• Aucun résultat trouvé

Programmed computer model of air infiltration in small residential buildings with oil furnace

N/A
N/A
Protected

Academic year: 2021

Partager "Programmed computer model of air infiltration in small residential buildings with oil furnace"

Copied!
11
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Programmed computer model of air infiltration in small residential

buildings with oil furnace

Konrad, A.; Larsen, B. T.; Shaw, C. Y.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=f17e9bd5-f586-494b-a131-bc4e9e31c5df

https://publications-cnrc.canada.ca/fra/voir/objet/?id=f17e9bd5-f586-494b-a131-bc4e9e31c5df

(2)

Ser

N21d

Conseil national

National Research

no.

860

"

;-'

I

$

de recherches Canada

Council Canada

n 1

,,

.L kc*

PROGRAMMED COMPUTER MODEL OF

AIR INFILTRATION IN SMALL RESIDENTIAL

BUILDINGS

'WITH

OIL FURNACE

by

A.

Konrad,

B.T.

Larsen and

C.Y.

Shaw

Appeared

in

Proceedings, Third International Symposium on

The Use of Computers for Environmental Engineering

Related to Buildings

held in Banff, Alberta, 1 0

-

12 May

1978

p.

637

-

644

ANALYZED

DBR

Paper No. 860

Division

of

Building Research

(3)

This publication is being d i s t r i b u t e d by the Division of Building R e s e a r c h of the National R e s e a r c h Council of Canada. I t should not b e reproduced i n whole o r i n p a r t without p e r m i s s i o n of the o r i g i n a l publisher. The Di- vision would b e glad to b e of a s s i s t a n c e i n obtaining s u c h p e r m i s s i o n .

Publications of the Division m a y b e obtained by m a i l - ing the a p p r o p r i a t e r e m i t t a n c e ( a Bank, E x p r e s s , o r P o s t Office Money O r d e r , o r a cheque, m a d e payable to the R e c e i v e r G e n e r a l of Canada, c r e d i t NRC) t o the National R e s e a r c h Council of Canada, Ottawa. K1A OR6

.

S t a m p s a r e not acceptable.

A l i s t of a l l publications of the Division is available and m a y b e obtained f r o m the Publications Section. Divieion of Building R e s e a r c h , National R e s e a r c h Council of Canada, Ottawa. KIA OR 6.

I

I

1111

3

IIIIII]I~II~II[IUI

9 0020

75

IIIII~I

1111

-

(4)

PROGRAMMED COMPUTER MODEL OF AIR INFILTRATION IN SMALL RESIDENTIAL, BUILDINGS WITH OIL FURNACE

A . Konrad, B .'T. Larsen* and C .Y

.

Shaw

D i v i s i o n o f B u i l d i n g Research, N a t i o n a l Research Council o f Canada Ottawa, Canada

"Norwegian Building Research I n s t i t u t e , Oslo, Norway (Guest worker w i t h DBR/NRC, 1975)

ABSTRACT

-

A computer program f o r t h e p r e d i c t i o n of t h e a i r i n f i l t r a t i o n l o a d i n s m a l l r e s i d e n t i b ? b u i l d i n g s i s d e s c r i b e d . The model r e p r e s e n t s an o i l - f i r e d f u r n a c e , a smoke p i p e w i t h b a r o m e t r i c damper, a chimney and a n o n - p a r t i t i o n e d b u i l d i n g w i t h l e a k a g e openings i n t h e b u i l d i n g envelope. T h i s envelope i n c l u d e s c e i l i n g , w a l l s , windows and d o o r s , t h e l e a k a g e opening of each b e i n g r e p r e s e n t e d by s e v e r a l h o l e s .

The model can b e used t o p r e d i c t a i r f l o w through w a l l , window and door l e a k a g e openings a s w e l l a s t h e chimney, w i t h f u r n a c e on o r o f f . The e f f e c t s o f windspeed, wind d i r e c t i o n and i n d o o r / o u t d o o r t e m p e r a t u r e d i f f e r e n c e s a r e i n c o r p o r a t e d i n t h e model. The computer program p r e d i c t s t h e p o s i t i o n of t h e n e u t r a l p r e s s u r e l e v e l o f each w a l l , t o g e t h e r w i t h t h e o v e r - a l l a i r exchange r a t e and i n f i l t r a t i o n l o a d .

