• Aucun résultat trouvé

ON THE SPIN DYMAMICS OF SUPERFLUID 3He- A1 AND A

N/A
N/A
Protected

Academic year: 2021

Partager "ON THE SPIN DYMAMICS OF SUPERFLUID 3He- A1 AND A"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00217501

https://hal.archives-ouvertes.fr/jpa-00217501

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

ON THE SPIN DYMAMICS OF SUPERFLUID

3He-A1 AND A

H. Pleiner

To cite this version:

(2)

JOURNAL DE PHYSIQUE Colloque C6, supplément au n" 8, Tome 39, août 1978, page C6-19

ON THE SPIN DYNAMICS OF SUPERFLUID 3H

e

- A, AND A

H. Pleiner

Vnivevsit&t Essen GSS, FB Physik, MS Essen, W.-Germany

Résumé.- Pour la phase A et en particulier pour la phase Ai de He superfluide nous comparons la théorie de deux liquides de spin de Leggett et Takagi avec les théories hydrodynamiques de Plei-ner et Graham. Nous indiquons quelques différences physiquement importantes et nous montrons comment les équations de Leggett et Takagi peuvent être modifiées pour éviter l'usage des rela-tions de commutation douteuses.

Abstract.- We compare fort the A- and especially for the Ai- phase of superfluid 3He the two-fluid spin theory of Leggett and Takagi with hydrodynamic theories of Pleiner and Graham. We point out some physically relevant differences and show how to amend Leggett and Takagi's equa-tions in order to avoid the use of questionable commutation relations.

Recently, Legett and Takagi /l/(hereafter called LT),/2/ have given a phenomenological descrip-tion of the spin dynamics in the superfluid phases of 3He. In addition to the hydrodynamic spin variables they include as a macroscopic variable S (the spin of the pairs), with t =jZ {N(k)3(-k) + S(k)N(-k)}. It turns out, that S is (apart from a constant factor) identical to the variable W = ig {T(k)xT+(k)} ^ u s e d in the linearized hydrodynamic (macroscopic) theories of the Aj-phase and the A-phase in high magnetic fields by Pleiner and Graham /3/ and Pleiner / 4 / . After having chosen a certain set of macroscopic va-riables (which can only be done on intuitive grounds outside the true hydrodynamic region), only symmetry arguments and thermodynamics are used in /3/ and / 4 / , which, therefore, provide ibr a framework, within which the phenomenological ideas and approximations of LT can be discussed. In the A-phase, however, the theories are not directly comparable, since LT's theo-ry is valid for low magnetic fields and high frequen-cies, while in /4/ high fields and low frequencies are considered. The theories are compatible in the hydrodynamic regime, which is obtained from- LT by adiabatic elimination of the variable S and from / 4 /

P

by the limit H -K3. In the A-phase the regions of va-lidity of both theories coincide, since the necessary external magnetic field breaks rotational invariance in spin space already externally and the spin order

parameter is just w (or S ) , while a variable cor-responding to 8 (or d in the notation of LT) of the A-phase does not exist in the Aj-phase (Cf. 121). We will discuss, therefore, the physically relevant differences contained in LT (Eqs. (4.15) and (4.16),

the damping term -T*1 S -X S included) and in /3/ (Eqs.(6.1) and (7.3) for k=0) :

i) There is a difference in the transverse NMR shift which in LT is given by A(co2)=ax*1Y2 and in /3/ by

aY^X-^f)"

1

.

