• Aucun résultat trouvé

Study of $e^+e^-$ collisions with a hard initial state photon at BABAR

N/A
N/A
Protected

Academic year: 2021

Partager "Study of $e^+e^-$ collisions with a hard initial state photon at BABAR"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: in2p3-00024204

http://hal.in2p3.fr/in2p3-00024204

Submitted on 3 Jun 2005

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

at BABAR

M. Davier

To cite this version:

M. Davier. Study of e

+

e

collisions with a hard initial state photon at BABAR. Tau Lepton Physics

(2)

Study of e +

e ollisions with a hard initial state photon at BABAR

Mi helDavier

a

E-mail: davierlal.in2p3.fr

a

Laboratoiredel'A elerateurLineaire,IN2P3/CNRS-UniversitedeParis-Sud,

BP34,91898Orsay,Fran e

Astudyofseveral3-and4-bodyhadroni nalstates(

+   0 , +   +  ,K + K  +  andK + K K + K )

a ompaniedbyahardphotonispresented. These statesareprodu edfrome

+

e ollisionsatthe .m. energy

nearthe(4S)resonan eusinga90fb

1

datasample olle tedwiththeBABAR dete toratthePEP-II ollider.

The invariant mass of the hadroni nal state determinesthe virtual photon energy, so that the data an be

omparedwithdire te

+

e rossse tions. Crossse tionshavebeenobtainedfromthresholdupto4.5 GeVwith

systemati errorsat the5% level. The a ura yofthe results is omparable withthe bestdire te

+

e results

overall,but a hievesamu hbetter pre ision in1.4-2.5GeV region where dataare sparse. In additionto light

mesonspe tros opythesedata anbeusedtoimprovethedeterminationofR{theratioofe

+ e !hadrons ross se tiontoe + e ! +

 {andtherebytoimpa ttheunderstandingofthere ent(g 2)measurementthrough

abetterevaluationofthehadroni va uumpolarization ontribution.TheISRte hniquealsogivesa esstoJ=

produ tionandallowsonetomeasurebran hingratiosinto3-and4-body nalstatesaboveatalevelofpre ision

thatistypi allybetterthanthatobtainedinthe ombinedearlier measurements.

1. Introdu tion

The possibility of using the initial state

ra-diation (ISR) of hard photons at B-fa tories to

study hadroni nal state produ tion at lower

e +

e .m. energies has been dis ussed

previ-ously [1-3℄. The interest in this kind of study

has been in reasing be ause of the dis repan y

betweenthemeasuredmuon g 2valueandthe

predi tionwithintheStandardModel[4,5℄,where

thehadroni va uumpolarization ontributionis

evaluated using data from e

+

e experiments at

low energies. The study of ISR events at

B-fa tories anprovide independentmeasurements

ofhadroni rossse tionsaswellas ontributeto

hadroni spe tros opy.

TheISR rossse tionforaparti ular nalstate

f dependsone + e rossse tion f (s)andis ob-tainedfrom: d(s;x) dx =W(s;x) f (s(1 x)); (1) where x = 2E = p s, E

is the energy of the

ISR photonin thenominal .m. frame with

to-tal energy

p

s,and s

0

=s(1 x) isthesquareof

W(s;x)des ribestheenergyspe trumofthe

vir-tual photons and an be al ulated with better

than 1% a ura y [1-3℄. ISR photons are

pro-du ed at allangles relative to the ollision axis.

TheBABARa eptan efor su h photonsat

rela-tivelylargeangles(typi ally20-144

Æ

inthe

labo-ratoryframe)isaround10-15%:

An advantagederiving from the use of ISRis

that theentire rangeof e e tive ollisionenergy

iss annedinoneexperiment. Thisavoidsthe

rel-ativenormalizationun ertaintieswhi h anarise

when data from di erent experiments are

om-bined. Adisadvantageisthattheinvariantmass

resolution is alimit whenstudying narrow

reso-nan es.

