• Aucun résultat trouvé

Ruminal methanogens and bacteria populations in sheep are modified by a tropical environment

N/A
N/A
Protected

Academic year: 2021

Partager "Ruminal methanogens and bacteria populations in sheep are modified by a tropical environment"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-02454663

https://hal.uca.fr/hal-02454663

Submitted on 27 May 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Ruminal methanogens and bacteria populations in sheep

are modified by a tropical environment

Moufida Rira, Diego Morgavi, Milka Popova, Carine Marie-Magdeleine,

Tatiana Silou-Etienne, Harry Archimède, Michel Doreau

To cite this version:

Moufida Rira, Diego Morgavi, Milka Popova, Carine Marie-Magdeleine, Tatiana Silou-Etienne,

et al..

Ruminal methanogens and bacteria populations in sheep are modified by a tropical

environment.

Animal Feed Science and Technology, Elsevier Masson, 2016, 220, pp.226-236.

(2)

Contents lists available atScienceDirect

Animal

Feed

Science

and

Technology

journal homepage:www.elsevier.com/locate/anifeedsci

Ruminal

methanogens

and

bacteria

populations

in

sheep

are

modified

by

a

tropical

environment

Moufida

Rira

a,1

,

Diego

P.

Morgavi

a

,

Milka

Popova

a

,

Carine

Marie-Magdeleine

b

,

Tatiana

Silou-Etienne

b

,

Harry

Archimède

b

,

Michel

Doreau

a,∗

aINRA,VetAgroSup,UMR1213Herbivores,F-63122Saint-Genès-Champanelle,France bINRA,UR143URZ,97170Petit-Bourg,Guadeloupe,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received11May2016

Receivedinrevisedform13July2016 Accepted9August2016

Keywords: Rumenmicrobiota Volatilefattyacids Temperatevstropicalsite Sheepbreed

Forage Methane

a

b

s

t

r

a

c

t

Microbialfermentationofcarbohydratesintherumenislargelyresponsibleforthe emis-sionofmethanebyruminants.Ruminantsfedtropicalforagesusuallyproducemoreenteric methanethanruminantsfedtemperateforages.Therelativeinfluenceofforagetype,breed andtemperatevstropicalenvironmentonrumenmicrobialpopulationsisnotknown.This experimentaimedtoseparatetheseeffects.Wedesignedtwoparallelexperimentsinsheep intwosites:temperate(France)andtropical(FrenchWestIndies),usingineachsitetwo breeds,Texel(temperateorigin),andBlackbelly(tropicalorigin)fedthesametemperate forages(C3carbonfixation,permanentgrasslandsofhighandlowquality)andtropical for-ages(C4carbonfixation,permanentgrasslandsofhighandlowquality).Wedetermined dietdigestibility,ruminalend-productsoffermentationandmicrobialgroups:total pro-tozoa,methanogensandbacteria,andselectedfibrolyticbacteria.Drymatterdigestibility coefficientwashigherintropicalsite(612vs580g/kgonaverage,P=0.004)butno differ-encewasobservedbetweenC3andC4forages.TherewasnoeffectofsiteontotalVFA concentration,buttheacetate:propionateratiowashigherforthetropicalsite(4.30vs3.93 onaverage,P=0.007).Theacetate:propionateratiowasalsoaffectedbyforagetypewith highervaluesforC3thanC4forage(4.24vs3.99onaverage,P=0.03).Concentrationoftotal rumenbacteriaandmethanogenswasdeterminedbyqPCRtargeting,respectively,therrs (16SribosomalRNAsubunit)andmcrA(methylcoenzyme-Mreductase)genes.Forboth groups,thenumberofgenecopiespergramofDMrumencontentwashigherinthe trop-icalsite(P<0.001).Forcellulolyticbacteria,highernumberofrrscopiespergramofDMof rumencontentweredetectedforFibrobactersuccinogenesinthetemperatesite(P<0.001), whereasnodifferenceswereobservedforRuminococcusflavefaciensorRuminococcusalbus numbersbetweensites,breedsandforagetype.Protozoanumbersdeterminedbycounting didnotvarybetweensites,foragesorbreeds,butasite×forageinteractionwasobserved (P=0.01):thereweremoreprotozoaandR.albusintropicalsitesfortropicalforages.Our resultssuggestthatrumenmicrobiotawasmainlyinfluencedbyenvironment (temper-atevstropical)andthatforagetype(C3vsC4)andbreedhadminoreffects.However,an interactionbetweenenvironmentandforagetypewasobservedforsomevariables.

©2016ElsevierB.V.Allrightsreserved.

Abbreviations:CH4,methane;VFA,volatilefattyacid;DM,drymatter;H2,hydrogen;CO2,carbondioxide;H,high;L,low;NDF,neutraldetergentfibre assayedwithoutaheat-stableamylaseandexpressedinclusiveofresidualash;ADF,aciddetergentfibreexpressedinclusiveofresidualash;OM,organic matter;NH3,ammonia;PBS,phosphatebuffersaline;DGGE,denaturinggradientgelelectrophoresis;TAE,Tris-Acetate-EDTA;MFS,methylgreenformalin saline.

∗ Correspondingauthorat:INRA,VetAgroSup,UMR1213Herbivores,F-63122Saint-Genès-ChampanelleFrance. E-mailaddresses:moufidar@yahoo.fr(M.Rira),michel.doreau@clermont.inra.fr(M.Doreau).

1 Presentaddress:EcoleNationaleSupérieuredeBiotechnologie,AliMendjli,BPE66,25100Constantine,Algeria.

http://dx.doi.org/10.1016/j.anifeedsci.2016.08.010 0377-8401/©2016ElsevierB.V.Allrightsreserved.

(3)

M.Riraetal./AnimalFeedScienceandTechnology220(2016)226–236 227

1. Introduction

Entericmethane(CH4)fromruminantsaccountsfor39%oflivestocksectorgreenhousegasesemissions(Gerberetal.,

2013).SeveralstudieshavetesteddifferentstrategiesforCH4abatementinruminants(Hristovetal.,2013;Martinetal.,

2010).However,althoughruminantdietsarebasedonforage,thereisscantinformationontheeffectofforagetypeon

methanogenesis.Ameta-analysis(Archimèdeetal.,2011)showedthatentericCH4productionperkgofdrymatter(DM)

intakemaybehigherforruminantsfedtropicalforagesthanforthosefedtemperateforages.ThesedifferencesinCH4

productionmaybeduetotheconstitutionalvariationinthechemicalstructureoftropicalandtemperateforages,which

displayC4andC3carbonfixationpathways,respectively.However,differencescouldalsobeduetotheambientenvironment

ortoanimalbreed.Experimentscarriedoutwithtropicalforageshavealwaysbeenconductedinthetropicswithbreeds

originatingfromandadaptedtoatropicalenvironment;likewise,experimentswithtemperateforageshavebeenrunin

temperateareaswithbreedsoriginatingfromtheseareas.

Intherumen,CH4 production resultsfrommicrobialfermentationofcarbohydrates.Themainend productsofthis

fermentationarevolatilefattyacids(VFA),hydrogen(H2)andcarbondioxide(CO2).Alargediversepopulationof

microor-ganismsdrivesthisprocess,especiallybacteriaandprotozoa.TheH2producedismainlyusedbymethanogenicarchaeato

reduceCO2toCH4.Theactivity,diversityandconcentrationofmicrobesharbouredintherumenareinfluencedbydiet,

breed,andtheenvironment(Kingetal.,2011).However,toourknowledge,therelationshipslinkingthesethreefactorsand

theirrelativeimportancehavenotbeenstudied.