The program i s i n t e n d e d f o r s t u d y o f t h e dynamics o f a i r i n f i l t r a t i o n and f o r computer e x p e r i - m e n t a t i o n w i t h new d e s i g n i d e a s t o reduce t h e energy consumption o f s m a l l r e s i d e n t i a l t y p e b u i l d i n g s .

RESUME

-

Lss auteurs dgcrivent un progx-e inf'ormatique s e r v a n t 2 p r 6 d i r e l ' i n f i l t r a t i o n de l ' a i r dans dc p e t i t s immeubles r g s i d e n t i e l s . Le modsle r e p r E s e n t e une c h a u d i s r e

2

l ' h u i l e , un c o n d u i t de fum6e muni

d'un r$$urateur de tirage baromi.trique, m e cheminge e t un bgtiment s a n s c l o i s o n s dont l ' e n v e l o p p e ccrmporte des o u v e ~ , u r e s de f u i t e . L'enveloppt; englobe p l a f o n d , murs, f e n f t r e s e t p o r t e s , l e s o u v e r t u r e s

de f u i t e de chacun 6 t a n t reprgsentges par p l u s i e u r s t r o u s .

Le modsle s e r t 5 p r g d i r e 1'6coulement de l ' a i r 2 t r a v e r s l e s o u v e r t u r e s d e s murs, d e s I

f e n f t r e s , des p o r t e s e t de l a cheminse, avec e t s a n s fonctionnement de l a c h a u d i s r e . Le modsle englobe l e s e f f e t s de l a v i t e s s e e t de l a d i r e c t i o n du v e n t e t l e s E c a r t s de t e m p g r a t u r e e n t r e l ' i n t g r i e u r e t I ' e x t E r i e u r . Le programme i n f o r m a t i q u e ~ r k d i t l a p o s i t i o n du n i v e a u de p r e s s i o n n e u t r e de chaque mur, a i n s i que l e t a u x d'6change g l o b a l de l ' a i r e t l a charge d ' i n f i l t r a t i o n .

Le programme s e r t

2

6 t u d i e r l a dynamique de l ' i n f i l t r a t i o n de l ' a i r e t 2 s i m u l e r p a r o r d i n a t e u r de nouveaux modsles v i s a n t 2 r 6 d u i r e l a consommation d r k n e r g i e des p e t i t s immeubles r g s i d e n t i e l s .

INTRODUCTION

I t i s known from a i r leakage and p r e s s u r e measurements on houses (Tamura and Wilson, 1963; ~ u n t and Burch, 1975; B a h n f l e t h , Moseley and H a r r i s , 1957 ( a ) ( b ) ) t h a t a i r i n f i l t r a t i o n may a c c o u n t f o r a s i g n i f i c a n t f r a c t i o n o f t h e h e a t i n g

l o a d . With t h e growing importance o f energy con. s e r v a t i o n , t h e v a l u e o f computer s i m u l a t i o n o f a i r i n f i l t r a t i o n f o r p r e d i c t i n g t h e a i r exchange r a t e h a s become more and more i m p o r t a n t .

on o r o f f f o r any combination o f windspeed, wind d i r e c t i o n and i n d o o r / o u t d o o r t e m p e r a t u r e s . The program comprises a MAIN and t h e f o l l o w i n g s u b r o u t i n e s (Larsen, 1977) .

