• Aucun résultat trouvé

Multi-parametric optimization of bifurcation points in nonlinear dynamical systems

N/A
N/A
Protected

Academic year: 2021

Partager "Multi-parametric optimization of bifurcation points in nonlinear dynamical systems"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-01369616

https://hal.archives-ouvertes.fr/hal-01369616

Submitted on 15 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Multi-parametric optimization of bifurcation points in nonlinear dynamical systems

Clément Grenat, Sébastien Baguet, Régis Dufour, Claude-Henri Lamarque

To cite this version:

Clément Grenat, Sébastien Baguet, Régis Dufour, Claude-Henri Lamarque. Multi-parametric opti- mization of bifurcation points in nonlinear dynamical systems. NNM2016, 6th International Con- ference on Nonlinear Vibrations, Localization and Energy Transfer, Jul 2016, Liège, Belgium. �hal- 01369616�

(2)

6th International Conference on Nonlinear Vibrations, Localization and Energy Transfer July 4-8, 2016 - Li`ege, Belgium

Multi-parametric optimization of bifurcation points in nonlinear dynamical systems

C. Grenat1, S. Baguet1, R. Dufour1 and C-H. Lamarque2

1Universit´e de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 Villeurbanne, France

clement.grenat@insa-lyon.fr sebastien.baguet@insa-lyon.fr

regis.dufour@insa-lyon.fr

2Universit´e de Lyon, CNRS, ENTPE, LTDS UMR5513, F-69518 Vaulx-en-Velin, France

claude.lamarque@entpe.fr

Abstract A frequency-domain method is proposed for tuning bifurcation points in nonlinear dy- namical systems by means of multi-parametric bifurcation tracking and optimization criteria.

Introduction In the field of mechanical engineering, nonlinear phenomena introduced by large deflections, miniaturization, electro-mechanical couplings, nonlinear vibration absorbers, . . . , are often encountered. Nonlinear systems can have multiple solutions for one unique set of parameters or, on the opposite, no stable solution for a specific parameter range. These phenomena, characterized by bifurcation points such as limit points or Neimark-Sacker bifurcations, lead to jumps in the response or changes of dynamical regime. So, being able to optimize those bifurcation points is interesting for designing nonlinear systems. The literature on bifurcation points characterization and detection comprises numerous contributions. Since then, the obtained methods have been combined with arc- length continuation in order to follow bifurcation points with respect to one parameter. This work presents a multi-parametric analysis of bifurcation points combining multi-parametric continuation and a specific optimization criterion. The original contribution of this paper lies in the multi- parametric approach. The main target application is the design of Nonlinear Energy Sinks.

Multi-parametric optimization of bifurcation points First, harmonic balance method (HBM) is carried out on the equation of motion to perform a nonlinear analysis in the frequency domain. The forced response curve is computed by applying the arc-length continuation method to the following equation, with Qthe Fourier coefficient vector and ω the forcing frequency

R(Q, ω,) = Z(ω)Q+Fnl(Q)−P =0 (1)

Then, the bifurcation points along this response curve are obtained by solving a so-called extended system made of the equation of motion (1) and an additional equation B characterizing the bifurca- tions of interest and based on Hill’s method [1]

K(Q,Φ, κ, ω) =

R(Q, ω) B(Q,Φ, κ, ω)

l(Φ)

=0 (2)

whereκandΦare the eigenvalue and eigenmode of the bifurcation, andlis a normalization equation ensuring nontrivial solutions. Finally, the vector of system parameters α is considered as a new unknown and a multi-parametric continuation of the bifurcation points with respect to (Q, ω,α) combined with an optimization criterion, such as an extremal or threshold constraint, is performed.

It permits to restrict the multi-dimensional map of solutions to specific points corresponding to optimal values of the system parameters.

(3)

Example: Nonlinear Energy Sink (NES) Let us consider the strongly nonlinear vibration absorber introduced in [2] with the following set of parameters : mass ratio =0.1, damping λ=0.4, nonlinear stiffness coefficient knl=5. In [2], it is shown that quasi-periodic beating responses provide efficient vibration absorption (see Figure 1). The boundaries for the quasi-periodic beating responses can be obtained by the parametric continuation of Neimark-Sacker (NS) bifurcations. This NS tracking is plotted in Figure 2 in the case when the amplitude of the periodic excitation A is used as the varying parameter.

The two blue dots, corresponding to local minima of this curve, are very interesting for the tuning of the NES. Indeed, no quasi-periodic motion, i.e. no effective energy transfert is possible below the lower point. Therefore, this point defines a threshold of excitation level triggering the quasi-periodic motion. The upper point corresponds to an optimal excitation level where the motion is quasi- periodic over the widest range of frequencies. Therefore, this point defines an optimal excitation level.

The tuning of the NES is performed via a multi-parametric analysis of these two points in order to find the set of parameters (λ,knl) generating the lowest threshold of excitation level, or the maximum optimal excitation level for instance. The distance between these two levels can also be maximized in order for the NES to be efficient on the widest possible range of excitation level. Other optimization criteria such as a specific energy level of the system can also be considered.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

Total system energy

Frequency ω Quasi-periodic

Periodic NS

A=0.1 A=0.2 A=0.3

A=0.4

Figure 1: Average total system energy for =0.1, λ=0.4, knl=5 and A=0.1, 0.2, 0.3, 0.4.

0 0.1 0.2 0.3 0.4 0.5 0.6

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

A

Frequency ω Periodic

Quasi-periodic

Periodic

Figure 2: NES : Neimark-Sacker tracking curve for =0.1, λ=0.4, knl=5 and varying A.

References

[1] L. Xie, S. Baguet, B. Prabel and R. Dufour, Numerical Tracking of Limit Points for Direct Parametric Analysis in Nonlinear Rotordynamics, Journal of Vibration and Acoustics, In press.

doi:10.1115/1.4032182

[2] Y. Starosvetsky and O. Gendelman, Attractors of harmonically forced linear oscillator with at- tached nonlinear energy sink. ii: Optimization of a nonlinear vibration absorber, Nonlinear Dy- namics 51, 4757, 2008. doi: 10.1007/s11071-006-9168-z

Références

Documents relatifs

Le cas de Montreux est ainsi intéressant, car non seulement la convention touristique alpine, comme dans d’autres stations, met en scène l’authenticité et la

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Table 1: error on the estimation of the state of charge of the GNB Sprinter XP6V2800 battery during cycling at ~C/20 when using acoustic datas or the battery voltage and the

Chen & Wang ( 2014 ), who recently analysed the pulse width evolution with frequency of 150 pulsars from the EPN database, reached a similar conclusion: the emission must

1 ىلع فقوتي هنلأ ةينوناقلا ةدعاقلا قيبطت روحمو ساسأ يه ةيعقاولا بابسلأاف نييعت صن يف يرئازجلا عرشملا صن دقف كلذل قيبطتلا ةبجاولا ةينوناقلا ةدعاقلا ديدحت

امك بلغ ةراشلإا ويلإ فأ اذى ـاظنلا (SCF) ءاج ةفسلفب ةديدج ميىافملل ئدابلداك ةيبسالمحا ارياغم امابس الد فاك لاومعم وب اقباس في لظ ططخلدا بيسالمحا

Tibetan Plateau (Chen et al., 1999) and the palaeosols in southern China (Yin and Guo, 2006) all record an unusually warm and wet climate during MIS-13, indicating an extremely