• Aucun résultat trouvé

Kneser hypergraphs

N/A
N/A
Protected

Academic year: 2022

Partager "Kneser hypergraphs"

Copied!
16
0
0

Texte intégral

(1)

Kneser hypergraphs

Fr ´ed ´eric Meunier

May 21th, 2015

CERMICS, Optimisation et Syst`emes

(2)

Kneser hypergraphs

m, `, r three integers s.t. m ≥ r `.

Kneser hypergraph KG

r

(m, `):

V (KG

r

(m, `)) =

[m]`

E(KG

r

(m, `)) = n

{ A

1

, . . . , A

r

} : A

i

[m]`

, A

i

∩ A

j

= ∅ for i 6 = j o

(3)

Chromatic number

Theorem (Alon-Frankl-Lov ´asz theorem) χ(KG

r

(m, `)) =

m − r (` − 1) r − 1

All proofs:

• if true for r

1

and r

2

, then true for r

1

r

2

.

• true when r is prime.

Original proof for the caserprime: as for Lov ´asz-Kneser conjecture, uses box complexes but Dold’s theorem instead BU theorem.

(4)

A combinatorial proof

Ziegler (2003) proposed a combinatorial proof via a Z

p

-Tucker’s lemma.

Assumepprime and KGp(m, `)properly colored withtcolors.

Zp=pth roots of unity

With the help of coloring, build a map

λ: (Zp∪ {0})m\ {0} −→ Zp×[t+p`−2]

x 7−→ (s(x)

| {z } sign

, v(x)

| {z } absolute value

)

satisfying condition of a “Zp-Tucker” lemma

• λ(ωx) =ωλ(x)forω∈Zp

• condition on{λ(x1), . . . , λ(xp)}whenx1 · · · xp.

Second point satisfied bycoloring condition: nopadjacent vertices get the same color.

Thus,(p−1)(t−1) +p`−1≥m, i.e.

t≥m−p(`−1) p−1

(5)

Z p -Tucker lemma

Lemma.

Let α ∈ { 0, 1, . . . , k } . If there exists

λ : (Z

p

∪ { 0 } )

m

\ { 0 } −→ Z

p

× [k ] x 7−→ (s(x), v (x ))

such that

• λ(ωx ) = ωλ(x ) for ω ∈ Z

p

• v (x ) = v (y ) ≤ α and xy = ⇒ s(x) = s(y )

• v (x

1

) = · · · = v(x

p

) ≥ α + 1 and x

1

≺ · · · ≺ x

p

= ⇒ s(x

i

)’s not pairwise distinct,

then m ≤ α + (k − α)(p − 1).

Octahedral Tucker’s lemma.

Letλ:{+,−,0}m\ {0} → {±1, . . . ,±k}s.t.

• λ(−x) =−λ(x)

xy=⇒λ(x) +λ(y)6=0 Thenm≤k.

(6)

Zp={1,g,g2, . . . ,gp−1}.

(g2, g,0, g3, g3, g2, g2,0, g4)

1 g g2 g3 g4

λ

1 g g2 g3 g4

α

(7)

Z p -Tucker: a proof

K = Z

p

∗ · · · ∗ Z

p

| {z }

mtimes

L = Z

p

∗ · · · ∗ Z

p

| {z }

αtimes

∗ ∂ 4

p−1

∗ · · · ∗ ∂ 4

p−1

| {z }

k−αtimes

Lemma (Z

p

-Tucker lemma – reformulation)

If there exists λ : sd(K) −→

Zp

L, then m ≤ α + (k − α)(p − 1).

Proof.

Dold’s theorem: connectivity(sd(K)) < dim(L).

connectivity(sd(K)) = m − 2 and dim(L) = α + (k − α)(p − 1) − 1.

(8)

Ziegler’s proof

? c :

[m]`

→ [t] proper coloring of KG

p

(m, `) with t colors.

? Extension for any U ⊆ [m]: c(U) = max { c(A) : A ⊆ U, | A | = ` } .

? x

ω

= { i : x

i

= ω }

?

λ(x) =

(xa,|x|) if|x| ≤p(`−1)anda=min{i: xi 6=0}

(ω,c(xω) +p(`−1)) if|x| ≥p(`−1) +1 andω=arg max{c(xω0) : ω0∈Zp}

? α = p(` − 1).

(9)

A Zig-zag theorem for Kneser hypergraphs

Theorem (M. 2014)

Let p be a prime number. Any proper coloring c of KG

p

(m, `) with t colors contains a complete p-uniform p-partite hypergraph with parts U

1

, . . . , U

p

satisfying the following properties.