INFILT f o r t h e s i m u l a t i o n o f a i r i n f i l t r a t i o n / e x f i l t r a t i o n through t h e l e a k a g e openings i n t h e b u i l d i n g envelope;

FLOWS f o r t h e computation o f a i r f l o w through t h e h o l e s r e p r e s e n t i n g leakage openings; T h i s p a p e r d e s c r i b e s a computer model f o r t h e PCDEF f o r o b t a i n i n g wind p r e s s u r e c o e f f i c i e n t s s t u d y of a i r i n f i l t r a t i o n i n s m a l l r e s i d e n t i a l t y p e a t t h e b u i l d i n g e x t e r i o r s u r f a c e s ; b u i l d i n g s . The model c o n s i s t s o f a f o r c e d - a i r

h e a t i n g system w i t h o i l - f i r e d f u r n a c e and a non- WIND f o r c o n v e r t i n g windspeed measured a t t h e p a r t i t i o n e d b u i l d i n g (Larsen, 19 76) . The computer m e t e o r o l o g i c a l s i t e t o windspeed a t t h e program p r e d i c t s t h e a i r exchange r a t e w i t h f u r n a c e b u i l d i n g s i t e ;

(5)

CHMNEY f o r t h e s i m u l a t i o n of t h e g a s flow i n t h e c = wind p r e s s u r e c o e f f i c i e n t a t j - t h h o l e smoke p i p e , b a r o m e t r i c damper and chimney; j ( d e f i n e d a s t h e r a t i o of a v e r a g e s u r f a c e

wind p r e s s u r e t o v e l o c i t y p r e s s u r e due t o FFACT f o r t h e computation o f f r i c t i o n f a c t o r s f o r wind a t t h e same h e i g h t ) ;

gas flow i n t h e smoke p i p e and chimney;

r = d e n s i t y of o u t s i d e a i r ;

0

PRESSR f o r t h e computation o f t h e p r e s s u r e w = windspeed a t t h e b u i l d i n g s i t e ; d i f f e r e n c e a c r o s s t h e b a r o m e t r i c damper;

g = g r a v i t a t i o n a l a c c e l e r a t i o n ;

FRNACE f o r t h e s i m u l a t i o n o f t h e g a s flow from t h e h . = h e i g h t o f j - t h h o l e above t h e ground l e v e l .

o i l f u r n a c e . J

The f o l l o w i n g s e c t i o n s d e s c r i b e t h e mathematical P r e s s u r e , Pij, i s g i v e n by t h e a l g e b r a i c sum o f model and t h e v a r i o u s a l g o r i t h m s implemented i n t h e t h e i n t e r i o r p r e s s u r e a t ground l e v e l and t h e computer program, s t a t i c p r e s s u r e of t h e a i r column i n s i d e t h e

b u i l d i n g from ground l e v e l t o t h e j - t h c r a c k . AIR LEAKAGE MODEL

C o n s i d e r t h e b u i l d i n g shown i n F i g . 1 . Assume t h a t t h e r e a r e no i n t e r n a l p a r t i t i o n s . Every e x t e r i o r w a l l , window and door i s assumed t o have l e a k a g e o p e n i n g s . I n t h e model t h e s e leakage openings a r e r e p l a c e d w i t h N number o f h o l e s e q u a l l y spaced a l o n g t h e h e i g h t o f t h e component. I f t h e combined r e s i s t a n c e i s Rt and t h e flow exponent i s n, each o f t h e N h o l e s has a r e s i s t a n c e o f

The flow r e s i s t a n c e Rt i s i n SI u n i t s , i . e . , i n pa/ (m3/s) l / n .

where P1 i s t h e i n t e r i o r p r e s s u r e a t t h e ground l e v e l and ri i s t h e d e n s i t y o f indoor a i r . When indoor t e m p e r a t u r e i s T i , ri i s g i v e n by t h e e q u a t i o n of s t a t e f o r i d e a l g a s

where R i s t h e g a s c o n s t a n t f o r a i r . The d e n s i t y o f outdoor a i r ro when t h e outdoor t e m p e r a t u r e i s

To c a n b e o b t a i n e d from a n e q u a t i o n s i m i l a r t o ( 5 ) . The volume flow of a i r through t h e j - t h h o l e i n By s u b s t i t u t i n g e q u a t i o n s (1) and ( 3 ) t o (5) t h e b u i l d i n g envelope i s g i v e n by i n e q u a t i o n (2) and m u l t i p l y i n g by t h e d e n s i t y r ,

one o b t a i n s t h e mass flow r a t e o f a i r through t h e n j - t h h o l e a s ( 2) w 2 where G . J = s r R n

1.