A omprehensive program is under way at

BABAR to measure all hadroni pro esses in the

fewGeVrange. Whilethe

+

 hannelrequires

moresystemati studiesinordertorea hthe

in-teresting1%(orbetter)level,someresultsare

al-ready available for2-and 3-bodypro esseswith

lower ross se tions. They are presented in this

ontribution.

(3)

de- f J= (s)= 12 2 ee B f m J= s W(s;x); (2) withx=1 m 2 J=

=s,isproportionaltothe

prod-u t ee B f or B ee B f where and B ee , B f

are the total width and bran hing fra tions

of J= into e

+

e andf. The invariantmass of

the nal parti les determinestheposition ofthe

J= peakandadete tormassresolution8MeV

an be a hieved by using a kinemati t.

Pre-liminarystudiesofsomeparti ularISRpro esses

havebeenperformed(seeRef.[6-8℄)showinggood

BABARdete tor[9℄eÆ ien yandparti le

identi - ation apabilityforthesetypesofevents. Signal

and ba kgroundISRpro essesaresimulated

us-ingMonteCarlo(MC)eventgeneratorsbasedon

omputer odes des ribed in Ref. [10-13℄. Also

simulated were generi ba kground from

quark-antiquark and  pro esses using JETSET [14℄

andKORALB[15℄pa kages.

2. Three-body nal state: 

+

 

0

Theinitialsele tionofe

+ e ! +   0

an-didates requires that all the nal parti les are

dete ted inside a du ial volume. One of the

photonsisrequiredtohaveanenergyinthe .m.

frameabove3GeV.Twoofthetra ksmust

origi-natefromtheintera tionpoint,haveatransverse

momentum above 100 MeV/ with no kaon-ID

andbeinthegoodregionofdete tora eptan e.

Thephotonwithgreatest .m. energyisassumed

to be the ISR photon. The remaining photons

arepairedtoform andidate

0

s. Akinemati t

isapplied tothesele tedevent,imposingenergy

and momentum onservation, and onstraining

the andidate 

0

invariant mass. Analysis

de-tails anbefound in Ref. [8℄. The 3 invariant

massdistributionoftheeventsafterba kground

subtra tion was t with a sum of ex itation

urves des ribing !(782);(1020);!(1420) and

!(1650)resonan es. Relativephasesfor !(1420)

and !(1650) are xed at 0 and . The

result-ing parameters obtained from the t (Fig. 1,

 2

=dof=146=148)arethefollowing:

B !ee B !3 = (6:700:060:27)10 5 (3) B ! 0 ee B ! 0 3 = (0:820:050:06)10 6 M ! 0 = (13502020)MeV/ 2 ! 0 = (4507070)MeV/ 2 B ! 00 ee B ! 00 3 = (1:30:10:1)10 6 M ! 00 = (1660102) MeV/ 2 ! 00 = (2303020)MeV/ 2 (4)

The tted masses and widths of the !

0 and

! 00

mesons are model dependent but

neverthe-less anbe omparedwiththeestimatesofthese

parameters by the PDG [16℄: M ! 0 = 1400 1450MeV/ 2 , ! 0 =180 250MeV/ 2 , M ! 00 = 1670 30MeV/ 2 , ! 00 = 315 35MeV/ 2 .

The PDG data are based on small data

sam-ples for e + e ! ! 0 ;! 00 ! 3; ! [21,20,23℄, pp!! 0  0 !! 0  0  0 [17℄,and  p!! 00 n!

!n [18℄ rea tions. We presenta new

measure-ment of the !

0

and !

00

parameters based on a

signi antly largerdata sample for the e

+ e ! ! 0 ;! 00

! 3 rea tion. From the measured

val-ues of B(V ! e + e )B(V ! 3), the ele troni widthsof! 0 and! 00 anbeestimated. Assuming that B(! 0 !3)1and B(! 00 !3)0:5we derivethat (! 0 !e + e )370eVand (! 00 ! e +

e )570eV.Thelargevaluesofthesewidths,

omparable with (! ! e

+

e )  600 eV, are

in disagreement with expe tations of the quark

model,whi hpredi tsatleastoneorderof

magni-tudelowervaluesfortheele troni widthsforthe

ex itedmesonstates(see,forexample,Ref.[19℄).