Theaimofthisexperimentwastocomparerumenfermentationvariablesandmicrobialcommunitystructuresoftwo

breedsofsheep(TexelvsBlackbelly)fedC3andC4forages(permanentgrasslandsofhighandlowquality)inatemperate

andatropicalsite.Specialattentionwaspaidtomethanogensandhydrogen-producingprotozoa,whichareassociatedwith

methanogenesisincrease.Totalbacteriawerealsostudied,withafocusoncellulolyticbacteria,whichplayanimportant

roleincellwalldegradationandsocanfavourCH4production.

2. Materialsandmethods

2.1. Animals,diet,managementandexperimentaldesign

Thestudywasconductedinparallelintworesearchsiteslocatedintemperateandtropicalareas.Thetemperatesitewas

inAuvergne,France,at45.70◦Northlatitudeand3.03◦Westlongitude.Wheretheanimalswerehoused,theaveragedaily

temperaturerangedbetween11.2◦Cand15.9◦C,andtheaveragerelativehumidityrangedbetween32%and46%during

theexperiment.ThetropicalareawasintheFrenchWestIndiesat16.16◦Northlatitudeand61.30◦Westlongitude.The

averagedailytemperaturerangedbetween21.0◦Cand25.0◦Candtheaveragerelativehumidityrangedbetween83%and

88%duringtheexperiment.

Ineachsite,4Texelwethers(temperateorigin)and4Blackbellyrams(tropicalorigin)wereusedintwo4×4Latinsquare

designs.Sheepwereborninthesitewheretheexperimenttookplace.Sheepwere2yearsoldandwerefittedwitharumen

cannula.Theirbodyweightwas60.2±1.5kgfortheTexelsheepand51.3±4.3kgfortheBlackbellysheepinthetemperate

site;and44.7±0.7kgfortheTexelsheepand44.4±2.1kgfortheBlackbellysheepinthetropicalsite.Managementof

experimentalanimalsfollowedtheguidelinesforanimalresearchoftheFrenchMinistryofAgricultureandotherapplicable

guidelinesandregulationsforanimalexperimentationintheEuropeanUnion(EuropeanCommission,2010).

Inbothsites,sheepwerefedthesameforagefrompermanentgrasslands,onegrowninthetemperateareaandone

growninthetropicalarea.Foreachforage,thereweretwomaturitystagesthatdeterminedforagequality,high(H)andlow

(L),sothatatotalof4forageswerestudiedineachsite.Temperateforagewasasemi-mountainpermanentgrassland,first

cycle,floweringstageharvestedinlateJune(L),andsecondcycleharvestedinlateAugust(H),bothfromthesameparcel.

ThetropicalforagewaspermanentgrasslandrichinDichanthiumspp;regrowthsof36days(H)and91days(L),harvestedin

October.Transportofforagefromonesitetotheotherwasbyship.ChemicalcompositionofforagesispresentedinTable1.

Eachexperimentalperiodlasted4weeks:2weeksforadaptationtotheforage,1weekforCH4measurements,and1

weekfordigestibilityandrumensampling.DetailedresultsondigestibilityandCH4entericproductionsarisingfromthis

studyhavebeenreportedinapreliminarycommunication(Archimèdeetal.,2013)andwillbefullypublishedinasecond

paper(Archimèdeetal.,unpublished).

Table1

Averagedrymattercontentandchemicalcompositionofexperimentalforagesa.

TempH TempL TropH TropL

Drymatter,g/kgfreshmatterb 875 879 866 878

Organicmatter,g/kgdrymatter 878 926 912 929

NDF,g/kgdrymatter 586 623 742 742

ADF,g/kgdrymatter 410 370 470 540

Crudeprotein,g/kgdrymatter 134 83 120 69

aTempH=temperateforagehighquality,TempL=temperateforagelowquality,TropH=tropicalforagehighquality,TropL=tropicalforagelowquality. bDrymattercontentofforageswasonaverage1.3percentageunithigherintemperatesitethanintropicalsite.

(4)

Sheepwerefedadlibitumtwicedailyat07:00and19:00andwerehousedinaclosedbarninthetemperatesiteandin asemi-openbarninthetropicalsite.Animalsweretiedinboxesequippedforseparationbetweenurineandfaecesinmale sheep.Theyhadfreeaccesstowaterandsaltblockatalltimes.

2.2. Measurementoffeedintakeanddigestibility,andrumensampling

Feedintakewasmeasuredbyweighingdailyofferedandrefusedforagesfor5consecutivedays.A200-gsampleof offeredandrefusedforageswastaken,andDMcontentwasdeterminedbyoven-dryingat60◦Cuntilconstantweight. Digestibilitycoefficientwasmeasuredbytotalcollectionoffaecesfor5consecutivedays.Afterweighingandmixing,10% ofdailycollectionoffaecesweretakeneveryday,andDMcontentwasdeterminedbyoven-dryingat60◦Cuntilconstant weight.

Approximately250gofwholerumencontentswerecollectedthroughthecannulajustbeforeand3hafterthemorning feeding.Asubsampleofexactly30gwasusedformicrobialanalysis.Theremainingsubsamplewasstrainedthrougha polyestermonofilamentfabric(250␮mmeshsize).ThepHwaspromptlymeasuredusingaportablepH-meter(CG840, electrodeAg/AgCl,SchottGeräte,Hofheim,Germany).

2.3. Fermentationcharacteristicsanalysis

ForVFA,0.8mLofrumenfluidfiltratewasmixedwith0.5mLofasolutioncontaining4mg/mL(w/v)crotonicacid and20mg/mL(w/v)metaphosphoricacidin0.5mol/LHCl,keptat4◦Cfor2handcentrifuged(16,500×g,10min,4◦C). Thesupernatantwasstoredat−20◦C untilanalysis.RuminalVFAweredeterminedintherumenliquid phasebygas

chromatography(Ottenstein andBartley,1971).Thegaschromatographwasa HewlettPackard 5889equippedwitha

StabilwaxDA(30m×0.53mmi.d.)columnmaintainedat125◦C.ThecarriergaswasH2(34.6mL/min).Forruminalammonia

(NH3),1mLofliquidphasewasaddedto0.1mLofH3PO40.8Mandfrozenat−20◦Cuntilanalysis.Ruminalammoniawas

assayedbycolorimetryusingthephenol-hypochloritemethod(Weatherburn,1967).

2.4. Microbialanalysis

Thirtygramsofwholerumencontentswasdilutedwith15mLofice-coldphosphatebuffersaline(PBS)pH6.8and

homog-enizedinthree1mincycleswith1minintervalsonice,usingaPolytrongrindingmill(KinematicaGmbH,Steinhofhalde

Switzerland).Approximately0.5gwastransferredtoa2-mLEppendorftubeandstoredat−80◦CuntilDNAextraction.

TotalDNAwasextractedfromapproximately200mgoffrozenrumensampleusingtheQIAampDNApurificationkit

(Qiagen,Hilden,Germany)(YuandMorrison,2004).DNAconcentrationandqualitywerecheckedbytheA260andA280

absorbanceratioinaNanoQuantPlateonaspectrophotometer(Infinity,Tecan,Männedorf,Switzerland).Theextracted

DNAwasdilutedto10ng/␮LandusedasatemplateforPCRtoamplifytherrsgeneoftotalbacteriaandthemcrAgene

formethanogens.PrimersusedinthisstudyarelistedinTable2(Edwardsetal.,2007;Muyzeretal.,1993).WhenPCR

productswereusedfordenaturinggradientgelelectrophoresis(DGGE),forwardprimersincludedaGCclamp(40nt).All

PCRreactionswereperformedinaT100ThermalCycler(Bio-RadLaboratories,Marnes-la-Coquette,France)(Popovaetal.,

2011;Sadetetal.,2007).PCRproductswereanalyzedbyelectrophoresison20g/Lagarosegel(w/v)tochecktheirsizeand

estimatetheirconcentrationusingaLowDNAMassLadder(Invitrogen,Carlsbad,CA).