+;

k

+ s = +1 i f (Poj

-

Pi j ) > 0 ( a i r i n f i l t r a t i o n ) = -1 i f (Poj

-

P i j ) < 0 ( a i r e x f i l t r a t i o n ) ; Poj = p r e s s u r e o u t s i d e b u i l d i n g a t j - t h h o l e ; P i j = p r e s s u r e i n s i d e b u i l d i n g a t j - t h h o l e ; Rj = v a l u e o f r e s i s t a n c e t o a i r l e a k a g e o f j - t h where = ri if = and = ro if = h o l e i n b u i l d i n g e n c l o s u r e a s d e f i n e d by ( 1 ) ; (Larsen

,

1976).

n j = flow exponent f o r j - t h h o l e i n b u i l d i n g I f t h e r e a r e m h o l e s i n t h e b u i l d i n g envelope e n c l o s u r e . and t h e mass flow r a t e of a i r t o t h e o u t s i d e

t h r o u g h t h e chimney i s -Gc, then mass b a l a n c e P r e s s u r e , P OJ

.,

i s g i v e n by t h e a l g e b r a i c sum o f t h e r e q u i r e s t h a t

atmospheric p r e s s u r e a t ground l e v e l , t h e dynamic

wind p r e s s u r e and t h e s t a t i c p r e s s u r e o f t h e a i r m

column o u t s i d e t h e b u i l d i n g from t h e ground t o t h e

1

G . - G = O

j - t h h o l e . J C

j =1 w

P = P + c r - -

0 j j o 2 r o g h j ( 3 ) The s u b r o u t i n e WIND f i n d s t h e c o n v e r s i o n f a c t o r f o r changing windspeed a t t h e weather s t a t i o n where b u i l d i n g h e i g h t o v e r a f l a t , suburban o r c i t y 10 m above a f l a t t e r r a i n t o windspeed a t t h e

(6)

PCOEF f i n d s t h e wind p r e s s u r e c o e f f i c i e n g c j f o r any g i v e n s u r f a c e o r i e n t a t i o n and wind d i r e c t i o n and f o r one of t h e f o l l o w i n g e i g h t b u i l d i n g dimen- s i o n s

Height Length

NO. Width Width

The p r e s s u r e c o e f f i c i e n t c j r e p r e s e n t s an a v e r a g e v a l u e over t h e s u r f a c e and i s o b t a i n e d by averaging and i n t e r p o l a t i n g t h e r e s u l t s p r e s e n t e d by Chien e t a 1

.,

1951. The s u b r o u t i n e FLOWS computes Gj f o r any assumed v a l u e o f t h e i n t e r n a l p r e s s u r e P i . S i m i l a r l y , t h e s u b r o u t i n e CHMNEY r e t u r n s a v a l u e f o r Gc depending on t h e o p e r a t i o n of t h e f u r n a c e . F i n a l l y , i n s u b r o u t i n e INFILT a n i t e r a t i v e procedure based on t h e R e g u l a - F a l s i method (Rektorys, 1969)

i s s e t up t o f i n d an approximation t o Ply t h e r o o t of t h e n o n - l i n e a r a l g e b r a i c e q u a t i o n ( 7 ) .

F i g . 1 . I t c o n s i s t s of a chimney and a horizon- t a l smoke p i p e with b a r o m e t r i c damper (Larsen, 1976; Colborne and M o f f a t t , 1959; M o f f a t t and Colborne, 1959). The mathematical model a l l o w s t h e computation of t h e gas flow Gc i n t h e chimney, g i v e n t h e p r e s s u r e P1 a t t h e ground l e v e l i n s i d e t h e house and t h e g a s flow Gf from t h e f u r n a c e . The model does n o t t a k e h e a t l o s s e s from t h e smoke p i p e and chimney i n t o a c c o u n t . The chimney c r o s s - s e c t i o n i s r e c t a n g u l a r , t h e smoke p i p e c r o s s - s e c t i o n c i r c u l a r .

