• Aucun résultat trouvé

Shape coexistence in neutron-deficient krypton isotopes

N/A
N/A
Protected

Academic year: 2021

Partager "Shape coexistence in neutron-deficient krypton isotopes"

Copied!
22
0
0

Texte intégral

(1)

HAL Id: in2p3-00141102

http://hal.in2p3.fr/in2p3-00141102

Submitted on 11 Apr 2007

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

E. Clément, A. Görgen, W. Korten, E. Bouchez, A. Chatillon, J.-P. Delaroche,

M. Girod, H. Goutte, A. Hürstel, Y. Le Coz, et al.

To cite this version:

E. Clément, A. Görgen, W. Korten, E. Bouchez, A. Chatillon, et al.. Shape coexistence in

neutron-deficient krypton isotopes. Physical Review C, American Physical Society, 2007, 75, pp.054313.

�10.1103/PhysRevC.75.054313�. �in2p3-00141102�

(2)

E. Clement, A. Gorgen, W. Korten, E. Bou hez, A.Chatillon, J.-P.Delaro he, M.Girod, H.Goutte, A.Hurstel, 1 Y. LeCoz, 1,z A.Obertelli, 1 S.Peru, 2 Ch.Theisen, 1 J.N.Wilson, 1,x M.Zielinska, 1,3 C.Andreoiu, 4,{ F.Be ker, 5 P.A. Butler, 4 J.M.Casandjian, 6, W.N.Catford, 7 T.Czosnyka, 3,yy G.de Fran e, 6 J.Gerl, 5 R.-D.Herzberg, 4 J.Iwani ki, 3,4 D.G. Jenkins, 4,zz G.D. Jones, 4 P.J.Napiorkowski, 3 G.Sletten, 8 andC.Timis 7 1

CEA Sa lay, DAPNIA/SPhN, F-91191 Gif-sur-Yvette, Fran e 2

CEA/DIF, DPTA/SPN, B.P. 12, F-91680 Bruyeres-le-Ch^atel, Fran e 3

Heavy Ion Laboratory, Warsaw University, Warsaw, PL-02097, Poland 4

Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, United Kingdom 5

Gesells haft f ur S hwerionenfors hung, D-64291 Darmstadt, Germany 6

GANIL, BP-5027, F-14076 Caen Cedex, Fran e 7

Department of Physi s, University of Surrey, Guildford, GU2 7XH, United Kingdom 8

Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen , Denmark

(Dated: February2,2007)

Shape oexisten einthelightkryptonisotopeswasstudiedintwolow-energyCoulombex itation

experiments using radioa tive 74

Kr and 76

Kr beams from the SPIRAL fa ility at GANIL. The

ground-state bands in both isotopes were populated up to the 8 +

state via multi-step Coulomb

ex itation,andseveralnon-yraststateswereobserved.Largesetsofmatrixelementswereextra ted

for both nu lei from the observed -ray yields. Diagonal matrix elements were determined by

utilizing the reorientation e e t. Inboth isotopesthe spe tros opi quadrupole moments for the

ground-statebandsandthebandsbasedonex ited0 + 2

statesarefoundtohaveoppositesigns. The

experimental dataare interpretedwithin aphenomenologi al two-bandmixingmodeland

model-independentquadrupoleinvariantsarededu edfortherelevant0 +

statesusingthe ompletesetsof

matrixelementsandtheformalismofquadrupolesumrules. Con gurationmixing al ulationsbased

ontriaxialHartree-Fo k-Bogolyubov al ulationswiththeGognyD1Se e tiveintera tionhavebeen

performedandare omparedbothwiththeexperimentalresultsandwithre ent al ulationsusing

theSkyrmeSLy6e e tiveintera tionandthefullgenerator- oordinatemethodrestri tedtoaxial

shapes.

PACSnumbers: 21.10.Ky,21.60.-n,23.20.Js,25.70.De,27.50+e

I. INTRODUCTION

Theshapeofanatomi nu leusisafundamental

prop-erty re e ting the spatial distribution of the nu leons.

Closed-shell nu lei are always spheri alin their ground

statesin eallorientationsinspa eofthenu leonorbitals

areequallyprobable.Innu leiwithopenshellsthe

o u-pationof ertainshape-drivingorbitalstendstopolarize

thenu leus. To rstorder,whendes ribingthe nu lear

potentialbyasimpleharmoni os illator,thebinding

en-ergyisindependentof thesignoftheelongation

param-eter, and ompressed ellipsoidal (oblate) and elongated



Presentaddress:ISOLDE,CERN,CH-1211Geneva,Switzerland

y

Presentaddress: Gesells haftfurS hwerionenfors hung,D-64291

Darmstadt,Germany z

Present address: DEN/DTN/SMTM,CEA Cadara he, F-13108

Saint-Paul-lez-Duran e,Fran e x

Present address: Institut dePhysiqueNu leaire,IN2P3-CNRS,

F-91406OrsayCedex,Fran e {

Present address: Departmentof Physi s, Universityof Guelph,

Guelph,Ontario,N1G2W1,Canada 

Presentaddress:DAPNIA/SAp,F-91191Gif-sur-Yvette,Fran e yy

De eased. zz

Presentaddress:DepartmentofPhysi s,UniversityofYork,

Hes-(prolate)shapesshouldbeequallyprobable[1℄.

Cal ula-tionsperformedwithmorerealisti potentialsshowthat

prolategroundstatesaremu hmoreabundant. This

ten-den yisalso on rmedbyexperimentsshowingastrong

dominan eofprolateground-stateshapes. This

observa-tion anberelatedtotheshellstru tureofnu leiandin

parti ulartothestrengthofthespin-orbittermrelative

totheradialtermof thenu learpotential[2℄. Both

ex-perimentsandtheoryshowthattheprolatedominan eis

parti ularlyevidentin heavynu lei(Z ;N >50), where

theshell stru turehas hangedfrom aharmoni

os illa-tortype to aMayer-Jensen typewith ahigh-j intruder

orbitalinea hmajorshell. Inlighternu lei(Z ;N <40)

prolateand oblate solutionsappear more evenly in the

groundstates.

Manyneutron-de ientnu leiinthemassA=70 80

region, espe ially loseto the N =Z line, havea large

quadrupole deformation in their groundstate. In

addi-tion,oblate and prolateshapesare predi tedto oexist

withinaverysmall energyrangeof afew hundredkeV.

Thisshape oexisten eisduetothe ompetitionoflarge

shell gaps in the parti le level s heme for both oblate

andprolatedeformationatproton/neutronnumbers34,

36,and38. Theneutron-de ientSeandKrisotopesare

hen eideal andidatesforthestudyofshapepolarization

andshape-mixingproperties. Deformedshell-model

(3)

have oblate ground states with a prolate on guration

oexistingat lowex itation energy[3℄. The situation is

predi tedtobeinversedforheavierisotopes,wherea

pro-late groundstateis expe tedto oexist withanex ited

oblate on guration.

A rst experimental indi ation of shape oexisten e

in even-evennu lei is the observation of alow-lying0 + 2

state,whi h anbeinterpretedasthegroundstateofa

di erent shape. If both 0 +

statesare (intrinsi ally)

de-formed,onewouldexpe ttworotationalbandsrelatedto

thedi erentshapes. If the on gurations ome losein

energy,thewavefun tionsofstatesofthesamespinand

parity an mix and ause adistortion of the rotational

bands. Shape oexisten ein light kryptonisotopeswas

rst suggested by Pier ey et al. [4℄ in order to explain

theirregularitiesin the ground-statebandsat lowspin.

Ametastablelow-lying0 +

2

state,i.e.ashapeisomer,was

rstreported for 74

Kr[5,6℄. Morere ently,anisomeri

0 + 2

statewasobservedin 72

Kr[7℄,extendingthe

system-ati s to the N = Z line. The ex itation energy of the

0 +

2

states is de reasing from 78

Krto 74

Kr and then

in- reasingagain for 72

Kr. Themeasured strengthsof the

ele tri monopoletransitions 2

(E0), ontheotherhand,

ismaximalfor 74

Kr. Themixingamplitudesofthewave

fun tions were derived from the distortion at low spin

oftheotherwiseregularrotational bands,and were also

foundmaximalfor 74

Kr[7℄. Theseobservationswere

in-terpretedaseviden eforaninversionoftheground-state

deformationwithde reasingneutronnumber: 78

Krand

76

Kr are assumed to be prolate in their ground state,

whileanoblateshapebe omesthegroundstateof 72

Kr.

For 74

Krtheintrinsi statesofoppositedeformationare

assumedtobealmostdegenerate,andthemeasured

dis-pla ementofthetwophysi al0 +

statesismostlydueto

therepulsionofthestronglymixedstates[7℄. Thisshape

oexisten es enariois on lusive,butitisonlybasedon

indire tmeasuresofthenu learshapes. Neitherthesign

ofthedeformationnorthemixingofthelow-spinsstates

havebeendeterminedexperimentally.