ForDGGEanalysis,theamountofPCRproductloadedongelswasadjustedto100ngforbothbacterialrrsandmethanogen

mcrAgenes.Gelshada6–8(w/v)polyacrylamidegradientandadenaturantgradientof30–55%forrrsand10%to30%formcrA.

Electrophoresiswasperformedin0.5×Tris-Acetate-EDTA(TAE)buffer(TAEBuffer1×,40mmol/LTrisbase,40mmol/Lglacial

aceticacid,1mmol/LEDTA)at200Vand60◦Cfor5h.Gelsweresilverstainedusingacommercialkit(Bio-RadLaboratories)

andanalyzedusingGelComparII(AppliedMaths,Kortrijk,Belgium).Thepeakareaofallbands(N)andofeachband(ni)

andthenumberofbandsSwereusedtocalculatethecommunitybiodiversityusingthreeindices:theShannonindex(H)

calculatedasH=−(ni/N).ln(ni/N),Simpson’sdominanceindex(␭)calculatedas␭=(ni/N)2,andtheevennessindex(e)

calculatedase=H/lnS(Heipetal.,1998).

Thequantitative(q)PCRfortotalbacteria(rrsgene)andmethanogens(mcrAgene)wascarriedout(Morgavietal.,2013).

TheslopeandefficiencyforrrsandmcrAprimerswere:−3.45and95.6%,and−3.43and95.1%,respectively,withR2being

greaterthan0.99inbothcases.ThecellulolyticbacteriaFibrobactersuccinogenes,Ruminococcusflavefaciens,andRuminococcus

albuswerequantifiedwithprimerstargetingtherrsgene(DenmanandMcSweeney,2006;KoikeandKobayashi,2001).The

slopeandefficiencyforeachprimerpairwere,respectively,−3.19and105.8%,−3.52and92.3%,and−3.54and91.5%.For

eachrumencontentsample,resultswereexpressedasthemeanofthreereplicatesinrrsormcrAlog10copiespergramof

DMofrumencontents.

Forprotozoacounting,3mLofrumenfluidwasaddedto3mLofmethylgreenformalinsaline(MFS)solution(35mL/L

formaldehyde,0.14mmol/LNaCl,0.92mmol/Lmethylgreen)andstoredinthedarkatroomtemperature.Rumenfluid/MFS

solutionsweredilutedinanequalvolumeofPBSbeforeprotozoacountsunderamicroscope(×400)inaNeubauerchamber

(5)

M. Rira et al. / Animal Feed Science and Technology 220 (2016) 226–236 229 Table2

OligonucleotidesusedasprimersforPCR-DGGEandqPCRanalysis.

Oligonucleotides Oligonucleotidesequences Target Amplicon

length(bp)

Usein Primerreferences

534R− 5-ATTACCGCGGCTGCTGG rrsBacteria 193 PCR-DGGE Muyzeretal.(1993)

341f-GC 5-(GC)-CCTACGGGAGGCAGCAG

mcrAr 5‘-TTCATTGCRTAGTTWGGRTAGTT mcrAMethanogens 460–490 PCR-DGGE Lutonetal.(2002)

mcrAf-GC 5-(GC)40-GGTGGTGTMGGATTCACA

CARTAYGCWACAGC

qmcrA-R 5-GBARGTCGWAWCCGTAGAATCC mcrAMethanogens 140 qPCR Denmanetal.(2007)

qmcrA-F 5-TTCGGTGGATCDCARAGRGC

799R2 5-AACAGGATTAGATACCCTG rrsBacteria 280 qPCR Edwardsetal.(2007)

520F 5-AGCAGCCGCGGTAAT

FS586-f 5-GTTCGGAATTACTGGGCGTAAA rrsFibrobactersuccinogenes 121 qPCR Denmanand

McSweeney(2006)

FS706-r 5-CGCCTGCCCCTGAACTATC

RF96-f 5-CGAACGGAGATAATTTGAGTTTACTTAGG rssRuminococcusflavefaciens 132 qPCR Denmanand

McSweeney(2006)

RF220-r 5-CGGTCTCTGTATGTTATGAGGTATTACC

RA1281f 5-CCCTAAAAGCAGTCTTAGTTCG rrsRuminococcusalbus 175 qPCR KoikeandKobayashi

(2001)

(6)

Table3

Drymatter(DM)intakeanddigestibility,andrumenfermentationcriteriabeforefeedinginTexel(T)andBlackbelly(B)sheepfedfourforagesintemperate andtropicalsite.a

TempH TempL TropH TropL SEM Pvaluec

T B T B T B T B Site Forage Sitex

Forage C3vsC4 DMintake,g/kgBWb Temperatesite 28.9 21.8 26.3 25.2 16.8 17.0 12.9 15.1 1.87 0.95 <0.001 0.17 <0.001 Tropicalsite 25.8 22.8 21.9 23.7 14.8 22.8 13.8 18.7 DMdigestibilitycoefficient Temperatesite 0.622 0.668 0.554 0.564 0.618 0.625 0.476 0.514 0.0209 0.004 <0.001 0.02 0.27 Tropicalsite 0.637 0.652 0.542 0.576 0.666 0.662 0.604 0.555 pH Temperatesite 6.45 6.38 6.33 6.40 6.53 6.46 6.52 6.37 0.107 0.22 0.73 0.26 0.56 Tropicalsite 6.62 6.64 6.56 6.48 6.40 6.44 6.39 6.50 VFAb,mmol/L Temperatesite 92.7 90.5 87.5 91.0 73.1 73.8 93.0 94.4 6.72 0.79 0.02 0.30 0.05 Tropicalsite 81.3 83.1 78.6 95.5 75.3 89.9 85.9 98.9 Acetate,mmol/mol Temperatesite 711 717 751 754 722 718 711 696 12.5 0.02 <0.001 0.02 0.002 Tropicalsite 743 748 734 734 747 741 723 716 Propionate,mmol/mol Temperatesite 192 177 174 173 185 187 200 187 8.8 0.02 0.07 0.16 0.11 Tropicalsite 163 173 179 178 158 170 185 187 Butyrate,mmol/mol Temperatesite 76 80 60 60 79 83 101 97 8.0 0.13 0.002 0.08 0.01 Tropicalsite 75 69 68 69 74 75 75 79

MinorVFAb,mmol/mol

Temperatesite 20 25 13 11 14 12 16 20 3.10 0.65 0.30 0.01 0.06 Tropicalsite 19 10 19 19 20 14 17 18 Acetate:Propionate Temperatesite 3.72 4.06 4.35 4.37 3.94 3.86 3.43 3.73 0.260 0.007 0.02 0.10 0.03 Tropicalsite 4.58 4.42 4.24 4.18 4.78 4.40 3.96 3.85 Ammonia,mmol/L Temperatesite 4.56 8.12 6.17 8.42 3.89 4.17 4.43 6.41 1.590 0.30 0.28 0.36 0.69 Tropicalsite 6.69 5.28 8.49 6.59 7.95 5.99 8.11 5.83

aTempH=temperateforage,highquality,TempL=temperateforage,lowquality,TropH=tropicalforage,highquality,TropL=tropicalforage,low quality.

b BW:bodyweight.VFA:volatilefattyacids.MinorVFAarethesumofisobutyrate,valerate,isovalerateandcaproate. c Breedeffect,breedxsiteandbreedxforageinteractionswerenotsignificantforallmeasuredparameters.