The difference arises from the energy, which splits the A-transition (e= c2 w.H) and which is neglected

(2)

by LT . However, the numerical difference seems to be small.

ii)The most problematic point of the derivation of the equations of motion by LT is the use of the com-mutation relation

( V 'Pi) =i^

ijk

S

pk

(Eq.(3.44)of M/)

instead of the correct one

(

S

pi'

S

pj]

= iMe

ijk

Q

'k

w i t h

3'=* ^ft(

k

)N(k)f(-k) +

N(-k)N(-k)3(k)}

(Eq.(3.46) of /l/)in order to get a closed set of equations. However, it is possible to use the cor-rect commutation relation and to obtain a closed set of equations by means of a formalism due to Forster /5/. The only difference will be, that the prefactor of the S x S term in the equation of S will take a

P p different value than that of LT. This prefactor can

be evaluated as an element of the frequency matrix/5^

For a normalized w one finds by inspection w= Tjj-y S (mo=XH equilibrium magnetization den-sity, V=volume,Xcf. /I/, y= gyromagnetic ratio). (2)

Their choice of the static susceptibilities im-plies for the susceptibility T of /3/

(Cf. Equations (4. 6 ) , (4.12) and (4.14))

T = Xj m02A (l-A)"1- X//X21(X//-X|)H2 = C1H2 ; this T has nothing to do with the decay time T of LT.

(3)

For t h e a p p r o p r i a t e p r e f a c t o r i n t h e l i n e a r i z e d t h e o r y , a s ( c f . Eq. (5.1) of / 3 / ) y o u f i n d (3)

i n s t e a d of

which one would g e t u s i n g t h e i n c o r r e c t commutation r e l a t i o n . T h e r e seems t o be no s y s t e m a t i c approxima- t i o n , i n which (2) c o u l d b e o b t a i n e d from ( 1 ) . S i n c e i n t h e A1-phase t h e d i p o l e - t o r q u e

%

i s p r o p o r t i o n a l -+ t o G w (cf.Ch.7 o f 1311, t h e p r e f a c t o r o f t h e RD-term Y % i n t h e e q u a t i o n f o r S i s a l s o governed by a s a n d , P t h u s , changed by t h e u s e o f ( 1 ) . I n t h e A1-phase LT's e q u a t i o n (4.16) now t a k e s t h e form w i t h 61=f; m:

X

(1-XY1 ( a 3 - ym-i ) . I n e q u a t i o n (3) we have n e g l e c t e d c n ( c f . t h e d i s c u s - s i o n under i ) ; f o r t h e most g e n e r a l c a s e c f . E q u a t i o n (5.4) of 1 3 1 ) Using E q u a t i o n ( 2 ) , 6 l would b e e q u a l 1 t o

w

(1+

7

Z,X;~X~)

and LT's r e s u l t s would b e r e o b t a i - L ned. One o f t h e p h y s i c a l l y r e l e v a n t consequences o f u s i n g (1) i s r e l a t e d t o t h e second t r a n s v e r s e NMR mode ( w ~ , ~ o f E q u a t i o n (7.5) of 131) a t t h e f r e q u e n - c y 61 ( a p a r t from d i p o l e - d i p o l e c o r r e c t i o n s ) . The q u a n t i t y 61 a l s o e n t e r s t h e l i n e w i d t h o f t h e Larmor mode ( E q u a t i o n (7.8) o f / 3 / ) , which i s , t h u s , a f f e c - t e d by u s i n g ( 1 ) i n s t e a d of ( 2 ) , t o o . i i i ) We b r i e f l y mention, t h a t i n t h e Al-phase f l u c - t u a t i o n s of t h e s p i n o r d e r p a r a m e t e r 6 ( o r

3

) a l o n g -+ P t h e m a g n e t i c f i e l d H, i . e . 6w ( o r 6S ) a r e i n t h e PZ l i n e a r i z e d t h e o r y e q u i v a l e n t t o f l u c t u a t i o n s of t h e a b s o l u t e v a l u e o f t h e o r d e r p a r a m e t e r , i . e . 6151

',

a s c a n b e s e e n by t h e d e f i n i t i o n o f

O ( 4 ) . I t

i s v e r y l i k e l y , t h a t t h e r e l a x a t i o n t i m e o f S i s d i f f e r e n t PZ from t h a t of S s i n c e t h e l a t t e r d e s c r i b e f l u c - PX,Y' t u a t i o n s o f t h e d i r e c t i o n o f t h e s p i n o r d e r parame- t e r . Thus. LT's r e l a x a t i o n time T seems t o be a t e n -