P r e s s u r e , Pb, a t t h e barometric damper opening j u s t o u t s i d e t h e smoke p i p e i s g i v e n i n terms of p r e s s u r e P1 a s

where hz i s t h e d i s t a n c e between t h e ground l e v e l and t h e a x i s o f t h e smoke p i p e (h2 is n e g a t i v e i f t h e smoke p i p e i s l o c a t e d below ground l e v e l ) .

P r e s s u r e , P3, a t t h e chimney opening i s , th e a l g e b r a i c sum o f atmospheric p r e s s u r e a t ground l e v e l , wind p r e s s u r e , and t h e weight o f a column of outdoor a i r p e r u n i t a r e a extending from t h e chimney t o p t o ground l e v e l

Once t h e indoor p r e s s u r e P1 a t ground l e v e l i s

known, t h e h e i g h t of t h e n e u t r a l p r e s s u r e l e v e l a t P = P + c r - - r o g h 3 w2

3 0 2 (1 2)

each s u r f a c e o r w a l l of t h e b u i l d i n g c a n be d e t e r - mined. The indoor p r e s s u r e P i a t any given h e i g h t h i s g i v e n b y

where c i s t h e wind p r e s s u r e c o e f f i c i e n t a t t h e chimney t o p (a v a l u e of -0.5 was used) and hs i s P. = P - r . g h (8) t h e d i s t a n c e between ground l e v e l and t h e t o p o f

1 1 1 t h e chimney.

The outdoor p r e s s u r e Po a t h e i g h t h i s given by P r e s s u r e , P2, i n s i d e t h e smoke p i p e a t t h e barometric damper (on t h e s i d e n e a r e s t t h e f u r n a c e ) i s given, by B e r n o u l l i ' s e q u a t i o n , a s P = P + c r o w -

rag

h (9 t h e a l g e b r a i c sum o f P3, t h e weight of a column

o f a i r p e r u n i t a r e a i n t h e chimney, t h e p r e s s u r e l o s s due t o f r i c t i o n a t t h e smoke p i p e and

By e q u a t i n g indoor and outdoor p r e s s u r e s , one can chimney w a l l s , and p r e s s u r e l o s s due t o a change o b t a i n a n e q u a t i o n t h a t can be s o l v e d f o r h e i g h t h i n f l u e - g a s v e l o c i t y w Z v C

'

v L P I - P - c r

-

f 0 2 h = (10) i

-

0 where For each w a l l , h i s computed i n t h e MAIN program

a c c o r d i n g t o e q u a t i o n ( 1 0 ) . Note t h a t a ) i n t h e absence of wind e f f e c t s t h e n e u t r a l l e v e l i s t h e same f o r e v e r y w a l l of a b u i l d i n g , and b) when indoor/outdoor a i r d e n s i t i e s a r e e q u a l ( i - e . , i n t h e absence of s t a c k e f f e c t ) , h becomes i n d e t e r - minate [when such a c o n d i t i o n a r i s e s . t h e Droeram

rc = d e n s i t y of f l u e g a s e s i n t h e chimney; DE = p r e s s u r e drop due t o f r i c t i o n l o s s e s i n

t h e smoke p i p e and chimney;

vc = v e l o c i t y o f f l u e g a s e s i n t h e chimney; rf = d e n s i t y o f f l u e g a s e s l e a v i n g t h e furnace;

.

-

computes a f i n i t e b u t v e r y l a r g e h )

.

vf = v e l o c i t y o f f l u e g a s e s e n t e r i n g t h e smoke p i p e .