2.5. Statisticalanalysis

Todetermineeffectsofsite,breedandforageonfeedintake,digestibility,pH,VFAconcentrationandcomposition,NH3

concentration,protozoanumbers,genecopynumbersanddiversityindices,dataunderwentanalysisofvarianceusingPROC

MIXED(SAS,2008).Themodelincludedsite(n=2),forage(n=4),breed(n=2),interactionsbetweenforageandsite,forage

andbreedandbreedandsiteasfixedeffectsandanimalnestedwithinbreedasrandomeffect.DifferencesbetweenC3and

C4forageswerealsoanalyzedusingorthogonalcontrasts.EffectsweredeclaredsignificantatP<0.05.Linearregressions

wereestablishedbetweenCH4emissionperkgDMandthedifferentpopulationsofmicrobes.

3. Results

3.1. Feedintake,digestibilityandruminalfermentationcharacteristics

Drymatterintakeexpresseding/kgBWdidnotvarybetweensitesandwashigherforC3foragesthanforC4forages.

Drymatterdigestibilitydifferedbetweensites,andasitexforageinteractionwasobserved,digestibilitybeinghigherin

tropicalsitethanintemperatesiteonlyforC4forages.Drymatterdigestibilitydifferedbetweenforages,butthisdifference

wasduetoforagequalitywithinC3andwithinC4forages,butdidnotvarybetweenC3andC4forages.Noeffectofbreed

wasobservedonfeedintakeanddigestibility.RuminalpHandNH3concentrationdidnotvarybetweensites,breedsor

forages,andinteractionswerenotsignificantbefore(Table3)orafterfeeding(TableS1).TotalVFAmolarconcentration

beforefeedingdidnotvarywithsite,butwashigherwithtemperateforagesthanwithtropicalforages(P<0.05).After

feeding,VFAconcentrationwashigherinthetemperatesitethaninthetropicalsite(P<0.05),andthedifferencebetween

temperateandtropicalforagesremained.Beforeandafterfeeding,theproportionofacetatewashigherfortropicalforage

inthetemperatesiteandlowerfortemperateforageinthetropicalsite,andtheproportionofpropionateandbutyrate

washigherforsheepfedtropicalforageinthetemperatesiteandlowerfortropicalforageinthetemperatesite(Table3

(7)

M.Riraetal./AnimalFeedScienceandTechnology220(2016)226–236 231

Table4

ProtozoalpopulationinTexel(T)andBlackbelly(B)sheepfedfourforagesintemperateandtropicalsite.a

TempH TempL TropH TropL SEM Pvaluec

T B T B T B T B Site Forage Sitex

Forage

C3vsC4

Total,log10cells/mL

Temperatesite 6.21 6.26 6.13 6.23 6.16 5.97 6.37 6.36 0.109 0.41 0.62 0.01 0.50

Tropicalsite 6.46 5.95 6.34 6.16 6.46 6.35 6.31 6.13

Isotricha,log10cells/mL

Temperatesite 5.16 4.69 2.68 2.74 4.35 3.46 5.27 3.92 0.970 0.77 0.16 0.41 0.11

Tropicalsite 4.11 3.03 4.25 2.48 4.70 4.00 5.23 3.16

Dasytricha,log10cells/mL

Temperatesite 5.59 5.25 5.08 3.53 5.56 5.44 5.94 5.49 0.475 0.35 0.05 0.14 0.52

Tropicalsite 4.82 4.37 5.33 4.54 5.43 5.46 4.70 5.43

LargeEntodiniomorphsb,log

10cells/mL

Temperatesite 5.85 6.02 6.00 6.16 5.85 5.65 5.87 6.19 0.138 0.14 0.67 0.41 0.30

Tropicalsite 6.31 5.76 6.12 6.02 6.34 6.21 6.15 5.68

SmallEntodiniomorphsb,log

10cells/mL

Temperatesite 5.47 5.34 5.04 5.05 5.04 4.87 5.54 5.35 0.085 0.01 <0.001 <0.001 <0.001

Tropicalsite 5.01 4.97 5.27 5.08 5.04 5.01 5.17 5.17

aTempH=temperateforage,highquality;TempL=temperateforage,lowquality;TropH=tropicalforage,highquality,TropL=tropicalforage,low quality.

bLargeEntodiniomorphs:>100␮m,SmallEntodiniomorphs:<100␮m.

cBreedeffect,breedxsiteandbreedxforageinteractionswerenotsignificantforallmeasuredparameters.

Table5

QuantificationofrumenbacteriaandmethanogensinTexel(T)andBlackbelly(B)sheepfedfourforagesintemperateandtropicalsite.a

TempH TempL TropH TropL SEM Pvalueb

T B T B T B T B Site Forage Sitex

Forage

C3vsC4

Totalbacteria,log10rrscopynumber/gDM

Temperatesite 11.14 11.64 11.41 11.46 11.47 11.49 11.17 11.26 0.089 <0.001 0.03 0.001 0.14 Tropicalsite 11.59 11.51 11.80 11.61 11.74 11.71 11.65 11.62

Fibrobactersuccinogenes,log10rrscopynumber/gDM

Temperatesite 9.78 9.67 9.59 9.57 9.54 9.60 9.30 9.42 0.143 <0.001 0.12 0.13 0.11 Tropicalsite 9.00 9.06 9.41 9.23 9.27 9.13 9.03 9.10

Ruminococcusalbus,log10rrscopynumber/gDM

Temperatesite 8.76 8.76 7.43 8.19 7.81 8.33 7.67 7.86 0.302 0.99 0.40 <0.001 0.92 Tropicalsite 7.62 7.57 8.48 8.07 8.47 8.45 8.17 8.00

Ruminococcusflavefaciens,log10rrscopynumber/gDM

Temperatesite 8.78 8.57 8.57 8.47 8.50 8.64 8.23 8.19 0.185 0.30 0.10 0.39 0.22

Tropicalsite 8.63 8.48 8.77 8.58 8.68 8.72 8.49 8.54 Totalmethanogens,log10mcrAcopynumber/gDM

Temperatesite 8.93 8.92 8.80 8.91 8.89 8.83 8.65 8.71 0.072 <0.001 0.03 0.01 0.30 Tropicalsite 9.22 8.93 9.31 9.20 9.26 9.24 9.09 9.23

aTempH=temperateforage,highquality;TempL=temperateforage,lowquality;TropH=tropicalforage,highquality.TropL=tropicalforage,low quality.

bBreedeffect,breedxsiteandbreedxforageinteractionswerenotsignificantforallmeasuredparameters.

interactionsite×forageafterfeeding(TableS1).NoeffectofbreedwasshownforVFAconcentrationorpattern,exceptfor

totalVFAmolarconcentrationafterfeeding,whereabreed×siteinteraction(P<0.05)wasfound.

3.2. Ruminalmicrobiota

Protozoanumbersdidnotvaryamongsites,foragesorbreeds,butasite×forageinteractionwasobserved:protozoa

populationwashigherforC3forageinthetemperatesite,andforC4forageinthetropicalsite(Table4).Small

entodin-iomorphs(<100␮m)weremoreabundantinthetemperatesiteandinsheepfedC3thaninthosefedC4(P<0.05).Large

entodiniomorphs(>100␮m),DasytrichaandIsotrichawerenotdifferentbetweensites,foragesorbreeds.

ResultsofqPCRquantificationofthebacterialrrsandmethanogenmcrAgenecopiesaresummarizedinTable5.The

concentrationofbacterialrrscopieswashigherinthetropicalsite(P<0.05)andforHforages. TheconcentrationofF.

succinogenesrrsgenecopieswashigherinthetemperatesite(P<0.05).TheconcentrationofR.albuswasinfluencedby

neithersitenorforage,butaforage×siteinteractionwasobserved:higherrrscopiesweredetectedinthetemperatesite

forC3forages,whereasinthetropicalsitehigherrrscopieswereobservedforC4forages.TherewasnodifferenceinR.

