• Aucun résultat trouvé

MOS INVERTERS

N/A
N/A
Protected

Academic year: 2022

Partager "MOS INVERTERS"

Copied!
133
0
0

Texte intégral

(1)

MOS INVERTERS

Prof. Philippe LORENZINI

Polytech-Nice Sophia

(2)

Pr. Ph.Lorenzini 2

Outline

• Metal Oxyde Semiconductor Structure 

• MOS Transistor

• MOS Inverters

• NMOS 

• CMOS

From MOS Capacitor to CMOS inverter

(3)

• Two definitions (only 2!)

• Work Function (Travail de sortie) : this is the energy we have to give to an electron to extract it of metal without kinetic

energy. It reaches the "vacuum level". Work function is the energy difference between the vacuum level and the highest occupied energy level, ie the Fermi level.

• Electron Affinity (Affinité électronique ) : it’s the difference between the vacuum level and the bottom of the conduction band.

It’s only defined for SC and not for Metal.

• Unity for both of them: eV (electron volt)

eM

eSC

(4)

Pr. Ph.Lorenzini 4

Metal Oxyde Semiconductor Structure

MOS capacitor Energy band diagram of the three components of a MOS system

fi g

SC

SC e

E

   

2 fi

g SC

SC e

E

   

2

From MOS Capacitor to CMOS inverter

(5)

• The field effect is the variation of the conductance of a

channel in a semiconductor by the application of an

electric field

(6)

Pr. Ph.Lorenzini 6

Equilibrium of MOS structure

eM

e

SC

e

SC

E F E F

Metal SC(n)

E V E C

SC SC

M bi

x dx

V d dx

E dV

V

 

 , 2 ( )

2  

             ,     

Independant system

eM

eSC

e

SC

E F E F

Metal SC(n)

E V E C

eVbi

Equilibrium state

dx

From MOS Capacitor to CMOS inverter

(7)

(a) Accumulation (b) Flat band

(c) Desertion / depletion (d) Weak inversion

(e) Strong inversion

(8)

Pr. Ph.Lorenzini 8

Energy band  diagram for  ideal n   and  p   type  MOS  capacitors under different bias conditions

From MOS Capacitor to CMOS inverter

(9)
(10)

Pr. Ph.Lorenzini 10

We suppose we deal with a p type semiconductor:

 0

F Fi

Fi E E

e

Vg Vs

x V

x

V (   )  0 , (  0 )  ,

warning: in few books,  absolute value is not  present!!!!

Field, potential and charges in Silicon

From MOS Capacitor to CMOS inverter

(11)

 Poisson’s Equation :

Charge density

( ) ( ) ( ) ( )

)

( xe p xn xN D xN A x

n N

A

N

D

p

0 0

0 exp( )

kT n e

n iFi

0

exp( )

kT n e

p

i

Fi

 ) )

) ( exp( (

) ) exp( (

)

(

0

kT x V n e

kT x n eV

x

n  

i

 

Fi

 

 

 

 

kT

x p eV

kT x V n e

x

p

i Fi

( )

exp ) )

) ( exp( (

)

( 

0

SC

x dx

V d

 ( )

2

2

 

(12)

Pr. Ph.Lorenzini 12

 

 

   

kT

x eV kT

x eV

e n e

p p

n e x

) ( 0 )

( 0

0

)

0

 (

 

 

   

 (

1 ) (

1 )

)

(

( )

0 )

( 2 0

2

kT x eV kT

x eV

SC

e n e

e p dx

x V d

dx x dV dx

x dV dV

d dx

x dV dx

d dx

x V

d ( ) ( ) ( ) ( )

2 2

 

 

 

 

 

 

) ( )

1 (

) 1 ) (

( )

(

( )

0 )

(

0

e n e dV x

e p dx

x d dV

dx x

dV

eVkTx eVkTx

SC

 

 

   

 

 

From MOS Capacitor to CMOS inverter

Field, potential and charges in Silicon

(13)

• We compute the integral from bulk to  a point x in SC

 

   

 

 

( )

0

) ( 0

) ( 0

) (

0

( ) ( )

V x

(

eVkTx

1 ) (

eVkTx

1 ) ( )

SC x dx

dV

x dV e

n e

e p dx

x d dV

dx x dV

V(x=« bulk »)=0 et ( )  0

dx

bulk

x dV

dx x x dV

E ( )

)

(   And the Electric Field is given by :

 

 

 