Low-energy Coulomb ex itation is a well-established

methodtostudy olle tiveex itationsinnu lei[8℄. When

two nu lei are passing ea h other on lose traje tories,

but without oming into therangeof the nu lear

inter-a tion, olle tive states anbeex ited in a purely

ele -tromagneti pro ess. Sin e the intera tion time is

rel-atively long, several su essiveex itations are possible,

populatingstatesup to relativelyhigh spins. From the

measured(di erential)Coulomb ex itation rossse tion

the orresponding ele tromagneti matrix elements an

be extra ted. Diagonal matrix elements an be

deter-minedandthe(intrinsi )shapeparametersextra tedvia

se ond-orderinterferen etermsintheex itationpro ess.

Sensitivitytothediagonalmatrixelements omesfor

ex-ample from the reorientation e e t, whi h is aused by

se ond-ordertransitionsbetweenthemagneti sub-states

of an ex ited state[9℄. Coulomb ex itation is thus the

onlymethodthat andire tlydistinguishbetween

di er-the shape oexisten e s enario in the light Se and Kr

isotopes.

Untilveryre entlyCoulombex itationexperimentsat

lowenergy were limitedto stable orverylong-lived

nu- lei, both for proje tile or target ex itation. With the

availability of radioa tive ionbeams (RIBs) from ISOL

fa ilities, su h experiments are now starting to be ome

possible for proje tileex itation of short-lived unstable

nu lei. In- ightfa ilities annotdeliverpurelow-energy

radioa tive beams with a eptable emittan e and are

thereforeonly suitable for intermediate-energy, but not

for low-energy Coulomb ex itation experiments. For a

pre ise determination of diagonal matrix elements it is

ne essarytomeasurethedi erentialCoulombex itation

ross se tion (or the ex itation probability) very

a u-rately at safe energies well below the Coulomb barrier

overalargerangeofs atteringangles. Avariationofthe

atomi numberZofthetargetnu leusin reasesthe

sen-sitivityofthemeasurement. TheSPIRALfa ility[10℄at

GANIL (Caen, Fran e) delivers high-quality RIBs, and

espe ially rare gases are produ ed with relatively high

intensities. Two proje tile Coulomb ex itation

exper-iments were performed with beams of

74

Kr and

76 Kr,

respe tively. The highpre isionof thedata allowed

ex-ploiting the reorientation e e t for the rst time with

radioa tivebeams.

II. EXPERIMENTALDETAILS

Theradioa tive 74

Krand

76

Krbeams were produ ed

attheSPIRAL fa ility[10℄at GANILbyfragmentation

of an intense primary beam of stable 78

Kr of 10 12

par-ti lesperse ond at 68:5A MeVonathi k arbon

pro-du tiontarget. The radioa tivespe ies were extra ted,

ionized in an ECR sour e, and post-a elerated in the

K = 265 CIME y lotron to 4:4A MeV for

76

Kr and

4:7A MeV for 74

Kr. The average se ondary beam

in-tensitywas510 5 and10 4 ppsfor 76 Krand 74 Kr,

respe -tively. Duetotheex ellentmassseparationoftheCIME

y lotronisobari ontaminantsarestronglysuppressed;

only in the ase of 74

Kr a small 74

Se ontamination of

1%wasobserved. The

76 Krand 74 Krproje tiles were Coulombex itedon 208 Pbtargetsof0.9and1.0mg/ m 2

thi kness,respe tively. Theprodu tions hemeofthe

ra-dioa tivebeamsand theexperimental set-upare shown

s hemati allyinFig.1.

Bothexperimentsusedthesameexperimentalset-up.

Thes attered proje tiles and there oiling targetnu lei

were dete ted in an annular, highly segmented

double-sidedsili onstripdete tor(DSSD)of300m thi kness.

The dete tor was pla ed 25 mm downstream from the

208

Pbtarget. Thea tiveareawithinnerandouterradii

of11and35mm,respe tively,wassegmentedinto16

on- entri ringsand16azimuthalse tors. Theenergy

reso-lutionofthesili ondete torwassuÆ ienttodistinguish

(4)

Ion Source

Injector

78

Kr

CSS1

CSS2

SPIRAL

Production target

ECR Ion Source

68.5 MeV/u

10

12

ions/s

CIME

Cyclotron

74

Kr

10

4

ions/s

4.7 MeV/u

Pb

EXOGAM

DSSD

FIG.1: Produ tions hemeoftheradioa tive 74

Krand 76

Kr

beamsands hemati viewofthedete tionset-up.

theCoulombex itationeventswheneithertheKrorthe

Pbnu leuswasdete ted. The DSSD overeds attering

angles between23.8 Æ

and 54.5 Æ

in the laboratory frame

orrespondingtoa ontinuousrangeofs atteringangles

between24 Æ

and 145

Æ

in the enter-of-massframe. For

thes attering angles overedby theDSSD thedistan e

of losestapproa hdbetweenproje tileandtargetnu lei

always orrespondedto\safe"valuesto ensureapurely

ele tromagneti ex itation,ful llingthe ondition[11℄

d>1:25(A P +A T ) 1=3 +5fm: (1)

Thesegmentationofthesili ondete torallowed

measur-ingthedi erentialCoulombex itation rossse tionasa

fun tion ofs atteringangle. Uns atteredproje tiles left

thetargetareathroughthe entralholeinthedete tor,

redu ingtheradioa tiveba kgroundfrom thebeam.

The rays depopulating the Coulomb-ex ited states

were dete tedin the EXOGAM array[12℄ of large

seg-mentedgermanium loverdete torswithes ape

suppres-sionshields. Ea h loverdete tor omprisesfour

individ-ual germanium rystals, and ea h rystal is ele tri ally

segmented into four longitudinal segments. The array

omprisedsixfull-sizeandonesmaller loverdete torfor

the 76

Kr experiment, and seven large and four smaller

dete tors for the 74

Kr experiment. The dete tors were

pla ed at 90 Æ

and 135

Æ

with respe t to the beam axis,

andthedistan e betweenthefrontfa eof thedete tors

and thetarget was11.2 mfor thelarge and14 m for

the smallerdete tors. TheeÆ ien y for full-energy

ab-sorption of a 1.3 MeV ray was measured to be 12%

duringthe 74

Krexperiment. Eventswerere ordedwhen

at least one raywasdete ted in oin iden e withone

of the ollision partners. The oin iden e requirement

suppressedthe verylargeba kgroundfrom the

radioa -tivebeamalmost ompletely. Thesegmentationofboth

0

200

400

600

800

1000

1200

1400

E

γ

(keV)

1

10

100

1000

counts / keV

2

1

+

→ 0

1

+

4

1

+

2

1

+

0

2

+

2

1

+

Pb x-rays

2

2

+

0

1

+

2

2

+

2

1

+

6

1

+

4

1

+

8

1

+

6

1

+

4

2

+

4

1

+

2

3

+

0

2

+

(4

2

+

2

2

+

)

FIG. 2: Total -ray spe trum in logarithmi s ale after

Coulombex itationofthe4:4 AMeV 76 Krbeamona 208 Pb targetof0.9mg/ m 2

thi knessin oin iden ewitheitherthe

s atteredbeamparti leorre oilingtargetnu leus.

thegermaniumandthesili ondete torsallowedapre ise

determinationoftherelativeanglebetweens atteredKr

proje tilesandtheemitted rays. AfterDoppler

orre -tionaresolutionof8keVwasobtainedfora rayof500

keV.

III. DATAANALYSISANDRESULTS

A. 76

Kr Experiment

The total Doppler orre ted -ray spe trum in

oin- iden ewith eitherthes attered 76

Krproje tiles orthe

re oiling 208

Pb target nu lei is shown in Fig. 2. The

spe trumisvery leanandneitherba kgroundfromthe

radioa tivede ayofthebeamnorfromisobari

ontam-inants ofthebeamare present. Data were olle tedfor

50hourswithase ondarybeamintensityof510 5

pps.

Theground-statebandwasobserveduptothe8 +

state,

populatedin multi-stepCoulombex itation,andseveral

non-yraststateswereex ited. A partial levels hemeof

76

Krispresentedin Fig.3, showingallstatesthat were

in ludedintheCoulombex itationanalysisandall

tran-sitionsthatwereobserved. All statesand transitionsof

thelevels heme in Fig.3had beenobservedpreviously

[13℄.

The0

+ 2

stateat770keV,whi hisa andidatefor

hav-ing a shape di erent from that of the ground state, is

populated and itsde ay to the 2 +

1

stateobserved. The

2 + 3

stateat 1687 keV is feedingthe 0 + 2

state. However,

thistransition of 918keV is notfullyresolvedfrom the

4 + 2 !4 + 1

transitionwith923keV.TheJ=2sequen e

abovethe2 +

2

stateat1222keVhasbeeninterpreted[14℄

asaK =2quasi-gammaband togetherwith aJ =2

sequen e on top of a 3 +

state at 1733 keV, whi h was

notpopulatedin thepresentCoulomb ex itation

exper-iment. The 2

+

(5)

FIG.3: Partiallevels hemesof 74

Kr(left) and 76

Kr(right)

showingalltransitionsobservedinthemeasurementandtheir

energies in keV and all states that were in luded in the

Coulombex itationanalysis.

0

30

60

90

120

150

180

θ

c.m.