(8)

Fig.1.Relationshipbetweenrumenmicrobesandmethaneentericemissionaccordingtosite(temperate(France,F)vstropical(FrenchWestIndies,FWI)) andoriginofforages(TemperateC3(Temp)vsTropicalC4(Trop)):highqualityandlowqualityforagefedtoTexelandBlackbelly.Eachpointisthemean of4individualvalues.

MethanogenconcentrationexpressedasmcrAgenecopynumberinrumencontentswashigherinthetropicalsite.Effects

offorageandinteractionbetweensiteandforagewereobserved:methanogenconcentrationswerehigherinsheepfedC4

foragesinthetropicalsiteandinsheepfedC3foragesinthetemperatesite(Table5).

DGGEanalysisshowednodifferencewithinbacterialcommunitystructureandmethanogeniccommunitystructure,and

clusteringpatternsdidnotdiffersubstantiallyamongindividualsheep(datanotshown).Diversityindiceswerecalculated

fromtherrsDNAPCR-DGGEprofiles.Shannon,dominanceandevennessindicesdidnotvarybetweensitesorbreeds

(TableS2).However,atendentialsite×breedinteractionwasobservedfortheShannonindexinrrsDNAPCR-DGGEprofiles

(P=0.055).Therewasnodifferencebetweenforagesineitherthenumberofbandsorthevaluesofdiversityindicesforthe

rrsDNAPCR-DGGEprofiles(datanotshown).

3.3. Relationshipsbetweenmicrobialpopulationsandmethaneproduction

Fig.1presentsrelationshipsbetweenmicrobialabundancesandCH4productionaccordingtosite,breedandforages

(meanof4animalsforeachcombination).Significantandpositiverelationshipswerefoundbetweenprotozoapopulation

andCH4production(r=0.53,P<0.05),andbetweenR.albusandCH4production(r=0.52,P<0.05)(Fig.1).Norelationship

wasfoundbetweentotalbacteria,R.flavefaciens,F.succinogenesandCH4production(r=0.44,0.27and0.05,respectively,

P>0.05).HigherCH4productionwasassociatedwithhighermethanogensnumbersbuttherelationshipwasnon-significant

(9)

M.Riraetal./AnimalFeedScienceandTechnology220(2016)226–236 233

4. Discussion

Factorsotherthananimalandfeedcharacteristicsareknowntoaffectrumendigestionincluding,amongotherfactors,

climaticconditions(Decruyenaereetal.,2009).DigestionandCH4productionbyruminantsdifferbetweentemperateand

tropicalconditions.However,astrialsareusuallycarriedoutusingfeedstuffsharvestedonsiteandasingle,locallyadapted

breed(Archimèdeetal.,2011)ithasnotbeenpossibletoassesstherelativeimportanceofthesefactors.Toourknowledge,

ourstudyisthefirsttosimultaneouslycompareinatemperateandinatropicalenvironment,atemperateandatropical

sheepbreedfedthesamediet,allowingafinerinterpretationofallegeddifferencesbetweentemperateandtropicalsites

inCH4 production,rumenfermentation,andmicrobialecosystem.Resultsonintakeanddigestibilitywillbethoroughly

discussedinasecondpaper(Archimèdeetal.,unpublished)andarebrieflydiscussedinthismanuscript.

4.1. Effectofenvironmentondigestiveprocesses

IntakeparkgBWwasnotaffectedbysite.Thetemperatureinthetropicalsitewascertainlynothighenoughtoaffect

intakeassuggestedbythereviewofMorand-FehrandDoreau(2001).Thehigherdigestibilityobservedinthetropicalsite

isinaccordancewiththereviewofMorand-FehrandDoreau(2001)forawiderangeoftemperatures,forasameintake.

Independentlyofdietandanimaltype,thereislimitedexperimentalevidencetoexplaindifferencesinrumenfermentation

andmethanogenesisbetweentemperateandtropicalsites.Suchdifferencescanresultfromdifferencesintemperatureor

hygrometry.Inthisstudy,nodifferenceinVFAconcentrationbetweensiteswasobservedbeforefeeding,butafterfeeding,

theconcentrationwaslowerforthetropicalsitethanforthetemperatesite.Thismaybeexplainedbythedifferencein

temperature,asitwasreportedbyKelleyetal.(1967)incowsfedaconstantdietatdifferentcontrolledtemperatures,and

byMartzetal.(1990)incowsfedforagedietswithmoderatedifferencesinintake.Anotherexplanationcouldbethedilution

ofVFAintherumenduetohigherwaterconsumption(Silanikove,1992).However,inthisexperiment,rumenwatercontent

was87.7%onaverageandwassimilarbetweensites,whichdoesnotsupportthishypothesis.

Incontrasttoourresults,increaseintotalrumenVFAcontentandadecreaseinpHwerereported(Kadzereetal.,2002)

whenambienttemperatureincreasedbecauseVFAwereabsorbedlessefficiently.Inthepresentstudy,thetropicalsite

hadhigheracetateproportionthanthetemperatesitebeforeandafterfeeding;thesametendencywasobservedforthe

acetate:propionateratio.Thisresultisinlinewithapreviousstudyshowingthathighambienttemperaturewasassociated

withhigherproportionofacetate(Kelleyetal.,1967).However,thistrendisnotgeneral,asanothertrialshowedthatan

increaseintemperaturedidnotchangeVFApatternincattle,andincreasedpropionateinsheep(Lippke,1975).

TheobserveddifferencesinVFApatterncanbeduetodifferencesinmicrobialcommunitiesbetweentemperateand

tropicalsites,especiallyastherewasnoeffectofsiteondailyfeedintake,onaverage20.5gDM/kgbodyweightforboth

sites(Archimèdeetal.,2013).TheqPCRanalysisrevealedthattotalbacteriaandmethanogennumberswerehigherforthe

tropicalsite.Changeinbacterialnumbersmaybepartiallyexplainedbythelowerconcentrationofsmallentodiniomorphs

inthetropicalsite,andhenceadecreasedpredatoryactivityonbacteria.Incontrasttoourresults,asignificantchangein

thecompositionbutnotintheconcentrationofmicrobialpopulationsatelevatedambienttemperatureandhumiditywas

reported(Tajimaetal.,2007),thisshiftbeingaccompaniedbyadecreaseinconcentrationofVFAintherumen.Thetargeted

cellulolyticbacteriawerenotaffectedbysite,exceptforF.succinogenes,whichwasmoreabundantinthetemperatesite

(Table5).Thisbacteriumisamajorfibre-degradingspeciesintherumenthatdoesnotproduceH2andisnotassociated

withhigherCH4production(Chaucheyras-Durandetal.,2010).AhigheracetateproductionisgenerallylinkedtohigherCH4

production,buttherewasnositeeffectonCH4production(Archimèdeetal.,2013)forthisexperiment(18.7and19.4g/kg

DMintakeonaveragefortemperateandtropicalsites,respectively).Methanewasgenerallyproducedinhigherquantities

whenH2-producingcellulolyticspeciessuchasRuminococciweredominant,becauseoftheirassociationwithmethanogens,

whichconsumeH2andproduceCH4(Chaucheyras-Durandetal.,2010;Morgavietal.,2010)resultingsimultaneouslyin

higherproductionofacetate(Morgavietal.,2010;Pavlostathisetal.,1990).Thisisinlinewithourresultswherethenumber

ofRuminococciwasalsonotaffectedbyanyofthefactorstestedandnotcorrelatedwithCH4production(Fig.1).

Inthepresentworkwefoundlittleeffectofenvironmentalconditionsonrumenfermentationandmicrobialpopulations.