 

  

 

 

  

 

 

 

( ) 1

) 1 2 (

) ) (

(

) (

0 ) 0

0 ( 2

2

kT x e eV

p n kT

x e eV

kTp dx

x x dV

E

eV x kT eV x kT

SC

MO S

V g

(14)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 14

 

 

 

 

  

 

 

  

 

 

 

 

 

 

( ) 1

) 1 ( 2

) ) (

(

) (

0 ) 0

( 2

2 2

2

kT x e eV

p n kT

x e eV

L e

kT dx

x x dV

E

eV x kT eV x kT

D

With the Debye length: 

o SC

D e p

L2 kT

If we use the Gauss’s theorem:

SC SC S

E Q x

E ( 0 )  Field, potential and charges in Silicon

metal kT S

V S e

eV kT D

SC

SC

Q

kT eV p

e n kT

e eV L

e

Q kT

S S FI

  

 

 

 

 

 

 

 

2

1

0 0 )

2 (

1

2 1

metal kT S

V S e

eV kT D

SC

SC

Q

kT eV p

e n kT

e eV L

e

Q kT

S S FI

  

 

 

 

 

 

 

 

2

1

0 0 )

2 (

1

2 1

(15)

metal kT S

V S e

eV kT D

SC

SC

Q

kT eV p

e n kT

e eV L

e

Q kT

S S FI

  

 

 

 

 

 

 

 

2

1

0 0 )

2 (

1

2 1

metal kT S

V S e

eV kT D

SC

SC

Q

kT eV p

e n kT

e eV L

e

Q kT

S S FI

  

 

 

 

 

 

 

 

2

1

0 0 )

2 (

1

2 1

For V s (and so V g ) negative (accumulation)

For V s (and V g ) positive but less than 2 fi

(depletion – weak inversion)

For V s (and Vg) > 2 fi

(strong inversion)

(16)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 16

Weak / Strong Inversion

n s =p 0 =N A

 

 

 

i A Fi

S

n

N e

V 2 kT ln

2  

 

 

i A Fi

S

n

N e

V 2 kT ln

2 

This condition will define a very important parameter of the 

struture: the threshold voltage or  the  required gate voltage to put  the transistor in strong inversion  regime

eFI

(17)

The C-V curve is usually measured with a CV meter:

• We apply a DC bias voltage Vg + small sinusoidal signal (100 Hz to 10 MHz)

• We measure the capacitive current with an AC meter (90 degree phase shift)

=> i

cap

/v

ac

=C

(18)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 18

When a voltage Vg is applied to the MOS Gate, part of it appears as a potential drop across oxide and the rest of it appears as a band bending Vs in silicon:

S ox

SC SC

ox

g V

C V Q

V

V  

S

ox SC SC

ox

g V

C V Q

V

V  

M O S V g

V ox V SC

Oxide and Silicon have  capacitor behavior

Measurement of  capacitance in Ideal MOS    Structure

V

G

V

OX

V

S

X V(X)

-t

OX

0

SC is grounded,

so V

SC

=VS

(19)

• Oxide capacitance : as a parallel‐plate capacitor

• We can also write :

F/cm 2

ox ox ox

C d

) (

)

( G S

M S

G M OX

ox M

V V

d

dQ V

V Q V

C Q

 

 

(20)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 20

Semiconductor (silicon) capacitance

S M S

SC SC

dV Q d

dV Q d

oltage

C ( ) ( )

SC) across

v (

SC) in

(charge

 

 

S M S

SC SC

dV Q d

dV Q d

oltage

C ( ) ( )

SC) across

v (

SC) in

(charge

 

 

Measurement of  capacitance in Ideal MOS    Structure

(21)

• Global capacitance of the structure :

• If we combine the 3 relations above :

G SC G

MOS M

dV dQ dV

CdQ  

G SC G

MOS M

dV dQ dV

CdQ  

series in

connected es

capacitanc 2

1 1

1   

SC ox

MOS C C

C 1 1 1 2 capacitanc es connected in series

SC ox

MOS C C

C

M O S V g

V ox V SC

(22)

Pr. Ph.Lorenzini 22

• Total charge in SC depends on different regimes

 2 types of charges, fixed and mobile/free:

dep S

SC Q Q

Q SC  free carriers charges  fixed charges  Q SQ dep Q  free carriers charges  fixed charges  

S dep S

S S

dep S

S sc

SC dV

dQ dV

dQ dV

dQ dQ

dV

C dQ     

 

