618

94 Lee,H.C.etal.(2008)Caenorhabditiselegansmboa-7,amemberof the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol. Mol. Biol. Cell19,1174–1184

95 Marza,E.and Lesa,G.M. (2006)Polyunsaturatedfattyacids and neurotransmissioninCaenorhabditiselegans.Biochem.Soc.Trans. 34,77–80

96 Entchev,E.V.etal.(2008)LET-767isrequiredfortheproductionof branchedchainandlongchainfattyacidsinCaenorhabditiselegans. J.Biol.Chem.283,17550–17560

97 Deng, Y. et al. (2009) Docosapentaenoic acid (DPA) is a critical determinant of cubic membrane formation in amoeba Chaos mitochondria.FASEBJ.23,2866–2871

98 Mitchell,D.C.etal.(2012)QuantifyingthedifferentialeffectsofDHA andDPAontheearlyeventsinvisualsignaltransduction.Chem. Phys.Lipids165,393–400

99 Clay, L. et al. (2014) A sphingolipid-dependent diffusion barrier confinesERstresstotheyeastmothercell.Elife3,e01883

100Romer, W. et al. (2007) Shiga toxin induces tubular membrane invaginationsforitsuptakeintocells.Nature450,670–675 101D’Souza, K. and Epand, R.M. (2014) Enrichment of

phosphatidylinositols with specific acyl chains. Biochim. Biophys. Acta1838,1501–1508

102Zhendre, V. et al. (2011) Key role of polyphosphoinositides in dynamics of fusogenic nuclear membrane vesicles. PLoS ONE 6, e23859

103Morimoto,R.etal.(2014)Rapidproductionofplatelet-activatingfactor is induced by protein kinase Calpha-mediated phosphorylation of lysophosphatidylcholine acyltransferase 2 protein. J. Biol. Chem. 289,15566–15576

104Piggot, T.J. et al. (2012) Molecular dynamics simulations of phosphatidylcholinemembranes:acomparativeforcefieldstudy.J. Chem.Theor.Comput.8,4593–4609

105Marrink,S.J.andTieleman,D.P.(2013)PerspectiveontheMartini model.Chem.Soc.Rev.42,6801–6822

106Wang,Z.J.andDeserno,M.(2010)Asystematicallycoarse-grained solvent-freemodelforquantitativephospholipidbilayersimulations. J.Phys.Chem.B114,11207–11220

107Shinoda,W.etal.(2010)Zwitterioniclipidassemblies:molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. J. Phys. Chem. B 114, 6836– 6849

Figure

Figure 1. Acyl chain diversity of membrane lipids. (A) Summary of the various lipid metabolic pathways that lead to the acyl chain diversity of phospholipids (PLs) in biological membranes
Figure 2. Cooperation between monounsaturated phospholipids (PLs) and curvature for protein insertion
Figure 3. The conformational flexibility of polyunsaturated phospholipids (PLs) facilitates fast protein movements and membrane bending

Références

Documents relatifs

An optimization effort guided by in situ IR analysis resulted in a general amide coupling approach facilitated by N-carboxyanhydride (NCA) activation that was further

En France métropolitaine, au mois d’octobre 2012, le nombre de demandeurs d’emploi inscrits en catégorie A et ayant un droit payable au Revenu de solidarité active (RSA) est de

Three key ingredients of our analysis are: a suitable concrete form of the Araki-Woods representation of the radiation field, Mourre’s positive commutator method combined with a

Etant donné que la Croix-Rouge Valais dispose d’une structure d’insertion pour les réfugiés (permis B et F réfugié) depuis 16 ans, le BIP est d’abord une

Spatial variability in distribution and growth of juvenile and adult sea scallops, Placopecten magellanicus (G.), on eastern Georges Bank (Northwest Atlantic).... Published August

AlI papers submitted should be: double...spaced, in quadruplicate, in the format of the American Psychological Association style manual (4th edition), 15... 20 pages

61 ACADEMIC ACHIEVEMENT OF ADOlESCENTS FROM SELECTED ETHNOCULTURAL GROUPS IN CANADA: A STUDY CONSISTENT WITH JOHN OGBU'S THEORY Edith Samuel, Eua Krugly-Smolska. &

Adil est un grand garçon bien fait, maman m’as dit qu’il se montre poli chaque fois qu’il la rencontre, elle m’as dit aussi qu’il aurait pu être un bon garçon si ses