(deg)

0.01

0.1

1

10

d

σ

/d

(b/sr)

A

B

C

D

2

1

+

4

1

+

6

1

+

FIG.4: Di erentialCoulombex itation rossse tionto

pop-ulatethe2 + 1 ,4 + 1 ,and6 + 1 statesin 76

Kr. Theangularranges

(inthe enter-of-masssystem) overed by theworkingrings

ofthesegmentedsili ondete torarelabeledA-D.

waspopulatedandpossiblyalsothe4 + 2

state,sothatall

even-spinmembersofthebandhavebeenin ludedinthe

Coulomb ex itationanalysis.

Inordertoextra t matrixelementsfromthe

di eren-tialCoulombex itation ross se tionsand theobserved

-rayyields, the data wasdivided into several sub-sets

orresponding to di erent ranges of s attering angles.

Be ause theinnermost ringsandsomerings in the

en-terofthesegmentedsili ondete torwerenotfun tioning

properly,onlyapartialrangeofs atteringangles overed

by the dete tor wasused in the analysis. This is

illus-trated in Fig.4, whi h shows the rossse tion to

pop-ulate thestates of the ground-stateband asa fun tion

of s attering angle (in the enter-of-mass frame). The

ranges that were used in the analysis are indi ated by

the verti al lines and are given in Table I. The

ex i-TABLEI:Observed -raytransitionsin 76

Krwiththeir

inten-sities(withouteÆ ien y orre tion) forfour di erent ranges

of enter-of-masss atteringangles.

Dataset I  i I  f E

(keV) Counts Error

A 2 + 1 0 + 1 424 18426 190 [39:5 Æ ;49:0 Æ ℄ 4 + 1 2 + 1 610 1122 50 6 + 1 4 + 1 825 41 9 2 + 2 2 + 1 797 132 16 2 + 2 0 + 1 1221 77 14 0 + 2 2 + 1 346 154 40 B 2 + 1 0 + 1 424 11595 140 [61:4 Æ ;71:8 Æ ℄ 4 + 1 2 + 1 610 2141 61 6 + 1 4 + 1 825 171 18 2 + 2 2 + 1 797 211 18 2 + 2 0 + 1 1221 113 15 0 + 2 2 + 1 346 314 35 C 2 + 1 0 + 1 424 14123 168 [71:0 Æ ;87:7 Æ ℄ 4 + 1 2 + 1 610 3343 82 6 + 1 4 + 1 825 503 31 8 + 1 6 + 1 1019 91 14 2 + 2 2 + 1 797 413 29 2 + 2 0 + 1 1221 203 20 0 + 2 2 + 1 346 706 51 2 + 3 0 + 2 918 a 4 + 2 4 + 1 923 a 81 18 D 2 + 1 0 + 1 424 5924 83 [107:0 Æ ;121:5 Æ ℄ 4 + 1 2 + 1 610 2308 68 6 + 1 4 + 1 825 493 50 8 + 1 6 + 1 1019 115 21 2 + 2 2 + 1 797 251 40 2 + 2 0 + 1 1221 177 34 0 + 2 2 + 1 346 789 75 2 + 3 0 + 2 918 a 4 + 2 4 + 1 923 a 118 23 a

Unresolveddoublet;yieldofthesumofbothtransitions.

the rossse tiontopopulatethe2 + 1

stateislargest, ould

notbemeasured. However,therangeswherethe

higher-lyingstatesarepopulatedwiththehighest rossse tions

are overedbythedete tor. Moreover,thesensitivityto

higher-ordere e ts, whi h allowdetermining the

diago-nalmatrix elements, omes mostly from the large

s at-teringangles. Thedivisionofthetotaldataintothefour

rangesshownin Fig.4wasfoundto beagood

ompro-mise between the largest possible number of data

sub-setsfor di erent angularrangesand the minimumlevel

ofstatisti srequiredtoextra tthe -rayyieldsfromthe

individualspe tra.

The -rayspe traforthefour data setsare shown in

Fig. 5 and the -ray yields extra ted from these

spe -tra are summarized in Table I. As the enter-of-mass

s atteringangleisin reasingforthedatasetsfromAto

D,theimpa tparameterandthedistan eof losest

ap-proa harede reasing. Asa onsequen e,theprobability

topopulatestatesathigherex itationenergyandhigher

(6)

0

400

800

1200

E

γ

(keV)

1

10

100

1000

counts / kev

A

4

1

+

2

1

+

2

1

+

→ 0

1

+

6

1

+

4

1

+

2

2

+

2

1

+

0

2

+

2

1

+

2

2

+

0

1

+

8

1

+

6

1

+

4

2

+

2

2

+

2

3

+

0

2

+

4

2

+

4

1

+

400

800

1200

E

γ

(keV)

B

400

800

1200

E

γ

(keV)

C

400

800

1200

E

γ

(keV)

D

FIG.5: Spe traafterCoulombex itation of 76

Kron 208

Pbfor the foursub-setsofdata orrespondingtodi erentranges of

s atteringanglesasde nedinTableI.

40

60

80

100

120

θ

c.m.

(deg)

10

-3

10

-2

10

-1

10

0

I

γ

(I

i

I

f

) / I

γ

(2

1

+

0

1

+

)

4

1

→ 2

1

0

2

→ 2

1

6

1

→ 4

1

2

2

→ 2

1

8

1

→ 6

1

FIG.6: Intensityofsomeofthe -raytransitionsin 76

Kras

afun tionofs atteringangleinthe enterofmassframe. All

intensitieshavebeennormalizedtothe2 + 1 !0 + 1 transition.

inFig.6,wherethe -rayyieldsareplottedasfun tions

ofthes atteringangleforseveraltransitionsnormalized

to the 2 + 1 ! 0 + 1

transition. The -ray yields show not

only a strong dependen e on the s attering angle, but

thisdependen e alsodi erssigni antlyforthedi erent

transitions, whi h illustrates the sensitivity of the data

tothematrixelements.

B. 74

Kr Experiment

The produ tion rate of 74

Kr with SPIRAL is at the

limit of feasibility for a measurement of spe tros opi

quadrupole moments with the low-energy Coulomb

ex- itation te hniqueutilizing the reorientation e e t. An

averagese ondarybeamintensityof10 4

ppswasa hieved

during the experiment. The lowerbeamintensity

om-paredtothe 76

Krexperimentwaspartly ompensatedby

alongerrunning time of150 hours. Furthermore,the

experimental diÆ ulties on erning the sili on dete tor

ouldberesolvedandalargerrangeofs atteringangles

was overed. Thenumberofgermanium loverdete tors

intheEXOGAMarraywasalsoin reased,resultingina

0

200

400

600

800

1000

1200

1400

E

γ

(keV)

1

10

100

1000

counts / 2 keV

2

1

+

→ 0

1

+

4

1

+

2

1

+

2

3

+

0

2

+

Pb x-rays

2

2

+

0

1

+

2

2

+

2

1

+

6

1

+

4

1

+

8

1

+

6

1

+

0

3

+

2

1

+

2

2

+

0

2

+

4

2

+

2

2

+

74

Se

2

3

+

2

1

+

FIG.7: Total -rayspe trumafterCoulombex itationofthe

4:7 AMeV 74 Krbeamona 208 Pbtargetof1.0mg/ m 2

thi k-nessin oin iden ewitheitherthes atteredbeamparti leor

re oilingtargetnu leus.

higherfull-energydete tioneÆ ien y of 12%at a -ray

energyof1.3MeV.Eventhoughthese ondarybeam

in-tensity for 74

Kr was 50 times smaller ompared to the

76

Krexperiment,thelevelofstatisti swasonlyredu ed

by afa tor of ve. The total -rayspe trumin

oin i-den ewith either s attered 74

Krproje tiles orre oiling

target nu lei is shown in Fig. 7. Besides transitions in

74 Kr the 2 + 1 ! 0 + 1 transition of 74 Se is also visible in

thespe trum. Itsstrengtha ountsfor1.2%ofthetotal

beamintensity. Noother ontaminantsofthebeamwere

observed.

Apartiallevels hemeof 74

Krwiththeobserved

tran-sitionsispresentedin Fig.3. As wasthe asefor 76

Kr,

theground-stateband of 74

Krwaspopulatedup tothe

8 +

state. The metastable 0 + 2

state at 508 keV was

in-terpreted as a shape isomer orresponding to a shape

di erentfromthat oftheground state[7℄. Thisstateis

populatedviathe694keVtransitionfrom the2 +

2 state.

Itsde aypro eedsviaanenhan edE0transitiontothe

groundstateandastrongly onvertedE2transitionof52

keVtothe2 + 1

state[5{7℄andisthereforenotobservedin

thisexperiment. The2 +

statealsode aystothe2 +

(7)

dire tlytothegroundstate. Thebran hingratioforthe

de ayofthe2 + 2

stateisknownfroman earlier

measure-ment[15℄. A4 + 2

stateis expe tedabovethe2 + 2

stateas

partofarotationalstru ture,buthasnotbeenreported

previously. A new transition is observed at 910 keV in

thespe trumofFig.7,whi hdoesnot orrespondtoany

knowntransitionin 74

Krorneighboringnu leithat ould

potentially ontaminate the beam. Be ause the energy

and,aswill beshown,thematrixelementofthis

transi-tionagreewiththeexpe tedrotationalstate,a4 +

2 state

istentativelypla edat2112keV.Wehavealsoobtained

weak oin iden e data on rming the above

assign-ment, but an alternative interpretation of the 910 keV

peakasa4 + 2 !4 + 1

transition annot be ompletely

ex- luded. In this ase the4 +

2

statewould belo ated 188

keVlower.