 ( )

S dep S

S S

dep S

S sc

SC dV

dQ dV

dQ dV

dQ dQ

dV

C dQ     

 

 ( )

Semiconductor capacitance can be written as :

Measurement of  capacitance in Ideal MOS    Structure

From MOS Capacitor to CMOS inverter

(23)

dep S

SC Q Q

Q SC  free carriers charges  fixed charges  Q SQ dep Q  free carriers charges  fixed charges  

dep S

S sc

SC C C

dV

C   dQSdep

S sc

SC C C

dV

C   dQ  

Semiconductor capacitance can be written as :

• Total charge in SC depends on different regimes

 2 types of charges, fixed and mobile/free:

(24)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 24

• Summary: MOS capacitor is equivalent :

- of 2 capacitors series connected, C

OX

and C

SC

- C

SC

is equivalent of two capacitors

- the two are variable and be view as 2 capacitors in //

C ox C sc

C ox

C s C dep

Measurement of  capacitance in Ideal MOS    Structure

Conclusion: the whole capacitance of MOS structure is

function of bias conditions or operating regime through

C SC

(25)

metal kT S

V S e

eV kT D

SC SC

Q

kT eV p

e n kT

e eV L

e

Q kT

S S FI

  

 

 

 

 

 

 

 

2

1

0 0 )

2 (

1

2 1

metal kT S

V S e

eV kT D

SC SC

Q

kT eV p

e n kT

e eV L

e

Q kT

S S FI

  

 

 

 

 

 

 

 

2

1

0 0 )

2 (

1

2 1

Accumulation Regime: V S <0 ie V G <0

2 2 0

eV kT

D SC

SC

e

S

eL QkT

2 2 0

eV kT

D SC

SC

e

S

eL QkT

S g

ox SC

s

SC SC C V V

kT Q e

kT e dV

CdQ   

 2 2

(26)

Pr. Ph.Lorenzini 26

Capacitance of MOS structure

Accumulation Regime: V S <0 ie V G <0

 

 

 

 

S ox g

MOS

S ox g

SC ox

MOS

V V

kT e C

C

V V

kT e C

C C

C

2 1 1

1

1 2 1

1 1

From MOS Capacitor to CMOS inverter

metal kT S

S eV eV kT

D SC

SC

Q

kT e eV

p n kT

e eV L

e

Q kT

S S

  

 

 

 

  

 

 

 

2

1

0

0

1

2 1

C ox

C sc

(27)

Accumulation Regime: V S <0 ie V G <0

 kT=26 meV, in accumulation regime V S is around ‐0,3 V to 

‐0,4 V,   as soon as  V G <‐1 to ‐2 V, so we can simplify to:

S ox ox g

MOS

V V C

kT e C

C

2 1 1 1

1   

 

 

S ox ox g

MOS

V V C

kT e C

C

2 1 1 1

1   

 

 

metal kT S

S eV eV kT

D SC

SC

Q

kT e eV

p n kT

e eV L

e

Q kT

S S

  

 

 

 

  

 

 

 

2

1

0

0

1

2 1

(28)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 28

Capacitance of MOS structure

• Flat Band:   V S =0 V ie V G =0 V (warning : ideal structure!!!!!)

Analytical computing :

D SC

SC fb L

C

 ) (

D SC

SC fb L

C

 ) (

A SC SC

ox ox

ox

D SC ox ox

MOS ox

N e

d kT L

d fb

C

 ) (

A SC SC

ox ox

ox

D SC ox ox

MOS ox

N e

d kT L

d fb

C

)

(

(29)

• Depletion regime and weak inversion

Fi

V S 2  0  V S  2  Fi 0  

20

2 2

2 1 1

 

 

 

S A SC S dep

D SC

SC eN V Q

kT eV eL

Q 2kT 22   1 2 0

1

 

 

 

S A SC S dep

D SC

SC eN V Q

kT eV eL

QkT

dep SC S

SC A

S SC

SC V W

eN dV

C dQ

 

 

 

2

1

2 dep

SC S

SC A

S SC

SC V W

eN dV

C dQ

 

 

 

2

1

2

W

dep

Insulator

(30)

Pr. Ph.Lorenzini 30

Capacitance of MOS structure

• Depletion regime and weak inversion

Fi

V S 2  0  V S  2  Fi 0  

dep SC S

SC A

S SC

SC V W

eN dV

C dQ

 