Thereareveryfewdataintheliterature:achangeinrumendiversityandstructureofmicrobiotawasobserved(

Romero-Pérezetal.,2011),suggestingthatshiftsinmicrobialpopulationsmayhavebeenduetodifferencesintemperaturesensitivity

amongmicrobialspecies,buttherangeoftemperaturetestedbytheseauthorswasbetween−5◦Cand−30C.Therumen

anditscontentsarethermallystablebutamodestchangeanddisturbancewithintherumenmayoccurwithchangesin

ambienttemperature.Adifferenceindrinkingwatertemperaturecaninduceadifferenceinthetemporarydecreasein

rumentemperatureafterdrinking(Bewleyetal.,2008).Anotherhypothesisisthatadifferenceinambienttemperature(9

vs.26◦C)resultsinadifferenceinmeanretentiontimethroughhormonalchanges,whichmayinfluencerumenfermentation

(Barnettetal.,2015)andthusperhapsmicrobiota.

4.2. Effectofforagetypeondigestiveprocesses

Todate,studiesontropicalforageshavelargelyfocusedoncomparisonsofvariousplantspeciesorphysiologicalstages

(Assoumaya,2007).Thehigherintakeoftemperateforagescomparedtotropicaloneswasindependentofsiteconfirming

(10)

withdataontropicalforagescarriedoutintropicalareas.Inthepresentexperiment,itwasobservedalogicalreduction

indigestibilitywithpoorqualityforagesbutalsoanoticeableimprovementindigestibilityoflowerqualityC4foragesin

thetropicalsite.InC4forages,digestibilitybetweenhighandlowqualityhayisseverelyreducedcomparedtoC3and

animalsonthetropicalsiteseembetteradaptedtoextractnutrientsfromthispoorqualityfeedresource.Thecurrentstudy

showsthatgrassphysiologicaltype(temperateC3vstropicalC4)hadmoreinfluenceonrumenfermentationthansite.

DifferencesbetweenforagesinVFAconcentrationandpatterncouldbeexplainedbytheirquality:natureandcontentof

fibreandamountoflignin.Inthepresentstudy,poorqualityforages(HvsL)resultinalowerVFAconcentrationandina

higheracetate:propionateratio,independentlyofthesite.Thisconfirmsliteraturedataontropicalforages:adecreasein

propionaterelativetototalVFA,whileacetateincreasedwithadvancingmaturityoftheC4grassPanicummaximumwas

observed(Assoumaya,2007;Rellingetal.,2001).ThereisnodirectcomparisonbetweenC3andC4grassesintheliterature,so

thatitisdifficulttoknowwhetherdifferencesbetweenC3andC4foragesobservedinthisstudyderivedfromthechemical

composition,suchasthehighercontentofsecondarymetabolitesofDichanthiumannulatum(Awadetal.,2015)present

inthemixtureofDichanthiuminthisstudy.Inameta-analysis(Assoumayaetal.,2007),ruminalOMdigestion,whichis

relatedtoVFAproduction,wassimilarbetweentropicalandtemperateforagesforthesamefibrecontent,suggestingthat

chemicalcompositionplaysamajorroleinthedifferencesfoundbetweentropicalandtemperateforages.Inourexperiment,

butyrateproportionwashigherforLthanforHforages,andhigherafterfeedingfortemperatethanfortropicalforages.

Thissuggeststhatbutyrateproductionisnotdirectlyrelatedtochemicalcomposition.Butyrateisgenerallyassociatedwith

protozoa(Eugèneetal.,2004),butinourstudytherewasnoeffectofforagetypeonnumbersofprotozoa,bacteriaor

methanogens.However,asignificantsite×forageinteractionbetweentemperateandtropicalwasfoundfortotalbacteria,

R.albus,methanogensandprotozoa.Thisshowsthatthesepopulationswerehighestwithtropicalforagesinthetropicalsite,

suggestingthatdegradationofpoorqualityC4foragescharacteristicofthetropicsrequiresadensermicrobialcommunity.

Foragetype(C3vsC4)hadnoeffectonthepopulationnumbersoftotalorcellulolyticbacteriaandmethanogens,whereas

aglobaleffectofforageisshownforbothtotalbacteriaandmethanogens.Thissuggestsaneffectofquality,i.e.nutritive

valueofforages,onthesepopulations.Bycontrast,astrongvariationinruminalbacteriaofyoungsteersfedeitheraC3or

aC4grasswasreported(Pittaetal.,2010).

NodifferenceinmethanogenmcrAcopy numberwasdetectedamongforages, althoughweexpectedtofindmore

methanogenswithtropicalforages,becauseinthistrialtheygeneratedmoreCH4thantemperateforages:17.5and20.7g/kg

DMintakeonaverageforC3temperateforagesandC4tropicalforages,respectively(Archimèdeetal.,2013).Theseresults

areinlinewithpreviousresults(Danielssonetal.,2012;Zhouetal.,2011)whoreportedthatCH4productionwasnotrelated

tototalmethanogenpopulation.Methaneproductioncouldberelatedtomethanogenactivityratherthantheirabundance

(Popovaetal.,2011).

4.3. Effectofbreedondigestiveprocesses

Thereislittleinformationavailableontheextenttowhichrumenfermentationandmicrobesvarybetweensheepbreeds.

Inourexperimenttwocontrastingsheepbreedswerechosen:oneoftemperateoriginandtheotheroftropicalorigin.Overall,

rumenfermentationandmicrobeswerenotaffectedbybreedforanyofthevariablesmeasured.Theabsenceofchangein

ruminalVFAconcentrationbetweengenotypesagreeswithapreviouscomparisonoftwosheepbreeds:alocaloneand

animprovedone(Ile-de-FranceandChurra-da-Terra-Quente)fedthesamediet(Lourenc¸oetal.,2013).Veryfewstudies

havecomparedmorewidely-contrastingbreeds.AcomparisonbetweenlocalBostaurusbreedandaBosindicusbreedin

atropicalenvironmentshowednodifferencesindigestiveprocesses(GrimaudandDoreau,2003).Differencesindigestion

betweenbreedsmaydiffermoreforpoorqualityfeeds,forwhichlocalbreedsshouldbebetteradaptedthanimproved

breeds(Lopezetal.,2001).However,breed×forageinteractionwasnotsignificantinourstudy,andtheabsenceofbreed

effectmightbeduetotheadaptationofruminalmicrobiotaforbothTexelandBlackbellytotheenvironmentwherethe

experimenttookplace,sincetheywerebornandraisedclosetoeachexperimentalsite.Theestablishmentoftherumen

microbiotaisinfluencedbynutritionaland/orenvironmentalexposureinyounganimalsafterbirth.Consequently,induced

variationsinmicrobialpopulationscolonizingtherumencanleadtomodificationsinfermentationandCH4 production

(Abeciaetal.,2013).TheadaptationofTexelandBlackbellymicrobiotatothetemperatevstropicalenvironmentmayhave

reduceddifferencesbetweenbreeds.Inaddition,climateconditionsduringthistrialwerenotextremeenoughtofavor

distinctadaptiveandbehavioralresponsesbetweenbreeds.Unfortunately,theoriginandhistoryofexperimentalanimals

isnotspecifiedinmoststudies.Atthemicrobiallevel,qPCR analysisdidnotrevealanydifferencebetweenTexeland

Blackbelly.Theseresultscorroboratepreviousstudiesshowingthatmethanogens,bacteriaandprotozoapopulationwere

notsignificantlydifferentbetweentwocattlebreeds(Rookeetal.,2014).Incontrasttothisstudy,someauthorshaveshown

theimpactofbreedonpotentialCH4productionandrumenmicrobiotaandsuggestthatthehostanimalexertsacontrolling

effectonitsowngutmicrobiota(Danielssonetal.,2012;Kingetal.,2011).