Athird 0 +

stateat 1654keVand athird 2 +

stateat

1741 keVex itation energy have been observed after

de ay[15℄. The0 + 3 ! 2 + 1

transition of 1198keVis not

resolvedfrom the2 +

2

!0

+

1

transition of1202 keV. The

largerwidthofthepeakat1200keV,however,showsthat

the0 + 3

statewasalsopopulated. The2 + 3 !0 + 2 transition

of 1233 keV is visible asa shoulderof this peak, and a

very weak transition at 1285 keV is interpreted as the

2 + 3 !2 + 1 transition.

Thefulldatasetfor 74

Krwasdividedintofourranges

of s atteringangles asshown in Table II. The rsttwo

ranges, A and B, orrespond to the dete tion of the

74

Krproje tileinthesili ondete tor,whilethelasttwo

ranges,CandD, orrespondtothedete tionofthe

re oil-ing 208

Pbnu leifrom thetarget. Theindividualspe tra

fromthefour sub-setsofdataareshownin Fig.8. This

division is again a ompromise between the maximum

numberofdatasets andtheminimumlevelofstatisti s

requiredtoextra tthe -rayyields. Adivisionintoonly

tworangesofs atteringanglesimprovestheun ertainty

of the -ray yields, but was found to result in an

in-suÆ ient number of data points to determine the large

numberofmatrixelementsneededtodes ribethedata.

Theyieldsextra tedfromthespe traofFig.8are

sum-marizedinTableII.

Duringthedataanalysisitwasfoundthat thesili on

dete torwasnotfullyalignedwiththebeamaxisin the

experiment. The ount rates are not isotropi ally

dis-tributed overtheazimuthalse tors of the dete tor. By

measuring the Rutherford s attering ross se tion

indi-vidually for the azimuthal se tors and omparing to a

Monte Carlo simulation, the displa ement of the

dete -torwithrespe ttothebeamaxiswasfoundtobe3.0(5)

mm. Thismisalignmentbreaksthe ylindri alsymmetry

of the set-up and introdu es an azimuthal dependen e

ofthes attering angle(), whi h hadto betakeninto

a ountfortheDoppler orre tionofthe raysandthe

Coulombex itationanalysis. Thesmalloverlapbetween

the ranges of s attering angles B and C (see Table II)

is also due to this misalignment. The Doppler

orre -tionimprovessigni antlywhentakingthedispla ement

76

TABLEII:Observed -raytransitionsin 74

Krwiththeir

in-tensities(withouteÆ ien y orre tion) forthe fourdi erent

rangesofs atteringangles.

Dataset I i I f E

(keV) Counts Error

A 2 + 1 0 + 1 456 4550 200 [24:0 Æ ;54:5 Æ ℄ 4 + 1 2 + 1 558 400 80 6 + 1 4 + 1 768 27 10 8 + 1 6 + 1 967 11 6 2 + 2 2 + 1 746 36 6 0 + 3 2 + 1 1198 a 2 + 2 0 + 1 1202 a 82 10 2 + 2 0 + 2 694 26 5 B 2 + 1 0 + 1 456 2044 100 [54:5 Æ ;73:9 Æ ℄ 4 + 1 2 + 1 558 445 30 6 + 1 4 + 1 768 55 10 8 + 1 6 + 1 967 15 5 2 + 2 2 + 1 746 55 10 0 + 3 2 + 1 1198 a 2 + 2 0 + 1 1202 a 55 15 2 + 2 0 + 2 694 22 5 2 + 3 0 + 2 1233 17 10 C 2 + 1 0 + 1 456 1775 100 [67:1 Æ ;97:3 Æ ℄ 4 + 1 2 + 1 558 630 50 6 + 1 4 + 1 768 140 25 8 + 1 6 + 1 967 35 20 2 + 2 2 + 1 746 103 15 0 + 3 2 + 1 1198 a 2 + 2 0 + 1 1202 a 112 10 2 + 2 0 + 2 694 35 15 2 + 3 0 + 2 1233 25 10 (4 + 2 ) 2 + 2 b 910 8 5 2 + 3 2 + 1 1285 16 5 D 2 + 1 0 + 1 456 1090 100 [97:3 Æ ;144:5 Æ ℄ 4 + 1 2 + 1 558 440 30 6 + 1 4 + 1 768 130 30 8 + 1 6 + 1 967 53 20 2 + 2 2 + 1 746 90 30 0 + 3 2 + 1 1198 a 2 + 2 0 + 1 1202 a 59 15 2 + 2 0 + 2 694 25 15 2 + 3 0 + 2 1233 25 15 (4 + 2 ) 2 + 2 b 910 8 4 2 + 3 2 + 1 1285 12 4 a

Unresolveddoublet;yieldofthesumofbothtransitions.

b Alternativeassignment(4 + 2 )!4 + 1 .

experimentis a hieved. This is shown in Fig. 9, where

thedi erentstepsof theDoppler orre tion pro essare

illustrated.

IV. COULOMBEXCITATIONANALYSIS

A. GOSIA analysis

(8)

0

400

800

1200

E

γ

(keV)

1

10

100

1000

counts / 2 keV

A

400

800

1200

E

γ

(keV)

B

400

800

1200

E

γ

(keV)

C

400

800

1200

E

γ

(keV)

D

4

1

+

2

1

+

2

1

+

→ 0

1

+

74

Se

4

1

+

2

1

+

2

2

+

0

2

+

2

2

+

2

1

+

6

1

+

4

1

+

4

2

+

2

2

+

8

1

+

6

1

+

0

3

+

2

1

+

2

2

+

0

1

+

2

3

+

0

2

+

2

3

+

2

1

+

Pb x-rays

FIG.8: Spe trafromthe 74

Krexperiment orrespondingtothedi erentrangesofs atteringanglesasde nedinTableII.

0

1000

2000

0

10

20

30

20

40

60

counts / 2 keV

600

800

1000

1200

1400

E

γ

(keV)

0

20

40

60

2

2

+

0

2

+

0

3

+

2

1

+

2

2

+

0

1

+

2

2

+

2

1

+

6

1

+

→ 4

1

+

2

3

+

0

2

+

2

3

+

2

1

+

4

2

+

2

2

+

8

1

+

6

1

+

74

Se

a)

b)

c)

d)

FIG.9: Gamma-rayspe trafromthe 74

Krexperiment

illus-tratingthedatapro essing: Spe truma)hasno onditionon

the parti le dete tor; onlythe radioa tive ba kgroundfrom

the beam and the room is visible. Spe trum b) has a

o-in iden e ondition withs atteredparti les, butnoDoppler

orre tion is applied. Spe trum )is Doppler orre ted

as-suming thatthe sili on dete tor was alignedwiththe beam

axis. Themisalignmentofthesili ondete torwasin ludedin

theDoppler orre tionfor spe trumd),resulting inthe nal

spe trumof Fig. 7(forthefull energyrange andona

loga-rithmi s ale). Allspe traareshownwithoutanyba kground

subtra tion.

 2

fun tionis onstru tedfromthemeasured -rayyields

andthose al ulatedfroma ompleteset of

ele tromag-neti matrix elements, both transitional and diagonal,

betweenallknownstatesinvolvedin theex itation

pro- ess (see Fig. 3). As longas the \safe" onditionfrom

eq.1isful lled,theele tromagneti ex itation

probabil-ity anbe al ulatedwithveryhighpre isionin a

semi- lassi alway[9℄. The 208

Pbtargetisassumedtobeinert

to the high ex itation energy of the rst ex ited state

(I 

=3 at2.6MeV).

In order to exploit the dependen e of the ex itation

probability on the s attering angle, the data is divided

intoseveralsub-sets orrespondingto di erentrangesof

s attering angles, as des ribed in the previous se tion.

An alternative(or additional) method would be to use

di erenttarget materialsand exploit theZ dependen e

oftheCoulombex itation rossse tion. Duetotheweak

intensitiesoftheradioa tivebeams,thelevelofstatisti s

of the -ray spe tra is limited, and the bins of

s atter-inganglesarerelativelywide. Asthenumberof matrix

elements, i.e. the number of degrees of freedom in the

tting pro ess, is similar to the number of data points

( -ray yields), the tting problem is under-determined.

However, the onvergen e of the t an be improved

by using experimentallyknown spe tros opi data su h

as lifetimes, bran hing and mixing ratios as additional

datapointsin the t. Theexperimental un ertaintiesof

the respe tive spe tros opi information enter into the

 2

t of the matrixelements. In experimentswith

sta-blebeams,whi hdonotsu er fromlowstatisti s,these

quantities anbetreatedasfreeparameters,andallthe

spe tros opi information an in prin iple be extra ted

dire tlyfromtheCoulombex itation data.