 

 

2

1

2 dep

SC S

SC A

S SC

SC V W

eN dV

C dQ

 

 

 

2

1

2

) /

2 ( 1 )

( 2

A SC

g ox

ox

dep SC

ox ox

ox

MOS C V eN

C W

d depletion

C

 

 

) /

2 ( 1 )

( 2

A SC

g ox

ox

dep SC

ox ox

ox

MOS C V eN

C W

d depletion

C

 

 

From MOS Capacitor to CMOS inverter

(31)

• Strong inversion V V S S   2 2   Fi Fi

metal kT S

V S e

eV kT D

SC SC

Q

kT eV p

e n kT

e eV L

e

Q kT

S S FI

  

 

 

 

 

 

 

 

2

1

0 0 )

2 (

1

2 1

metal kT S

V S e

eV kT D

SC SC

Q

kT eV p

e n kT

e eV L

e

Q kT

S S FI

  

 

 

 

 

 

 

 

2

1

0 0 )

2 (

1

2 1

2 ( 2 2 )  0

kT V e

D SC

SC

FI S

eL e Q kT

 

2 ( 2 2 )  0

kT V e

D SC

SC

FI S

eL e Q kT

 

kT V e

s D SC SC

FI s

L e dV

C dQ 2

) 2 (

2

 

ox SC

ox

MOS C C C

C

1 1 1

1   

(32)

p type SC

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 32

Capacitance of MOS structure accumulation dep

???

p type SC

Strong inversion

D SC ox ox

ox MOS

L d

fb C

 

 ) (

D SC ox ox

ox MOS

L d

fb C

 

 ) (

 

 

 

S ox g

MOS

V V

kT e C

C

2 1 1

1

dep SC ox ox

ox MOS

W d

depletion C

 ) (

dep SC ox ox

ox MOS

W d

depletion C

)

(

(33)
(34)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 34

Capacitance of MOS structure

Strong inversion:

Which mechanism governs the onset of  strong inversion layer?

 P type SC : we must create electrons at oxide/SC  interface. Where they come from?

 From Metal : NO  because oxide barrier

 From SC (neutral region) : NO minority carriers (e‐)

Only one solution: thermal (or optical) generation

(35)

• Strong inversion:      

• Thermal generation?

• N°1 :In the space charge + dissipation of charge by  electric field

• N°2 : In the neutral region

First mechanism dominates but it’s a slow  one.

recombination +

+ + +

+ p++

EF

space charge

zone diffusion zone

0 W

n

p+ SiO2

n+

metal contact semitransparent

metal

(a)

(b)

(c)

(36)

Pr. Ph.Lorenzini 36

Strong inversion

Which Delay time to create strong inversion layer ?

m i th

g n

 2

m i th

g n

 2

A S

th N

g thSN A

g   m

i A

S n

N

  2 m

i A

S n

N

  2

Strong inversion limit: n S = N A

More realistics

m

i A

S

n

N

  1 - 10

m

i A

S

n

N

  1 - 10

From MOS Capacitor to CMOS inverter

Capacitance of MOS structure

Shockley-Read equation

Si:

n

i

=10

10

cm

-3

N

A

=10

15

cm

-3

s

=1s !!

m

=10

-5

s

(37)

• When we measure C(V) , results depend on YES or NO, we give enough time to create this layer

• YES: we measure capacitance du to inversion layer

• NO : Depletion layer preserves the neutrality of the system with an increase of its width . The limit is the breakdown of the

semiconductor

Results are frequency dependant

(38)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 38

3 cases :

Low frequency +

Slow ramp Vg

x Q

x Q

High frequency +

Slow ramp Vg

x Q

High frequency +

High ramp Vg

Capacitance of MOS structure: strong inversion

(39)
(40)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 40

minimum capacitance (HF):

A sc

i A

ox

e N

n N

kT C

C

min 2

) / ln(

4 1

1

 

) / 4 ln(

2 2

max 2 A i

A sc Fi

A

sc

N n

N e

kT W eN  

BF

HF

Capacitance of MOS structure: strong inversion

(41)

• 2 factors modify « ideal » structure of MOS capacitor.

• The Charges in oxide and/or Charges at interface Oxide – SC.

• The Difference between the work function of the Metal and the SC

Influence on the threshold voltage V T of 

the structure.