Differencesinmicrobialpopulationswerepredominantlyattributabletodiet,withthehostbeinglessinfluential.In

additiontofeedcompositioneffects,theenvironmentappearstoinfluencetheestablishmentand developmentofthe

(11)

M.Riraetal./AnimalFeedScienceandTechnology220(2016)226–236 235

5. Conclusion

Thisstudyshowsthatthedifferencesobservedintherumenmicrobiotaofsheepbetweentropicalandtemperatesites

wereintrinsictothelocationandcouldnotbeattributedtolocalforages(temperateC3vstropicalC4)orbreeds.Total

bacteriaandmethanogensweremoreabundantinthetropicalsite.Thisstudyalsoshowstheadaptationcapacityofeach

breedtoitsenvironment,suggestedbythesite×breedinteraction.Futureworkshouldcharacterizethemicrobiotausing

high-throughputsequencingforphylogeneticandmetagenomicanalysistogainabetterunderstandingoftheinfluenceof

theenvironmentinshapingrumenpopulations.

Conflictofinterest

Theauthorsdeclarethattherearenotconflictsofinterest.

Acknowledgments

ThisworkhasbeengrantedbytheFrenchNationalAgencyforResearch(ANR)(EPADprojectANR-09-STRA-01),byRegion

GuadeloupeandotherEuropeanfunding:FEOGA,FEDER,FSE.WethankthestaffofUE1414Herbipôle,INRA(France),

especiallySébastienAlcouffe,AndréGuittardandDenisRoux,thestaffofUE1284PTEA,INRA(Guadeloupe)especiallyFred

Periacarpinforanimalsampling,andDominiqueGraviouforhelpinmicrobialanalyses.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at

http://dx.doi.org/10.1016/j.anifeedsci.2016.08.010.

References

Abecia,L.,Martín-García,A.I.,Martínez,G.,Newbold,C.J.,Yá ˜nez-Ruiz,D.R.,2013.Nutritionalinterventioninearlylifetomanipulaterumenmicrobial colonizationandmethaneoutputbykidgoatspostweaning.J.Anim.Sci.91,4832–4840.

Archimède,H.,Eugène,M.,Marie-Magdeleine,C.,Boval,M.,Martin,C.,Morgavi,D.P.,Lecomte,P.,Doreau,M.,2011.Comparisonofmethaneproduction betweenC3andC4grassesandlegumes.Anim.FeedSci.Technol.166,59–64.

Archimède,H.,Rira,M.,Eugène,M.,Morgavi,D.P.,Anaïs,C.,Periacarpin,F.,Calif,B.,Martin,C.,Marie-Magdeleine,C.,Doreau,M.,2013.Intake,total-tract digestibilityandmethaneemissionofTexelandBlackbellysheepfedC4andC3grassestestedsimultaneouslyinatemperateandatropicalarea.Adv. Anim.Biosci.4,285.

Assoumaya,C.,Sauvant,D.,Archimède,H.,2007.Etudecomparativedel’ingestionetdeladigestiondesfourragestropicauxettempérés.INRAProd. Anim.20,383–392.

Assoumaya,C.,2007.EtudeDesFacteursLimitantl’ingestionChezLesPetitsRuminantsValorisantDesFourragesTropicaux.PhDThesis,Agro.ParisTech., Paris,France,298pp.

Awad,M.M.,Ragab,E.A.,Atef,A.,2015.PhytochemicalinvestigationandbiologicalevaluationofDichanthiumannulatum(Forrsk).J.Sci.Innov.Res.4, 131–137.

Barnett,M.C.,McFarlane,J.R.,Hegarty,R.S.,2015.Lowambienttemperatureelevatesplasmatriiodothyronineconcentrationswhilereducingdigesta meanretentiontimeandmethaneyieldinsheep.J.Anim.Physiol.Anim.Nutr.99,483–491.

Bewley,J.M.,Grott,M.W.,Einstein,M.E.,Schutz,M.M.,2008.Impactofintakewatertemperaturesonreticulartemperaturesoflactatingdairycows.J. DairySci.91,3880–38837.

Chaucheyras-Durand,F.,Masséglia,S.,Fonty,G.,Forano,E.,2010.Influenceofthecompositionofthecellulolyticfloraonthedevelopmentof hydrogenotrophicmicroorganisms,hydrogenutilization,andmethaneproductionintherumensofgnotobioticallyrearedlambs.Appl.Environ. Microbiol.76,7931–7937.

Danielsson,R.,Schnürer,R.,Arthurson,V.,Bertilsson,J.,2012.MethanogenicpopulationandCH4productioninswedishdairycowsfeddifferentlevelsof forage.Appl.Environ.Microbiol.78,6172–6179.

Decruyenaere,V.,Buldgen,A.,Stilmant,D.,2009.Factorsaffectingintakebygrazingruminantsandrelatedquantificationmethods:areview.Biotechnol. Agron.Soc.Environ.13,559–573.

Denman,S.E.,McSweeney,C.S.,2006.Developmentofareal-timePCRassayformonitoringanaerobicfungalandcellulolyticbacterialpopulationswithin therumen.FEMSMicrobiol.Ecol.58,572–582.

Denman,S.E.,Tomkins,N.W.,McSweeney,C.S.,2007.Quantitationanddiversityanalysisofruminalmethanogenicpopulationsinresponsetothe antimethanogeniccompoundbromochloromethane.FEMSMicrobiol.Ecol.62,313–322.

Edwards,J.E.,Huws,S.A.,Kim,E.J.,Kingston-Smith,A.H.,2007.Characterizationofthedynamicsofinitialbacterialcolonizationofnonconservedforagein thebovinerumen.FEMSMicrobiol.Ecol.62,323–335.

Eugène,M.,Archimède,H.,Michalet-Doreau,B.,Fonty,G.,2004.Effectsofdefaunationonmicrobialactivitiesintherumenoframsconsumingamixed diet(freshDigitariadecumbensgrassandconcentrate).Anim.Res.53,187–200.

EuropeanCommission,2010.Directive2010/63/EUoftheEuropeanParliamentandoftheCouncilof22September2010ontheprotectionofanimals usedforscientificpurposes.Off.J.Europ.Union,L276/33-L276-79.Availableat:

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0063&from=EN(accessed12.06.16).

Gerber,P.J.,Steinfeld,H.,Henderson,B.,Mottet,A.,Opio,C.,Dijkman,J.,Falcucci,A.,Tempio,G.,2013.TacklingClimateChangeThroughLivestock−A GlobalAssessmentofEmissionsandMitigationOpportunities.FoodandAgricultureOrganizationoftheUnitedNations(FAO),Rome,Italy. Grimaud,P.,Doreau,M.,2003.Effectsoflevelofintakeandnitrogensupplementationondigestionbycowsinatropicalenvironment.Anim.Res.52,

103–118.

Heip,C.H.R.,Herman,P.M.J.,Soetaert,K.,1998.Indicesofdiversityandevenness.Océanis24,61–87.

Hristov,A.N.,Oh,J.,Firkins,J.L.,Dijkstra,J.,Kebreab,E.,Waghorn,G.,Makkar,H.P.S.,Adesogan,A.T.,Yang,W.,Lee,C.,2013.Mitigationofmethaneand nitrousoxideemissionsfromanimaloperations:I.Areviewofentericmethanemitigationoptions.J.Anim.Sci.91,5045–5069.

(12)

Kelley,R.O.,Martz,F.A.,Johnson,H.D.,1967.Effectofenvironmentaltemperatureonruminalvolatilefattyacidlevelswithcontrolledfeedintake.J.Dairy Sci.50,531–533.

King,E.E.,Smith,R.P.,St-Pierre,B.,Wright,A.D.G.,2011.DifferencesintherumenmethanogenpopulationsoflactatingJerseyandHolsteindairycows underthesamedietregimen.Appl.Environ.Microbiol.77,5682–5687.