Inorder to al ulate the -rayyieldsfromthe matrix

elements,thepositionandgeometryofalldete torsand

theirrelativeeÆ ien yhavetobetakenintoa ount. In

viewofthe losegeometryitisalsoimportantto orre t

forthesmalldispla ementofthesili ondete torwith

re-spe ttothebeamaxisinthe 74

Krexperiment. Theexa t

reprodu tion of theexperimental yields requires the

in-tegration over the range of s attering angles as de ned

inTablesIandII,andovertherangeofbombarding

en-ergiesresultingfromtheenergylossoftheproje tiles in

theleadtarget. The -rayintensitiesare orre tedfor

in-ternal onversion. Theangulardistributionofthe rays

istakenintoa ount;itis orre tedforrelativisti e e ts

andtheattenuation aused bythenu leardeorientation

e e tduringre oilinto va uum.

Itisofgreat advantagethatthelevels hemesofboth

74

Kr and

76

(9)

transi-elementsthatareimportantintheex itationpro essare

wellde ned. Thenon-observationofatransition,i.e.an

upperlimitofitsintensity,isalsousedinthe tting

pro- ess and has to be reprodu ed by the matrixelements.

Insome asesitispossibletoextra tE2matrixelements

betweenknownstatesevenifnotransitionwasobserved.

Thenu learlevelsare rstgroupedintoband stru tures

andthematrixelementsareinitializedassuminga

rota-tional relationbetweenthem. This servesonlythe

pur-poseof ndingrealisti startingvalues. Noassumptions

on erningtherotationalstru tureofthestatesaremade

duringtheminimizationpro ess.

Theresult of the 2

minimizationis aset of redu ed

matrixelementshI 2

kM(E2)kI 1

ithatreprodu esthe

ex-perimental data. The transitional matrix elements are

relatedtotheredu edE2transitionprobabilitiesas:

B(E2;I 1 !I 2 )= jhI 2 kM(E2)kI 1 ij 2 2I 1 +1 :

Thetransitionalquadrupolemomentintheintrinsi

ref-eren e frame an be expressed in the rotational model

as: eQ t 0 = r 16 5 1 p 2I 1 +1 hI 2 kM(E2)kI 1 i hI 1 K 1 20jI 2 K 2 i :

Note that one has to make assumptions about the K

quantumnumbersoftheinitialand nalstatesinorderto

expressthematrixelementasatransitionalquadrupole

moment,whereastheB(E2)valueismodelindependent.

Thesignsofthetransitionalmatrixelementsarerelative

andgivenoadditionalinformationabouttheshape.

Thediagonalmatrixelementisadire tmeasureofthe

spe tros opi quadrupole moment Q

s

(I) of the statein

the laboratory frame and, using the sign onvention of

AlderandWinther[9℄, anbewrittenas:

Q s = r 16 5 hII20jIIi p 2I+1 hIkM(E2)kIi:

The diagonal matrix elements are related to the stati

quadrupole moments of the nu lear state in the

intrin-si frameandthereforeto the hargedistributionofthe

nu leusinthat state:

eQ s 0 = r 16 5 1 p 2I+1 hIkM(E2)kIi hIK20jIKi :

In order to extra t the stati quadrupole momentfrom

the diagonal matrix element an assumption on the K

valueofthestateisagainneeded. Thesignofthe

diag-onalmatrixelementisrelatedto thetypeofquadrupole

deformation: forK =0anegativevalue orrespondsto

aprolate and apositive valueto an oblatedeformation

intheintrinsi frameofthenu leus.

B. Matrix elements for

76 Kr Inthe aseof 76 Krthe 2

minimizationwasperformed

TABLEIII:RelativeintensitiesI

[13 ,17 ℄andmixing

param-etersÆ[13 ℄formixedE2=M1transitionsin 76 Kr. I  i I  f E (keV) I Æ(E2=M1) 2 + 2 2 + 1 797 1 :0 0:2(1) 2 + 2 0 + 1 1221 0 :69(4) 2 + 3 0 + 2 918 1 :0 2 + 3 0 + 1 1688 0 :288(10) 2 + 3 2 + 1 1264 0 :212(7) 2 + 3 4 + 1 653 0 :092(3) 2 + 3 2 + 2 467 0 :046(16) 4 + 2 4 + 1 923 1 :0 0:84(5) 4 + 2 2 + 2 736 0 :56(15) 4 + 2 2 + 1 1533 0 :28(8)

andE2=M1mixingratiosfrompreviousworkwereused

as additional data for the t; they are summarized in

TableIII. Thelifetimes of allstatesthat enterintothe

Coulombex itation analysis ex eptthose ofthe2 + 3 and the6 + 2

stateswereexperimentallyknown. Theyare

sum-marizedinTableIV. Totestthe onsisten ybetweenthe

lifetime and Coulomb ex itation measurements, the  2

minimizationwas rstperformedwithoutusing the

life-timesasadditionalinputdata. Theresultinglifetimesof

thestatesin theground-statebandagree withthe

mea-suredvalues from Ref. [18, 19℄ within the experimental

un ertainties. The analysis for 74

Kr, however, revealed

signi antdis repan ies betweenthelifetimes extra ted

fromtheCoulombex itationdataandthosefoundinthe

literature,aswillbedis ussedinthenext hapter. These

in onsisten iespromptedanewlifetimemeasurementfor

severalstatesinboth 74

Krand 76

Krwithimproved

a u-ra y[20℄,theresultsofwhi harealsopresentedinTable

IV.Thelifetimefoundforthe2 + 1

stateislongerthanthat

ofRef. [18℄, while that for the4 + 1

state isshorter. The

results from the Coulomb ex itation experiment are in

betweenthevaluesofthetwomeasurements. The

mea-suredlifetimes were then used as additionalinput data

intheGOSIAanalysis,whi henhan edthesensitivityto

thediagonalmatrixelementsandthetransitionalmatrix

elementsbetweenhigher-lyingstates. Thisenhan ed

sen-sitivityallowedextra tingalifetimealsoforthe2 +

3 state,

whi hwaspreviouslyunknown.

ThetransitionalE2matrixelementsfoundinthe

min-imizationwithGOSIAarepresentedinTableVtogether

withthetransitionalquadrupolemomentsandtheB(E2)

values. ThediagonalmatrixelementsaregiveninTable

VI together with the dedu ed stati and spe tros opi

quadrupole moments. The M1matrix elements forthe

mixed transitions between states of the same spin and

parityareshowntogetherwiththe orrespondingB(M1)

values in Table VII. All matrix elements are treated

equallyin t;theyareshownseparatelyfor larityofthe

presentation. Theresultsare omparedtotheoreti al

al- ulations,whi hwillbedis ussedinChapterV. Someof

(10)

TABLE IV: Lifetimes of the relevant states in 76

Kr. The

valuesfromvariousmeasurementsare omparedto are ent

re oil-distan e lifetime measurement [20 ℄ and to the results

from the present Coulomb ex itation experiment with and

without the independentlymeasured lifetimes as additional

inputdatafortheGOSIA tofthematrixelements.

 (ps)(GOSIA) I   (ps) Ref.  (ps)[20 ℄ free onstr. 2 + 1 36.0(10) [18 ℄ 41.5(8) 38.0(22) 41.2(6) 4 + 1 4.9(4) [18 ℄ 3.67(9) 4.4(2) 3.9(1) 6 + 1 0.86(10) [19 ℄ 0.97(29) 0.82(5) 0.76(6) 8 + 1 0.29(3) [19 ℄ 0.25(3) 10 + 1 0.14(2) [19 ℄ 0.15(3) 0 + 2 61.0(80) [17 ℄ 68.3(25) 2 + 2 1.4(2) [13 ℄ 1.6(1) 4 + 2 1.3(4) [14 ℄ 1.3(2) 2 + 3 0.47(5)

someofthe higher-lyingstates ouldnotbeestablished

withinmeaningfulerrorsandareomittedinTablesVand

VI. Neverthelesstheyentered intothe 2

minimization.

ThesameistrueforsomeoftheM1matrixelementsof

thetransitionsbetweenstatesofthesamespin.

Startingvaluesand signsofthematrixelementshave

beensystemati ally hangedintheinitializationofthe t

and alsoduring theminimization pro edure in order to

avoidtrappinginlo al 2

minima. Thesignsofthe

tran-sitionalmatrixelementsarerelative. Multiple

ombina-tionsof signs anresult in exa tlythesame population

of the states. Positive signs were hosen for the

tran-sitional matrix elements in the ground-state band and

other in-bandtransitions. The signsof allother

transi-tional matrixelements aredetermined relativeto these.

Thesignsofthediagonalmatrixelementsareobservables

and annot be hosen. Changing the signof anyof the

diagonalmatrixelementsshowninTableVIresultsina

higher 2

valueofthe t. Inaddition,therelativephases

ofthetransitionalmatrixelementsbetweenthedi erent

0 +

and 2

+

stateswere investigated. Changing the sign

ofa losedloopofthree matrixelements

P 3 (I  1 ;I  2 ;I  3 )= hI  1 kM(E2)kI  2 ihI  2 kM(E2)kI  3 ihI  3 kM(E2)kI  1 i

always resulted in a higher  2

value, showing the

sen-sitivity to thesigns ofthe transitionalmatrixelements.