(42)

Pr. Ph.Lorenzini 42

• Distribution of charges in the oxide :

• Mobile ionic charge

• Oxide traped charge

• Fixed oxide charge

• Traped charge at Si-SiO

2

interface

K

+

Na

+

Ionic mobiles

- - - - -

+ + + +

traped

+ + + + +

x x x x

SiO 2

SiO x Si

Depending on their position in the oxide, the charges  will influence more or less on the electron population  below the gate.

From MOS Capacitor to CMOS inverter

MOS capacitor :oxide charge

(43)

Effect of a sheet charge of areal density Q within the oxide layer of an MOS capacitor:

Oxyde

x

(x)

V g =0V

Si Metal

0 x 1 Q

x

(x)

V g =V fb

d ox -Q

Q

Oxide charges are 

compensated with charges  in Metal AND SC.

If Vg=Vfb, charges in SC  must be zero. Only Metal

« DO the job »

ox ox ox

ox ox

g

C

Q d

xQ x

V    

 

(44)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 44

• The effect is maximum when the charges are located at the interface oxide - SC, ie Q

ox

=Q

SS

(and no effect if Q

ox

close to Metal)

d ox

x

ox ss

g C

V   Q

FB ox

S ox

S

g V

C V V Q

V   

 ( )

)

( FB

ox S ox

S

g V

C V V Q

V   

 ( )

) (

It is a common practice to define an equivalent oxide charge per unit area Q ox located at the oxide – silicon interface (ie Q SS ):

MOS capacitor :oxide charge

(45)

• Work function difference  non zero oxide field.

• Even when V g = 0 V, structure show a band bending

e

Depletion zone

A gate voltage must be applied to restore the flat band 

condition   V FB =   M S MS : this voltage is called Flat 

Band voltage V FB

(46)

Pr. Ph.Lorenzini 46

• Work function difference.

• Example: polysilicon n + gate on p-MOS

silicium

poly e

n

poly

e silicium

n

fi g

Silicium

SC

e

E

   

2

fi

g Silicium

SC

e

E

   

2

) ln(

56 .

2 0

i

a fi

poly g

MS

n

N e

kT e

E    

 

 0 . 56 ln( )

2

i

a fi

poly g

MS

n

N e

kT e

E    

 

From MOS Capacitor to CMOS inverter

Work function difference

(47)

• Taking into account both Oxide charges and work-

function difference, the global flat band voltage can be written as:

ox ox MS

FB C

V    Q

ox ox MS

FB C

V    Q

Warning: this is the voltage we have to apply

on the gate to restore de flat band condition .

(48)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 48

Threshold voltage

• Key parameter for behavior understanding of transistor

• Many definitions (same results!):

• n

S

= N

A

• V

s

= 2 

fi

• …

(49)

V T is simply the applied gate voltage when the surface  potential or band bending reaches 2 FI and the silicon charge is equal to the bulk depletion charge for that potential

FB Fi

OX

Fi A

SC Fi

S g

T V

C V eN

V

V    

 4 2

) 2

( 

FB Fi

OX

Fi A

SC Fi

S g

T V

C V eN

V

V    

 4 2

) 2

( 

(we suppose here that no  bias of bulk is present  no 

body effect) V

T

V

OX

V

S

=2

FI

X V(X)

-t

OX

0

) 0 ( V

FB

(from slide 16)

(50)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 50

• Substrate sensitivity - Body Effect

• In general the MOS devices have a common silicon substrate

 substrate voltage is equal for all transistor.

• BUT when multiple NFETs (or PFETs) are connected in series in a circuit, they share a common body (the silicon substrate) but their sources do not have the same voltage. We must

introduce a coefficient that accounts for this effect : 

Threshold voltage

(51)

=0

>0 +++++++

<0

>0 +++++++

+ + + - - -

++

One part of Gate voltage is no more used to create inversion layer but just to compensate the extra depletion width  V

T

will increase

+

(52)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 52

• The new threshold voltage taking account the body effect can be written as:

• The substrate sensitivity as:

• Of course substrate bias have to be reverse to prevent current flow

ox T

ox

SB Fi

a sc SB

ox SB

T

C V Q

C

V eN

dV dQ C

dV

dV

 

 

 1  / 2 ( 2 ) et

ox T

ox

SB Fi

a sc SB

ox SB

T

C V Q

C

V eN

dV dQ C

dV

dV

 

 

 1  / 2 ( 2 ) et

Fi SB Fi

T

T

V V

V

T

V

T0

   2 

Fi

V

SB

 2 

Fi

V

0

  2    2 

ox SC A

C eN

  2

ox SC A

C eN

  2

Threshold voltage

(53)

The effect of (reverse) substrate bias is to widen the bulk depletion region and raise the threshold voltage:

• The back contact acts as a back Gate

• We can tune V T !