• It has m − p( ` − 1) vertices.

• The values of | U

j

| differ by at most one.

• The vertices of U

j

get distinct colors.

Generalizes Alon-Frankl-Lov ´asz theorem and almost generalizes the Zig-zag theorem for Kneser graphs.

Proof uses a “Z

p

-Fan” lemma due to Hanke, Sanyal, Schultz, Ziegler

(2009), M. (2006)

(10)

Z p -Fan lemma

Theorem Let

λ : (Z

p

∪ { 0 } )

m

\ { 0 } −→ Z

p

× [k ] x 7−→ (s(x), v (x ))

be such that

• λ(ωx ) = ωλ(x ) for ω ∈ Z

p

• v (x ) = v (y ) and xy = ⇒ s(x ) = s(y ).

Then there exists an m-chain x

1

≺ · · · ≺ x

m

such that

λ( { x

1

, . . . , x

m

} ) = { (s

1

, v

1

), . . . , (s

m

, v

m

) }

with v

1

< · · · < v

m

and s

i

6 = s

i+1

for i ∈ [m − 1].

(11)

Local chromatic number of Kneser hypergraphs

Let H = (V , E) be a uniform hypergraph. For X ⊆ V , N (X ) = { v : ∃ e ∈ E s.t. e \ X = { v }} . N [X ] := X ∪ N (X ).

ψ ( H ) = min

c

max

e∈E,v∈e

| c( N [e \ { v } ]) | ,

where minimum taken over all proper colorings c.

Consequence of the Zig-zag theorem for Kneser hypergraphs:

Theorem

ψ(KG

p

(m, `)) ≥ min

m − p(` − 1) p

+ 1,

m − p(` − 1) p − 1

for any prime number p.

(12)

Hedetniemi’s conjecture for Kneser hypergraphs

Theorem (Hajiabolhassan-M. 2014)

χ KG

r

(m, `) × KG

r

(m

0

, `

0

)

= min χ KG

r

(m, `)

, χ KG

r

(m

0

, `

0

)

(13)

Product of hypergraphs and Zhu’s conjecture

u1

u2

u3

{u1, u2, u3} ∈E(G) {v1, v2, v3, v4} ∈E(H)

v1

v2

v3

v4

{(u1, v1),(u1, v2),(u2, v1),(u3, v3),(u3, v4)} ∈E(G × H)

LetG,Hbe two hypergraphs.Categorical productG × H:

V(G × H) =V(G)×V(H)

E(G × H) ={e⊆V(G × H) : πG(e)∈E(G), πH(e)∈E(H)}

Proper coloringof a hypergraph: no monochromatic edges.

Zhu’s conjecture (1992)

χ( G × H ) = min(χ( G ), χ( H ))

(14)

Product of graphs vs of hypergraphs, and coloring

Product of two graphs seen as hypergraphs: will have edges of cardinality 3 and 4.

G

G

G G

H

H

H H

G H

G H

G H

But the chromatic number does not depend of the definition of the product.

Zhu’s conjecture is a true generalization of Hedetniemi’s

conjecture.

(15)

New graphs for Hedetniemi’s conjecture

U

1

, . . . , U

s

pairwise disjoint, `

1

, . . . , `

s

integers

B =

A ∈ [n]

k

: | A ∩ U

i

| ≤ `

i

bases of the truncation of a partition matroid

Proposition (Hajiabolhassan-M.)

Graphs KG

2

( B ) satisfy Hedetniemi’s conjecture.

Holds also if B is the set of spanning trees of some “dense”

graph.

(16)

Thank you

Références

Documents relatifs

To evaluate and emphasize the contribution of scaling better, we compare the performance of the heuristics on a particular family of d-partite, d-uniform hypergraphs where

Finding a maximum cardinality matching in a d-partite, d-uniform hyper- graph for d ≥ 3 is NP-Complete; the 3-partite case is called the Max-3-DM problem [27].. This problem has

The contrast of the image sampled with large exposure time gives an indication of the contrast baseline introduced by the static or pseudo-static components that can be

What is the minimum positive integer n such that every set of n points in general position in R d has the property that the convex hulls of all k-sets do not have a transversal (d

While it is N P-hard to decide whether a path-based support has a monotone drawing, to determine a path-based support with the minimum number of edges, or to decide whether there is

The connected, even 3-hypergraphs with no null labelling are computed up to 7 vertices, and those on 6 vertices are illustrated. Only partial computations are performed on 8

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Given a division ring K containing the field k in its center and two finite subsets A and B of K ∗ , we give some analogues of Pl¨ unnecke and Kneser Theorems for the dimension of