On theother hand,the signsof thediagonal matrix

el-ementsremained the samewhen the signof P 3

was

in-verted,showingtherobustnessofthe tforthediagonal

matrixelements. As an example,the 2

in reasesfrom

1.7to 13 (afterminimization) when hangingthephase

P 3 (0 + 2 ;2 + 1 ;2 + 2

)frompositivetonegative.Inthat asethe

diagonalmatrixelementsforthe2 + 1 and2 + 2 states hange

from-0.9to-0.6ebandfrom-1.0to-0.5eb,respe tively.

Tofurtherillustratethesensitivityofthe ttothe

di-agonalmatrix elements, the  2

variation is shown asa

fun tion ofthe diagonalmatrixelements forthe2 + ,4 +

-3

-2

-1

0

1

2

< I || M(E2) || I > (eb)

1

1.1

1.2

1.3

1.4

1.5

χ

2

2

3

+

2

1

+

4

1

+

FIG.10: Normalized 2

urvesasafun tionofthe diagonal

matrixelementsofthe2 + 1 ,4 + 1 ,and2 + 3 statesin 76 Kr.Onlythe

onematrixelementinquestionwasvariedinthe al ulation

ofthe -rayyieldsinordertoillustratethesensitivityofthe

 2

ttothismatrixelement.

and2 +

3

states in Fig.10. In order to nd these  2

val-uesonlytheonediagonalmatrixelementinquestionwas

varied,andthe -rayyieldswere al ulatedfromthe

en-semble ofall matrixelements. The 2

fun tions forthe

di erentstates are normalizedto thesame valuein

or-dertoallowaquantitative omparisonoftheirbehavior.

The

2

urvesresulting from the variation of the

diag-onalmatrixelements for the2 +

1

and 4

+

1

statesare very

narrow,showingthatthe tisverysensitivetothese

ma-trixelements,whi hhave onsequentlyarelativelysmall

un ertainty. The urve for the2 + 3

stateis mu h wider,

so that this matrix element is less well de ned and the

error is larger. It should be noted, however, that this

one-dimensionalvariationof the matrixelements serves

onlythepurposeofillustratingthesensitivityofthe t.

To ndthevaluesanderrorsofthematrixelements,all

matrixelementsarevariedinamulti-dimensional t

in- ludingafullerroranalysis ofthe orrelatedparameters

[22℄.

Both the angular distribution of the rays and the

deorientationofthe nu learalignmenthaveto betaken

intoa ountin the 2

minimization ofthe -rayyields.

Thedeorientationis due to theintera tion betweenthe

re oilingnu leusand u tuatinghyper ne elds reated

by atomi ele trons. The e e t attenuates the angular

distribution of the rays. The omplex deorientation

e e t is treatedin asimplifying phenomenologi al

two-statedeorientationmodel [23, 24℄. Themost important

parametersinthismodelarethespinandlifetimeofthe

state,aswellasitsgyromagneti fa tor. Whilethe

life-timesof the states areeither takenfrom a

omplemen-tarymeasurementor omedire tlyoutoftheGOSIA t,

theg fa torsaremostlyunknown. Inthese asesthe

g-fa tor valuesfrom the general approximation g = Z =A

anbeused, eventhoughthere anbesigni ant

(11)

TABLE V: Redu ed E2 matrix elements for in-band and inter-band transitions in 76

Kr. The dedu ed B(E2) values are

omparedtotheoreti alresults.

I  1 I  2

hI2kM(E2)kI1i(eb) Q

t 0

(eb) B(E2;I1!I2)(e

2 b 2 ) Skyrme[21 ℄ Gogny 2 + 1 0 + 1 0 :849 +0:006 0:006 2:69 +0:02 0:02 0.144 +0:002 0:002 0.202 0.117 4 + 1 2 + 1 1 :49 +0:01 0:01 2:94 +0:03 0:03 0.247 +0:006 0:006 0.281 0.234 6 + 1 4 + 1 1 :90 +0:11 0:03 2:98 +0:17 0:06 0.28 +0:03 0:01 0.39 0.30 8 + 1 6 + 1 2 :25 +0:16 0:10 3:02 +0:22 0:14 0.30 +0:05 0:03 0.44 10 + 1 8 + 1 2 :19 +0:22 0:14 2:60 +0:26 0:15 0.23 +0:05 0:03 2 + 3 0 + 2 0 :87 +0:04 0:02 2:77 +0:12 0:07 0.15 +0:01 0:01 0.04 0.08 4 + 2 2 + 2 0 :89 +0:10 0:13 1:77 +0:20 0:26 0.09 +0:02 0:03 0.11 2 + 3 0 + 1 0 :121 +0:004 0:005 0.0029 +0:0002 0:0002 0.0033 0.0002 2 + 2 0 + 1 0 :183 +0:008 0:006 0.0067 +0:0005 0:0004 0.0010 0 + 2 2 + 1 0:490 +0:011 0:008 0.241 +0:011 0:009 0.0001 0.234 2 + 3 2 + 1 0:200 +0:009 0:008 0.0080 +0:0007 0:0007 0.0829 0.00006 2 + 2 2 + 1 0:09 +0:04 0:04 0.002 +0:002 0:002 0.148 4 + 2 2 + 1 0 :09 +0:01 0:19 0.0010 +0:0003 0:0010 0.0015 2 + 3 4 + 1 0 :52 +0:05 0:05 0.055 +0:012 0:010 0.095 0.049 2 + 2 4 + 1 0:62 +0:04 0:05 0.079 +0:014 0:014 0.023 4 + 2 4 + 1 0 :43 +0:03 0:03 0.021 +0:003 0:003 0.076 2 + 2 0 + 2 1 :22 +0:08 0:04 0.30 +0:04 0:02 0.025 2 + 3 2 + 2 0 :81 +0:10 0:24 0.13 +0:03 0:07 0.04

TABLEVI:Diagonal matrixelementsfor 76

Kr. Thededu edintrinsi andspe tros opi quadrupolemomentsare ompared

totheoreti alvalues. I  hIkM(E2)kIi(eb) Q s 0 (eb) Q s

(eb) Skyrme[21 ℄ Gogny

2 + 1 -0.9 +0:3 0:3 2.5 +0:8 0:8 -0.7 +0:2 0:2 -0.78 -0.50 4 + 1 -2.3 +0:4 0:4 4.7 +0:8 0:8 -1.7 +0:3 0:3 -1.25 -0.85 6 + 1 -2.9 +0:4 0:4 5.1 +0:7 0:7 -2.0 +0:3 0:3 -1.44 -1.01 2 + 3 1.3 +0:5 0:5 -3.4 +1:3 1:3 1.0 +0:4 0:4 0.25 0.04 2 + 2 -1.0 +0:5 0:5 -2.6 +1:3 1:3 a -0.7 +0:3 0:3 0.26 a

assumingK=2,oppositesignin aseofK=0

TABLE VII: Redu ed M1 matrix elements between states

of the same spinand parity and the orresponding B(M1)

values. I  1 I  2 hI2kM(M1)kI1i(N) B(M1;I1!I2)( 2 N ) 2 + 2 2 + 1 -0.42(1) 0.035(2) 4 + 2 4 + 1 -0.39(3) 0.017(3)

state. The gfa tor ofthe2 +

1

statein 76

Krwasre ently

measuredtobeg=+0:37(11)[25℄. Thein uen eoftheg

fa torandthedeorientatione e tonthematrixelements

wasinvestigatedby omparingtheresultsobtainedusing

themeasuredgfa torwiththoseusingg =Z =A=0:47,

orignoringthedeorientatione e tentirely. Nodi eren e

wasfoundfor thetransitional matrixelementswhen

in- luding the deorientation e e t ornot, and when using

Z =Aorthemeasuredvalue. Thediagonalmatrixelement

ofthe2 +

1

statedi eredby8%whenthedeorientationwas

notin luded in the al ulation. Thedi eren e between

using g = 0:37 and g = 0:47, however, was negligible.

Consequently, theapproximationg =Z =A wasused to

modelthedeorientatione e t forthehigher-lyingstates in

76

Krandforallstatesin 74

Kr.