Thee + e ! +   0

rossse tioninthe

1.05-3.0 GeV=

2

regionis presentedin Fig.2. Itis in

agreementwiththe SNDdata [20℄,but itshows

alargedis repan ywiththeDM-2[21℄

measure-ment.

It is interestingto plug these new resultsinto

the dispersion integral yielding the

orrespond-ingva uumpolarization ontributiontothemuon

anomalous magneti moment. In order to

om-pare withprevious al ulations[4℄usingexisting

data,theenergyinterval1.055to1.8GeVis

ho-sen. The urrentvalue[4℄is

(4)

M

3

π

(GeV/c

2

)

events/(2.5 MeV/c

2

)

0

500

1000

1500

0.8

0.9

1.0

M

3

π

(GeV/c

2

)

events/(25 MeV/c

2

)

0

100

200

300

1.2

1.4

1.6

1.8

Figure1. Theba kground-subtra ted3massspe trumformassesbetween0.70and1.05 GeV=

2 (left)

andformassesfrom 1.05to1.80 GeV=

2

(right). The urvesaretheresultofthe t.

M

3

π

(GeV/c

2

)

Cross section (nb)

0

2

4

6

8

1.5

2

2.5

3

Figure2. Thee + e ! +   0

rossse tionmeasuredinthiswork( lled ir les),bySND(open ir les),

(5)

0

10

20

30

1000

1500

2000

ND

CMD

SND

DM1

GG2

DM2

CMD2

CMD2

BaBar

E

C.M.

(MeV)

σ

(e

+

e

-

2

π

+

2

π

-

) (nb)

Figure3. Thee + e ! +   +  rossse tion

obtainedfromISRatBABAR in omparisonwith

existinge

+

e data.

whilethenewestimateusingonlythenewBABAR

data yields a larger and more pre ise

ontribu-tion, a had  =(3:310:13 exp 0:03 rad )10 10 (6)

3. Four-body nal states: 

+   +  , K + K  +  and K + K K + K

Event andidates were required to have four

good hargedtra ksand ahardphotonassumed

tobefromISR.Hadronidenti ationinBABAR is

used to separate harged pions from kaons and

identify the di erent 

+   +  , K + K  +  andK + K K +

K nal statesisdes ribed.

Fig-ure3presentstheobtainede

+ e ! +   + 

ross se tion in omparison with all existing

e +

e data. The estimated systemati error is

about5%.

Againwe anexaminetheimpa tofthesenew

resultsonthe al ulationofhadroni va uum

po-larization. Thehadroni ontributionto(g 2)



fromthe

+

 

+

 hannel[4℄,evaluatedusing

+ a had;ee  = (14:210:87 exp 0:23 rad )10 10 (7) a had;  = (12:350:96 exp 0:40 SU2 )10 10 (8)

The  evaluation is less pre ise in this hannel

sin eitisbasedonthemeasurementofthe

spe -tral fun tion inthe !

 3

0

de aymode,

in-volvingthere onstru tionofthree

0

de ays.

Evaluating the same ontribution with the

BABAR datain thisenergyrangegives

a had  =(12:950:64 exp 0:13 rad )10 10 (9)

whi hshowsthepotentialofISRmeasurements.

Figure 4 shows the obtained ross se tions

for K + K  +  and K + K K + K nal states.

Thesystemati normalizationerrorsare15%and

25%, omingessentiallyfromtheun ertaintiesin

thedynami susedintheMonteCarloevent

gen-erators. respe tively.