1 1

- -

1

- -

s o r (-) = - (6.7H.H.) +

-

H.H. i n t h e Al-phase.

i j T 1J 1 J T Z 1 J

Although a d i r e c t comparison between t h e two t h e o r i e s i s n o t p o s s i b l e f o r t h e A-phase ( s e e a b o v e ) ,

( 3 ) ~ h e r e i s , however, t h e p o s s i b i l i t y , t h a t

a3

a c q u i - r e s a n a d d i t i o n a l c o n t r i b u t i o n from t h e memory m a t r i x ( c f .

151).

some remarks c a n b e made. The above d i s c u s s i o n under p o i n t i i ) c o n c e r n i n g t h e u s e o f t h e c o r r e c t commuta-

-+

t i o n r e l a t i o n f o r S i s e q u a l l y v a l i d f o r t h e A- P +

+

4 p h a s e and t h e p r e f a c t o r of t h e S xS term i n t h e S P P e q u a t i o n i s g i v e n a s i n ( 3 ) . S i n c e i n t h e A-phase

+

+

t h e d i p o l e - t o r q u e RD i s p r o p o r t i o n a l t o

sox

n ( o r

+

-+ d O x d i n LT' s n o t a t i o n ) , t h e commutation r e l a t i o n

+

[Spi,dj] g o v e r n s t h e p r e f a c t o r o f t h e R D -term i n t h e ?p-equation. LT o n l y u s e t h a t r e l a t i o n f o r i

#

j ( E q u a t i o n (3.45) o f / l / ) a n d n e g l e c t i t f o r i = j ( t h e q u a n t i t y c a l l e d P by LT). However, t h i s i s no a p p r o x i m a t i o n , b u t e x a c t , s i n c e t h e f r e q u e n c y ma- t r i x element <

(

S . , d . > f o r i = j v a n i s h e s e x a c t l y PI

I1

by symmetry ( i n c o n t r a s t t o <

i

Spi, cijkd;dk

1

>).Thus, i n t h e A-phase LT's e q u a t i o n (4.16) r e a d s ( 6 l g i v e n Acknowledgment : I am i n d e b t e d t o Prof.R.Graham f o r may h e l p f u l d i s c u s s i o n s . R e f e r e n c e s / I / L e g g e t t , A.J.,Takagi,S.,Ann.Phys.= (1977) 79. / 2 / L e g g e t t , A.J.,Takagi,S.,Phys.Rev.Lett.z (1975) 1424. / 3 / P l e i n e r , H.,Graham, R . , J . P h y s . g (1976) 4109 1 4 1 P l e i n e r , H., J.Phys.

Clq

(1977) 2337 /5/ F o r s t e r , D., "Hydrodynamic F l u c t u a t i o n s , Broken Symmetry, and C o r r e l a t i o n F u n c t i o n s " (Benjamin) 1975.

-+

Références

Documents relatifs

By varying the initial temperature and magnetic field, To and Hext, and measuring the final temperature Ti, one can infer the entropy SL(T, M) for a highly

La prise en compte cohérente des fluctuations lève les interdits mentionnés plus haut et ouvre la possibilité d’une description détaillée par une théorie des

By measuring the Faraday rotation in fields up to.10 kOe we were able to observe the angled spin phase in GdIG in the vicinity of the compensation point.. A magnetic field

The non-commutativity of the coordinates is responsible for the topological spin transport of spinning particles similarly to the spin Hall effect in spintronic physics or the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The second sound absorption the second sound velocity and the results calcula- in 3 ~ e - %e superfluid solutions is due to the ted by the hydrodynamic theory for 3 ~ e -

It is easy to understand that If now the nuclear spins are antiparallel, this phenomenon occurs only because the instead of parallellfigure 1.a has to be two atoms have

At high pressures, the results so far obtained ( 1 ) might indicate the existence of a metamagnetic, or near it, transition in the liquid phase.. In this contribution,