The fa t that the 2 + 3

! 0

+ 2

transition with 918 keV

annot be fully resolved from the 4 + 2 ! 4 + 1 transition

with923 keV requires parti ular attentionfor the

eval-uationof the respe tive matrixelements. It is possible

toin lude su h doubletsin theGOSIA analysisbyonly

xingthesumofboth -rayintensitiesratherthanusing

the individual ones. This results ne essarily in less

a - uratevaluesfor the matrixelements. Thetransitional

matrixelements that are foundwithout any further

as-sumptions about the doublet show that the transition

strengthforthe2 + 3

!0

+ 2

transitionismu hhigherthan

forthe4 + 2 !4 + 1

transition. Inadditiontothat,the

pop-ulation of the 4 +

2

state is expe ted to be mu h weaker

thanforthe2 +

3

state,be auseitrequiresatleasta

two-stepex itation,while therather olle tive2 + 3

stateat a

similarex itation energy anbe rea hed in one step. If

the 4 + 2

state were populated, not only its de ay to the

4 +

1

state,butalsothe736keVtransitiontothe2 +

2 state

should beobserved. This bran hing ratio wasreported

tobe0.56[13℄ and 0.82[19℄. Sin ethere is no

onvin -ingeviden einthespe trafora736keVtransition(see

Figs. 2 and 5) it an be assumed that the 4 +

(12)

only weakly populated,if at all, andthat the ontribu-tionof the 4 + 2 !4 + 1

transition to the peak observedat

920 keV an be negle ted. This assumption improves

the a ura y for both the transitional matrix elements

oftherespe tivetransitionsandfor thediagonalmatrix

element of the 2 + 3

state. Followingthis argumentation,

node ayfromthe4 + 2

stateisobserved,and onsequently

thediagonalmatrixelementforthis state annotbe

de-termined.

Thematrix elements of Table V aregrouped into

in-band transitions in the upper part of the table and

inter-band transitions in the lower part. The in-band

transitions omprise all transitions of the ground-state

band and the 2

+ 3 ! 0 + 2 and 4 + 2 ! 2 + 2 transitions (see

Fig. 3). All in-band transitions have large matrix

el-ements, i.e. they are olle tive, as expe ted for

well-deformed rotational bands. The dedu ed B(E2)

val-ues are fully ompatible with those extra ted from the

measuredlifetimes[19,20℄. Thedropofthetransitional

quadrupolemomentsQ

t 0

inthelowerpartofthe

ground-stateband hasbeen interpretedas asign formixing of

prolate and oblate on gurationsin thelow-spin states

[20℄. This interpretation is further supported by the

large matrix elements for some of the inter-band

tran-sitions. The fa t that the0 +

2

state isstrongly linkedto

allthreeobserved2 +

states,ontheotherhand,indi ates

thatagroupingofthestatesintorotationalbandsisnot

straightforward and that the situation might be more

omplexthanthedes riptionwithtworotationalbands

builtonstronglydeformed prolateandoblate states

to-getherwith aquasi-gamma band. Thetransitional

ma-trixelementsallowtodeterminepreviouslyunknown

life-times,forexampleforthe2 + 3

state,ortoimprovethe

pre- isionofpreviouslyknownlifetimes, asissummarizedin

TableIV.

The diagonal matrix elements for the three lowest

statesof theground-stateband and forthe twoex ited

2 +

statesaregiveninTableVItogetherwiththededu ed

stati andspe tros opi quadrupolemoments. The

nega-tivesignofthediagonalmatrixelementsforthestatesin

the ground-state band provestheir prolateshape. The

absolute size of the quadrupole moments de reases

to-wardsthebottom oftheband. Thisshowsthatthe

de-formationforthe2 +

1

stateisindeedsmallerthanforthe

states above. In addition, the values of the stati and

transitionalquadrupolemomentsforthisstatearerather

similar, asexpe tedforarotationalnu leus. Verylarge

stati quadrupolemomentsarefoundforthehigher-spin

states in the ground-state band, whi h di er from the

transitionalquadrupolemoments. Thismightbedueto

apossible ouplingtootherunknownstates,whi h ould

notbetakenintoa ountin theanalysis.

The diagonal matrix element of the 2 + 3

state has a

relatively large un ertainty, mainly be ause no

transi-tionabovethisstatewasobserved. Neverthelessthereis

nodoubt aboutthepositivesignofthematrixelement,

whi h is onsistent with the assumption of an

oblate-TABLEVIII:Bran hingratiosforseveraltransitionsin 74

Kr

measuredafter de ayof 74 Rb[15 ℄. I  i I  f E (keV) I 2 + 2 0 + 1 1202 1 :0 2 + 2 2 + 1 746 0 :73(58) 2 + 2 0 + 2 694 0 :30(35) 2 + 3 0 + 2 1233 1 :0 2 + 3 2 + 1 1285 0 :31(21) 0 + 2 0 + 1 508 1 :0 0 + 2 2 + 1 52 1 :50(36) 0 + 2 2 + 1 52 1 :2(5) a a

Bran hingratiofromRef.[7℄

the0 + 2

statefurther supports theassumption ofa

rota-tional hara ter of the state, so that the asso iation of

the2 + 3

statewithanoblateshapeseemswelljusti ed.

The negative sign of the matrix element for the 2 + 2

stateis morediÆ ultto understand. In aseofa

quasi-gammaband (withK =2), thequadrupole moment in

the body- xed frame Q

s 0

be omes negative, indi ating

an oblate shape, in ontradi tion to the assumption of

a gamma vibration based on the prolate ground state.

Indeed, the oupling of the 2 + 2 state to the 0 + 2 state is

mu h strongerthan thatto thegroundstate. Ifone

as-sumesK =0for the2 + 2

state, the quadrupole moment

Q s 0

be omespositive,indi atingaprolateshape,inwhi h

asetheinterpretationofaquasi-gammabandisalso

ex- luded, besidesthefa t that thereshould beathird 0 +

stateforwhi h there isnoeviden e. Aswasargued

be-fore,thestrong ouplingbetweenallthreebands andin

parti ularbetweenthe 0 + 2

state andall three 2 +

states

blurs a lear separation and grouping into band

stru -tures,aswill bedis ussedin moredetailin se tionV.

C. Matrix elementsfor

74 Kr

The 

2

minimization of the -rayyieldsfor 74

Krwas

performed with 31 E2 and 5 M1 matrixelements

on-ne tingthe knownstatesasshown in Fig.3. As in the

aseof 76

Kr,experimentallyknownbran hingratiosand

lifetimeswereusedasadditionalinputdatainthe tting

pro edure.Thebran hingratiosthatwerere ently

mea-suredafter de ayof 74

Rb[15℄aresummarizedinTable

VIII. Thede ayofthe0 + 2

staterepresentsaspe ial ase

be ausetheE0bran htothegroundstatepro eeds

ex- lusively via onversionele tronsand the E2 bran h to

the2 +

1

statehasverylowenergyandis onsequentlyalso

highly onverted. Eventhough theCoulomb ex itation

experimentwasnotsensitiveto onversionele trons,the

de ay of this state with its bran hing ratio and partial

lifetimes[7℄ anneverthelessbeusedto onstrainthe t.

Nomixing ratiosareknownin 74

Kr.

Lifetimes in 74

Kr have been measured for the 2

+ 1

and4 + 1

(13)

TABLEIX:Lifetimesofstatesin 74

Kr. Thevaluesfrom

vari-ousmeasurementsare omparedtoanewre oil-distan e

life-timemeasurement[20 ℄ andto theresultsfromthe Coulomb

ex itation experiment with and without the lifetimes from

Ref.[20 ℄as omplementaryinputdata.

 (ps)(GOSIA) I   (ps) Ref.  (ps)[20℄ free onstr. 2 + 1 23.5(20) [26 ℄ 33.8(6) 29.6(2.1) 33.8(6) 4 + 1 13.2(7) [27 ℄ 5.2(2) 5.9(5) 5.3(2) 6 + 1 1.08(14) [29 ℄ 1.09(23) 1.4(5) 1.01(9) 8 + 1 0.35(5) [29 ℄ 0.32(6) 10 + 1 0.16(3) [29 ℄ 0.16(3) 0 + 2 33.8(50)10 3a [7℄ 36.2(43)10 3a 2 + 2 2.0(2) 0 + 3 0.09(2) a a

PartiallifetimeofE2bran htothe2 + 1

state.

higher-lyingstatesoftheground-stateband[26,28,29℄.

Thelifetimeoftheisomeri 0 +

2

statewasestablishedina

onversion-ele tronmeasurement[7℄. Thelifetimevalues

aresummarizedintable IX.

Before using the literature values for the lifetimes as

omplementaryinputinthe ttingpro edure,their

on-sisten ywiththeCoulombex itationdatawasexamined.

Theresults,alsogiveninTableIX,showastrong

devia-tionfrom thevaluesreportedin Ref.[26,27℄. Espe ially

the lifetime of the 4 + 1

state is found to be signi antly

shorter than previously reported. On the other hand,

usingthelifetimesofthe2 +

1 and4

+

1

statesintheGOSIA

tinordertoenhan ethesensitivitytothediagonal

ma-trixelementsisevenmoreimportantin 74

Krthanitwas

in 76

Kr,asthelevelofstatisti sismorelimited.

The in onsisten y between the earlier lifetime

mea-surementsandthe Coulomb ex itation data anbe

fur-ther investigated by omparing the experimental -ray

intensities as a fun tion of s attering angle with those

al ulatedfrom the matrixelementsobtainedusing the

lifetimes. This is shown in Fig.11 for the 2 + 1 !0 + 1 and 4 + 1 !2 + 1

transitions. The data points represent the

ob-served -rayintensitiesnormalizedbythenumberof

s at-tered proje tiles for several angularranges. The

un er-taintiesarelargeforsmallanglesbe auseofdire tbeam

hitting the innermost dete tor rings. The dashed lines

showthe -rayyields al ulatedfromthefullset of

ma-trixelementsobtainedina tthatwas onstrainedbythe

lifetimes reportedbyTaboretal.forthe2 + 1

[26℄andby

Rothetal.forthe4 +

1

state[27℄. Therangeofs attering

angles for this omparison was limited to small values

 m

< 70 Æ

, where higher-order e e ts and in

parti u-larthein uen e ofthediagonalmatrixelementsare

ex-pe tedtobesmall,sothatthis omparisonof -rayyields

representsarelatively leantestoftheB(E2) strengths

and of the lifetimes of the respe tive states. The fa t

that the -ray yields annot be reprodu ed

simultane-ouslyforbothtransitionsshowsthat theCoulomb

ex i-20

30

40

50

60

70

θ

c.m.