4. Three- and four-bodyJ= de ays

TheinvariantmassofthreepionsfromJ=

de- ays is shown in Fig. 5(top). From about 900

events after ba kground subtra tion the

follow-ingprodu t anbedetermined:

(J= !e

+

e )B(J= !3)=(12258)eV(10)

Thesystemati errorin ludestheun ertaintieson

thedete tioneÆ ien y,theintegratedluminosity,

andtheradiative orre tion. Usingthe (J= !

e +

e )measurementobtainedbyBABAR[7℄from

the study of e

+

e ! J= with J= !

+

 ,

theJ= !3bran hingfra tionis al ulatedto

be

B(J= !3)=(2:180:19)% (11)

whi hisinsubstantialdisagreement(3)with

the world average value [16℄ of (1:470:13)%,

but agrees withthere entresult fromBES [22℄:

B(J= !3)=(2:100:12)%.

Figure 5 shows the J= and (2S) signals

( ontaining27020and 62025observedevents

respe tively) in the four- harged-tra k invariant

massspe trum. Thelattersignaloriginatesfrom

the pro ess (2S)!J= 

+

 !

+

(6)

0

2

4

6

1

2

3

4

- DM1

- BaBar ISR

E

C.M.

(GeV)

σ

(K

+

K

-

π

+

π

-

) (nb)

0

0.05

0.1

0.15

0.2

2

3

4

E

C.M.

(GeV)

σ

(K

+

K

-

K

+

K

-

) (nb)

Figure 4. Thee + e !K + K  +  (left)and K + K K +

K (right) ross se tionsobtainedfrom ISR

atBABAR in omparisonwithe

+ e data.

M

3

π

(GeV/c

2

)

events/(2.5 MeV/c

2

)

0

25

50

75

100

2.9

3

3.1

3.2

3.3

0

100

200

3

3.5

4

4.5

m(

π

+

π

-

π

+

π

-

) (GeV/c

2

)

Events/0.01 GeV/c

2

Figure 5. The signalsfrom J= and (2S) in 3(left)and 4(right) nalstates. Theshaded regionat

thelatter orrespondsto (2S)!J= 

+

 ,withJ= !

+

(7)

0

25

50

75

100

3

3.05

3.1

3.15

3.2

m(K

+

K

-

π

+

π

-

) (GeV/c

2

)

Events/0.0067 GeV/c

0

5

10

15

3

3.05

3.1

3.15

3.2

m(K

+

K

-

K

+

K

-

) (GeV/c

2

)

Events/0.005 GeV/c

Figure6. Thesignalsfrom J= de aysintoK

+ K  +  (left)andK + K K +

K (right) nal states.

pairof hargedparti les(shadedhistogram)tobe

onsistent with the J= mass. By using

dete -tion eÆ ien y from simulation and the e e tive

ISRluminositythefollowingprodu tshavebeen

obtained: B J= !4  J= ee =(19:51:41:3)eV, B (2S)!J=  +  B J= !2  (2S)ee = (45:01:82:2) eV.

Using the world averages value for (J= !

e + e ), (2S)!e + e and B J= !2 wederivethe valuesB J= !4 =(3:700:270:36)10 3 and B (2S)!J=  +  =0.3610.0150.037. Figure6

shows the J= signals in the K

+ K  +  and K + K K +

K nal states, where 23319 and

38.56.7eventshavebeenobservedrespe tively.

Usingthedete tioneÆ ien yobtainedfrom

sim-ulation andthe e e tive ISRluminosity the

fol-lowingprodu tshavebeenobtained:

B J= !2K2  J= ee = (32:92:72:7)eV(12) B J= !4K  J= ee = (3:60:60:5)eV(13) (14)

Usingtheworldaveragevaluefor (J= !e

+

e )

wederivetherelativede ayrates

B = (6:250:500:62)10 3 (15) B J= !4K = (6:91:21:1)10 4 (16) 5. Con lusion

A numberof ISR pro esseshavebeenstudied

with a 90 fb

1

data sample in the BABAR

de-te tor, utilizing the ex ellent dete tor eÆ ien y

and parti le identi ation apabilities of the

de-te tor. The e + e !  +   0 , and preliminary  +   +  , K + K  +  , K + K K + K ross

se tions overtheentire massrangefrom

thresh-old to 4.5 GeV in the e

+

e .m. system with

systemati normalization errors that are similar

to those a hived by thebest e

+

e experiments

over amu h smaller mass region. Radiative

re-turntotheJ= resonan eallowsonetomeasurea

numberofbran hingfra tions signi antlymore

pre isely thanearlierdeterminations.