V V d

FB ox

0 A 200

0 2 4 6 8 10

0,8 1,0 1,2 1,4 1,6

1,8 Na = 1E16 cm-3 Na = 3E15 cm-3

T

Substrate bias voltage V

SB

(V)

Thr eshold volt ag e   (V)      

(54)

MOS-FET

TRANSISTOR

(55)
(56)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 56

Graphical summary of the major processing steps in the formation of a MOSFET Transistor

http://www.youtube.com/watch?v=dR-Qtv-7uWI

(57)

Stockage time ?

(58)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 58

Linear regime

(59)
(60)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 60

Saturation regime

Effective length of canal decreases from L to L’

(61)

L, canal length( y oriented)

W, canal width(z oriented)

V, voltage in the canal (f(y))

V(y=0) = V(source) = V

s

= 0 V

V(y=L) = V (drain) = Vds

Vg, gate voltage

-V BS , body voltage

(62)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 62

Schematic MOSFET cross section (Taur)

(63)

• Analytical solution  we simplify the model:

• Charge sheet approximation (x

i

=0):

• We assume all the inversion charges are located at the silicon interface without any thickness

• No potentiel drop across this layer

• No band bending across this layer

(64)

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 64

First step: calculation of inversion layer charge function of Vg

) ) ( 2

( 2

) (

2 eN V y eN V y

W eN

Q

dep

 

A M

 

A

SC S

 

A

SC

Fi

)) ( 2

( ))

( (

) ( )

( y Q y C V V V y C V V V y

Q

sc

 

métal

 

ox g

FB

S

 

ox g

FB

 

Fi

) ) ( 2

( 2

)) ( 2

( V V V y eN V y

C Q

Q

Q

inv

sc

dep

 

ox g

FB

 

Fi

 

A

SC

Fi

2 1

)) ( 2

( )) 2

( 2

) (

(  

   

 

 

e

y V N

e

y V V

V C e

Q e

Q e

y Q

n

S inv sc dep ox g FB Fi A

SC Fi

Charge sheet approximation

(65)

• Current density in the channel can be caused by diffusion and drift components

• Current is simply given (integration over channel section)

dy dn q

kT dy

y qnμ dV

=

J

n 0

( )

0

i i

i i

x x

DS

x W

x W

DS

dy dx dn q

kT W

dy dx qn dV

W I

dy dx dn q

kT dz

dy dx qn dV

dz

= I

0 0

0 0

0 0

0

0 0

0

There is a sign change because we want I

DS

>0 in –y direction

(66)

• The previous relation can be rewritten

• If we remember that:

• Current expression can be found

• And so, by integrationg from y=0 to y=L and as current is independant of y:

Pr. Ph.Lorenzini From MOS Capacitor to CMOS inverter 66

 

 

 

xi xi

DS

qndx

dy d q kT dy qndx

=W dV

I

 

   

  0 0

0 0

xi

inv

q n x y dx

Q

0

( , )

dy V dQ q kT dy

V dV Q

=

I

DS inv n

( )

)

(

0

0

Charge sheet approximation

 

 

    

((0))

) (

) 0 0 (

0

L Q

Q inv

L V

V inv

L DS

inv inv

q dQ dV kT

Q

=W dy

I

 

   

   

 

conduction diffusion

Références

Documents relatifs

range covered by the experiment two main absorption regions are observed, consisting of one single peak at low energies and a superposition of 3 to 6 peaks a t higher

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

For the impact of long-wave radiative exchanges, three modalities: the building exchanges with the sky without taking into account the masks of the environment and

• Pitch of harmonic complex tones does not change with sound

Indeed, even within the US, a broad coalition involving cities, states, the private sector and civil society has vowed to continue implementing American climate

Following the consultation, the Commission adopted a document on 3 December 2008, proposing a European strategy to manage invasive alien species (Commission of the

Hence, the sea-state energy period T e , the complex maximum and minimum power levels output by the farm, and potentially the storage time constant τ are sufficient to evaluate

Indeed, we have demonstrated that the number of external accesses, and the number of memory conflicts, are directly linked to the processor’s processing and parallelism rates (β and