(deg)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N

γ

/ N

Kr

2

1

+

4

1

+

old τ

new τ

FIG.11: Gamma-rayintensitiesnormalizedbythenumberof

s atteredproje tilesasafun tionofthe enter-of-mass

s at-tering angle for the 2 + 1 and 4 + 1 statesin 74 Kr. The dashed

lines show the -ray yields al ulated from the matrix

ele-mentsthat wereobtained using the lifetimes of the 2 + 1 [26 ℄ and4 + 1

states[27 ℄intheGOSIA t. Usingthelifetimesfrom

Ref.[20 ℄insteadresultsinthefulllines.

inRef.[26, 27℄.

Thisin onsisten y, whi h makesthedetermination of

thediagonal matrix elements diÆ ult, prompted anew

re oil-distan elifetime experimentwith mu h improved

pre ision [20℄. The new measurement found slightly

longer and shorter lifetimes for the 2 + 1 and 4 + 1 states,

respe tively,thanexpe tedfromtheCoulombex itation

data,butespe iallytheresultforthe4 +

1

stateisdeviating

signi antlyfromthevaluereportedbyRothet al.[27℄.

Possible reasonsforthis are dis ussedin Ref. [20℄. The

new results are ompared to the earlier measurements

andto the resultsfrom the Coulomb ex itation data in

Table IX. When the lifetimes of the new measurement

areusedintheGOSIA t,thein onsisten iesdisappear.

The -rayyields al ulatedfromthere-evaluatedmatrix

elementsbasedonthenewlifetime resultsareshownas

fulllinesinFig.11. Eventhoughthenewlifetimes have

small un ertaintiesand leave verylittle roomfor

varia-tionsofthe al ulated -rayyieldsintheshownangular

range, the agreement is ex ellent, whi h shows the full

onsisten ybetweenthere oil-distan eandtheCoulomb

ex itationmeasurements.

Using the new pre ise lifetimes in the GOSIA

anal-ysis enhan es the sensitivity to the higher-order e e ts

signi antly, so that many more transitional matrix

el-ementsbetweenhigher-lyingstatesandseveraldiagonal

matrix elements ould be determined. The results for

thetransitionalmatrix elements aresummarized in

Ta-ble X; those for the diagonal matrix elements and the

stati quadrupole moments an be found in Table XI.

Thein onsisten ywiththepreviouslyreportedlifetimes

illustratesageneraldiÆ ulty that anarisein Coulomb

ex itation experiments with weak radioa tive beams of

(14)

deter--3

-2

-1

0

1

2

< I || M(E2) || I > (eb)

1

1.1

1.2

1.3

1.4

1.5

χ

2

2

2

+

2

1

+

4

1

+

FIG.12: Normalized 2

urvesasafun tionofthediagonal

matrixelementsofthe2 + 1 ,4 + 1 ,and2 + 2 statesin 74 Kr. Onlythe

onematrixelementinquestion wasvariedinthe al ulation

ofthe -rayyieldsinordertoillustratethesensitivityofthe

 2

ttothismatrixelement.

alone,andwhereatthesametimethea essto

spe tro-s opi informationwith omplementarymethodsis

diÆ- ult.

ToillustratethesensitivityoftheCoulombex itation

analysis to the diagonalmatrix elements,  2 urves for the2 + 1 ,4 + 1 ,and 2 + 2

statesareshown in Fig.12as

fun -tions of the diagonal matrix elements of the respe tive

states. The urves are normalized in exa tly the same

wayasin Fig.10 toallow adire t omparison. The  2

minimaarewiderthaninthe 76

Kr ase,whi hismostly

due to the lower level of statisti s in the 74

Kr

experi-ment. Againitshouldbenotedthatthese urves annot

beusedforanerroranalysis,asonlyonematrixelement

wasvariedatatime,whiletheun ertaintiesgivenin

ta-bles X and XI are based onthe simultaneous t of the

orrelatedmatrixelements.

The high level of statisti s for the transitions in the

ground-statebandallowsextra tingthe -rayintensities

for smallerangular binsthan the four rangesthat were

usedin theGOSIA analysis(see TableII). The

intensi-tiesofthe4 + 1 !2 + 1 andthe6 + 1 !4 + 1

transitionsareshown

intheupperpartofFig.13asfun tionsofthes attering

angle. Theintensitiesarenormalizedtothe2 + 1 !0 + 1

tran-sitioninordertominimizethesystemati errorsfromthe

eÆ ien iesof thegermaniumand sili ondete tors. The

full lines orrespond to the -ray intensities al ulated

fromthe ompletesetofmatrixelementsfoundinthe 2

minimization (see Tables X and XI). Even though the

matrixelements wereextra ted fromthe -rayyieldsof

only four angular ranges, the agreementwith the more

detailedanalysisisremarkableandshowsthe onsisten y

of the analysis. The dashed line results from inverting

thesignofthediagonalmatrixelementsforthestatesof

theground-stateband. Theinversionof thesignsleads

toadisagreementespe iallyforthelarge enter-of-mass

Center-of-Mass Scattering Angle (deg)

20

40

60

80

100

120

140

Intensity

0

0.1

0.2

0.3

0.4

0.5

0.6

)

+

1

0

+

1

(2

γ

I

)

+

1

2

+

1

(4

γ

I

)

+

1

0

+

1

(2

γ

I

)

+

1

4

+

1

(6

γ

I

prolate

oblate

Center-of-Mass Scattering Angle (deg)

20

40

60

80

100

120

140

Intensity

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

)

+

1

0

+

1

(2

γ

I

)

+

1

2

+

2

(2

γ

I

FIG.13: Gamma-rayyields asafun tionofs atteringangle

for the4 + 1 !2 + 1 ,6 + 1 !4 + 1 (top)and2 + 2 !2 + 1 (bottom) transi-tionsin 74 Krnormalizedtothe2 + 1 !0 + 1

transition. Thelines

representthe orrespondingyieldsbasedonthefullsetof

ma-trixelements. The dashedline in theuppergraphresulted

fromaninversionofthesignsofthediagonalmatrixelements

forthestatesintheground-stateband.

loseapproa h of proje tile and target, while the small

s attering angles are mostly sensitive to the rst-order

ex itationpro ess,i.e. tothe B(E2) values, aswas

dis- ussedin the ontextofFig.11. Thedi eren ebetween

the yields al ulated for di erent signs of the diagonal

matrixelementsillustratesthesensitivityofthe

measure-mentto the reorientation e e t. Again, this annot be

used for a quantitative analysis, be ause only some

se-le ted matrix elements were arbitrarily hanged, while

both the transitional and thediagonal matrix elements

ofthenon-yraststateswerekeptun hanged. These ond

graphshowsthe equivalent plot for the 2 + 2 !2 + 1

transi-tion,alsonormalizedto the2 + 1 !0 + 1 transition. Be ause

theyield issmaller forthis transition, the intensity has

to be divided into fewer and wider angular bins. The

agreementwiththe yield al ulatedfrom thematrix

el-ementsisyetanotherexampleforthe onsisten yofthe

analysis.

ThetransitionalmatrixelementsinTableXareagain

Figure

FIG. 2: Total -ray spetrum in logarithmi sale after
FIG. 3: Partial level shemes of 74
FIG. 5: Spetra after Coulomb exitation of 76
FIG. 8: Spetra from the 74
+7

Références

Documents relatifs

Moreover, it is interesting to note that the neutron and proton orbitals present in the con guration of the spherical isomer and in the deformed band of these odd-odd nuclei

In order to estimate the spurious shell effects due to the unbound neutrons, we simulate an homogeneous gas of neutron matter in W-S cell by removing all the proton states.

Depending on the strength of the quadrupole correlations induced by the cross shell ex- citations either the spherical normal configuration, or the deformed one, becomes the

The experimental setup consists of three traps: A linear Paul trap, a preparation Penning trap for beam cooling, and isobaric separation and a precision Penning trap for the

1: (color online) Neutron specific heat divided by the temperature in the three shallow layers calculated with the band theory (solid thick line) and with different approxima-

In this section we present the potential energy surfaces (PES) for several platinum isotopes from A = 182 to 204; the phase diagram for the entire chain is presented in the

The new ISOLTRAP mass value with a slightly smaller uncertainty than that of the previous mea- surements deviates by 0.7 σ from the AME’95 value, but the three most precise of the

The flat pattern indicates the γ-vibrational band, while the staggering pattern with low values at even and odd J indicates the γ-soft and rigid triaxial rotor, respectively, [4].