REFERENCES

1. A.B.Arbuzovetal.,JHEP9812(1998)9.

2. S. Binner, J.H. Kuhn, K. Melnikov,Phys.

Lett.B 459(1999)279.

3. M. Benayoun et al., Mod. Phys. Lett. A 14

(1999)2605.

(8)

Z. Zhang, Eur. Phys. J. C 27 (2003) 497;

Eur.Phys. J. C 31(2003)503.

5. M.Davier,Thehadroni ontribution to(g

2) 

,these pro eedings.

6. E.P.Solodov,hep-ex/0107027.

7. BABARCollaboration,B.Aubertetal.,Phys.

Rev.D 69(2004)011103.

8. BABARCollaboration,B. Aubert et al.,

hep-ex/0408078,a eptedbyPhys. Rev.D.

9. BABARCollaboration,B.Aubertetal.,Nu l.

Inst.Meth. A479(2002)1.

10. H.Czyz and J.H.Kuhn, Eur. Phys. J. C 18

(2000)497.

11. A.B.Arbuzovetal., JHEP9710(1997)1.

12. M. Ca o, H. Czyz, E. Remiddi, Nuo. Cim.

110A (1997)515;Phys. Lett. B 327(1994)

369.

13. E. Barberio, B.vanEijkand Z.Was,Comp.

Phys. Comm.66(1991)115.

14. T.Sjostrand,Comp. Phys. Comm.82(1994)

74.

15. S. Jada hand Z. Was, Comp. Phys. Comm.

85(1995)453.

16. ReviewofParti lePhysi s,S.Eidelmanetal.,

Phys. Lett.B 592(2004)1.

17. CrystalBarrelCollaboration,A.V.Anisovi h

etal.,Phys. Lett.B 485(2000)341.

18. E852Collaboration,P. Eugenioet al., Phys.

Lett.B 497(2001)190.

19. S. Godfrey and N. Isgur, Phys. Rev. D 32

(1985)189.

20. SND Collaboration, M.N. A hasov et al.,

Phys. Rev.D 66(2002)032001.

21. DM2 Collaboration, A. Antonelli et al., Z.

Phys. C 56(1992)15.

22. BESCollaboration,J.Z.Baietal.,Phys.Rev.

D 70(2004)012005.

23. CMD-2 Collaboration, R.R. Akhmetshin et

Références

Documents relatifs

Physically, this means that at energies of this order pions (which are the lightest hadrons) can be produced in collisions of protons in cosmic rays with CMB photons, which prevents

To get the highest homodyne efficiency, the phases of the quantum field and local oscillator have to be matched (see Section III). Assuming the phase θ LO of the local oscillator to

(( scaling )) A angle fixe, ainsi que pour le facteur de forme de transition du no. hadrons)) can determine the important C = + hadronic states and resonances, and

Using PQS analysis for the quantum non-demolition photon number counting in a cavity, we can reveal information hidden in the standard approach and resolve a wider range of

2 with exponentiation of the soft photon spectra. When the above selection criteria were applied to the data sample, a total of 40 single-photon candidates were obtained: 23 from

The selection of high energy photon candidates aims at identifying single and multi-photon events while rejecting radiative Bhabha events and bremsstrahlung photons from

( ) background by means of additional cuts on the energy and on the angle with respect to the beam axis of the photons. The accepted background and selected data vary, according to