Koike,S.,Kobayashi,Y.,2001.DevelopmentanduseofcompetitivePCRassaysfortherumencellulolyticbacteria:Fibrobactersuccinogenes,Ruminococcus albusandRuminococcusflavefaciens.FEMSMicrobiol.Lett.204,361–366.

Lippke,H.,1975.Digestibilityandvolatilefattyacidsinsteersandwethersat21and32◦Cambienttemperature.J.DairySci.58,1860–1864.

Lopez,S.,Frutos,P.,Mantecon,A.R.,Giraldez,F.J.,2001.Comparativedigestionofherbagebytwobreedsofsheep:effectsofgrassmaturitystageandlevel ofintake.Anim.Sci.73,513–522.

Lourenc¸o,A.L.,Cone,J.W.,Fontes,P.,Dias-da-Silva,A.A.,2013.Effectsofsheepbreedandsoybeanmealsupplementationonrumenenvironmentand degradationkinetics.NJASWagen.J.LifeSci.64–65,77–85.

Luton,P.E.,Wayne,J.M.,Sharp,R.J.,Riley,P.W.,2002.ThemcrAgeneasanalternativeto16SrRNAinthephylogeneticanalysisofmethanogen populationsinlandfill.Microbiology148,3521–3530.

Martin,C.,Morgavi,D.P.,Doreau,M.,2010.Methanemitigationinruminants.Frommicrobestothefarmscale.Animal4,351–365.

Martz,F.A.,Payne,C.P.,Matches,A.G.,Belyea,R.L.,Warren,W.P.,1990.Forageintake,ruminaldrymatterdisappearance,andruminalbloodvolatilefatty acidsforsteersin18and32◦Ctemperatures.J.DairySci.73,1280–1287.

Morand-Fehr,P.,Doreau,M.,2001.Alimentationdesruminantssoumisàunstressdechaleur.INRAProd.Anim.14,15–27. Morgavi,D.,Forano,E.,Martin,C.,Newbold,C.J.,2010.Microbialecosystemandmethanogenesisinruminants.Animal4,1024–1036.

Morgavi,D.P.,Martin,C.,Boudra,H.,2013.FungalsecondarymetabolitesfromMonascusspp.reducerumenmethaneproductioninvitroandinvivo.J. Anim.Sci.91,848–860.

Muyzer,G.,DeWaal,E.C.,Uitterlinden,A.G.,1993.Profilingofcomplexmicrobialpopulationsbydenaturinggradientgelelectrophoresisanalysisof polymerasechainreaction-amplifiedgenescodingfor16SrRNA.Appl.Environ.Microbiol.59,695–700.

Ottenstein,D.M.,Bartley,D.A.,1971.ImprovedgaschromatographyseparationoffreeacidsC2-C5indilutesolution.Anal.Chem.43,952–955.

Pavlostathis,S.G.,Miller,T.L.,Wolin,M.J.,1990.CellulosefermentationbycontinuousculturesofRuminococcusalbusandMethanobrevibactersmithii.Appl. Microbiol.Biotechnol.33,109–116.

Pitta,D.W.,Pinchak,W.E.,Dowd,S.E.,Osterstock,J.,Gontcharova,V.,Youn,E.,Dorton,K.,Yoon,I.,Min,B.R.,Fulford,J.D.,Wickersham,T.A.,2010.Rumen bacterialdiversitydynamicsassociatedwithchangingfrombermudagrasshaytograzedwinterwheatdiets.Microb.Ecol.59,511–522.

Popova,M.,Martin,C.,Eugène,M.,Mialon,M.M.,Doreau,M.,Morgavi,D.P.,2011.Effectoffibre-andstarch-richfinishingdietsonmethanogenicArchaea diversityandactivityintherumenoffeedlotbulls.Anim.FeedSci.Technol.166-167,113–121.

Ranilla,M.J.,Jouany,J.P.,Morgavi,D.P.,2007.Methaneproductionandsubstratedegradationbyrumenmicrobialcommunitiescontainingsingle protozoalspeciesinvitro.Lett.Appl.Microbiol.45,675–680.

Relling,E.A.,VanNiekerk,W.A.,Coertze,R.J.,Rethman,N.F.G.,2001.AnevaluationofPanicummaximumcv.Gatton.Theinfluenceofstageofmaturityon dietselection,intakeandrumenfermentationinsheep.S.Afr.J.Anim.Sci.31,85–92.

Romero-Pérez,G.A.,Ominski,K.H.,McAllister,T.A.,Krause,D.O.,2011.Effectofenvironmentalfactorsandinfluenceofrumenandhindgutbiogeography onbacterialcommunitiesinsteers.Appl.Environ.Microbiol.77,258–268.

Rooke,J.A.,Wallace,R.J.,Duthie,C.A.,McKain,N.,deSouza,S.M.,Hyslop,J.J.,Ross,D.W.,Waterhouse,T.,Roehe,R.,2014.Hydrogenandmethaneemissions frombeefcattleandtheirrumenmicrobialcommunityvarywithdiet,timeafterfeedingandgenotype.Br.J.Nutr.112,398–407.

StatisticalAnalysisSystem,2008.SAS/STAT9.2User’sGuide.SASInstitute,Cary,NC.

Sadet,S.,Martin,C.,Meunier,B.,Morgavi,D.P.,2007.PCR-DGGEanalysisrevealsadistinctdiversityinthebacterialpopulationattachedtotherumen epithelium.Animal1,939–944.

Silanikove,N.,1992.Effectsofwaterscarcityandhotenvironmentonappetiteanddigestioninruminants:areview.Livest.Prod.Sci.30,175–1794. Tajima,K.,Nonaka,I.,Higuchi,K.,Takusari,N.,Kurihara,M.,Takenaka,A.,Mitsumori,M.,Kajikawa,H.,Aminov,R.I.,2007.Influenceofhightemperature

andhumidityonrumenbacterialdiversityinHolsteinheifers.Anaerobe13,57–64.

Weatherburn,M.W.,1967.Phenol-hypochloritereactionfordeterminationofammonia.Anal.Chem.39,971–974.

Yu,Z.,Morrison,M.,2004.ImprovedextractionofPCRqualitycommunityDNAfromdigestaandfecalsamples.Biotechniques36,808–813. Zhou,M.,Chung,Y.H.,Beauchemin,K.A.,Holtshausen,L.,Oba,M.,McAllister,T.A.,Guan,L.L.,2011.Relationshipbetweenrumenmethanogensand

Figure

Fig. 1. Relationship between rumen microbes and methane enteric emission according to site (temperate (France, F) vs tropical (French West Indies, FWI)) and origin of forages (Temperate C3 (Temp) vs Tropical C4 (Trop)): high quality and low quality forage

Références

Documents relatifs

Richter-Gebert proved that every non-Euclidean uniform oriented matroid admits a bi- quadratic final polynomial.. We extend this result to the

Le nombre de demandeurs d’emploi à la recherche d’un poste de technicien ou cadre de l’agriculture a fortement augmenté ces dernières années.. Ils sont relativement jeunes :

A fundamental problem, not only of Thiselton’s commentary, but of every reception-historical commentary on the New Testament letters can be illustrated by his ‘note on the

Santé Canada et l’Agence de la santé publique du Canada appuient également des programmes de promotion de la santé à l’intention des enfants des Premières Nations ainsi que

Galerkin solution on the whole domain and the solution computed via do- main decomposition, the decay of the error, given by (46), for the Lagrange multipliers (base-10

Using our laboratory simulations relevant to Titan’s lower atmosphere and surface conditions, the role of HCN condensates seems to be important. UV-VIS-NIR spectroscopy displays

In Section 2, we give conditions under which it is possible to build a classifying space for proper actions of the fundamental group of a complex of groups as a complex of spaces

In this thesis work, stability of coated YBCO conductor samples were studied both experimentally and analytically. Each test sample, 10-cm or 15-cm long and