MODEL FOR FLUE-GAS EXHAUST SYSTEM

The p r e s s u r e drop DE due t o f r i c t i o n l o s s e s i s The f l u e - g a s exhaust system i s i l l u s t r a t e d i n given by t h e following e x p r e s s i o n

(7)

where

Z = p r e s s u r e l o s s c o e f f i c i e n t f o r t h e branch from t h e smoke p i p e t o t h e b a r o m e t r i c damper;

B = number of elbows i n t h e smoke p i p e ;

A = smoke p i p e c r o s s - s e c t i o n a l a r e a ; S f = Darcy's f r i c t i o n f a c t o r f o r flow i n t h e S smoke pipe; L = smoke p i p e l e n g t h ; s D s = smoke p i p e diameter; f = Darcy's f r i c t i o n f a c t o r f o r flow i n t h e C chimney; L = chimney l e n g t h = h s - h n ; C

D = chimney h y d r a u l i c diameter = 4Ac/Pc;

C A = chimney c r o s s - s e c t i o n a l a r e a ; C P = chimney c r o s s - s e c t i o n a l p e r i m e t e r . C d i f f e r e n c e P4 - P2 a c r o s s t h e damper opening i s I

compared with t h e barometric damper d r a f t s e t t i n g . I f P4

-

P2 exceeds t h e d r a f t s e t t i n g D ( 7 . 5 Pa was

u s e d ) , t h e n t h e damper opens and t h e mass flow

1

r a t e of f l u e g a s e s Gc i n t h e chimney i n c r e a s e s by

Gd, t h e mass flow r a t e of a i r through t h e b a r o - m e t r i c damper. An i t e r a t i v e procedure based on

t h e simple method of b i s e c t i o n (Rectorys, 1969) i s I used i n t h e s u b r o u t i n e C W E Y t o f i n d t h e flow I

r a t e Gc f o r which t h e p r e s s u r e d i f f e r e n c e P4 - P2 e q u a l s ( o r j u s t b a r e l y exceeds) t h e d r a f t s e t t i n g

D . In o r d e r t o s t a r t t h e i t e r a t i v e procedure, t h e flow r a t e G f of t h e g a s e s from t h e f u r n a c e must be g i v e n . Gf i s computed by t h e s u b r o u t i n e FRNACE.

OIL FURNACE MODEL

I

Consider a f o r c e d - a i r h e a t i n g system w i t h a n o i l - f i r e d f u r n a c e t h a t u s e s No. 2 f u e l o i l . T h i s f u e l o i l h a s an average s p e c i f i c g r a v i t y (SG) of 0.856 a t a temperature o f 15.56"C. I t s Higher Heating Value (HHV) i n J / k g i s e s t i m a t e d from

(ASHRAE, 1977)

HHV = 2,326 (22,320

-

3,780 SG) = 44,390,128 (16) The p r e s s u r e l o s s c o e f f i c i e n t , Z, f o r t h e branch

from t h e smoke p i p e t o t h e b a r o m e t r i c damper can b e computed from t h e f o l l o w i n g e x p r e s s i o n i f t h e b a r o - m e t r i c damper d r a f t s e t t i n g , D, t h e mass flow r a t e Gf o f f l u e g a s e s l e a v i n g t h e f u r n a c e , and t h e i r a v e r a g e temperature Tf a r e known (Daugherty and F r a n z i n i , 1965). I t s composition according t o t h e d a t a p u b l i s h e d b y ASHRAE (1977) i s I Carbon (C) : 85 p e r c e n t (average) Hydrogen (H): (26

-

1 5 SG) = 13 p e r c e n t Sulphur (S) : 0 . 5 p e r c e n t (maximum)

The remaining 1 . 5 p e r c e n t i s assumed t o be 2D n 2 D: P D miscellaneous contaminants with no h e a t v a l u e .

z = -

-1 = - 1

2 (1 5)

r f f 8 R Tf Gf The mass flow r a t e of f l u e gases Gf l e a v i n g t h e

f u r n a c e when t h e f u r n a c e i s on can b e computed

2 is computed i n t h e s u b r o u t i n e FRNACE. from (ASHRAE, 1977)

The Darcy's f r i c t i o n f a c t o r s f s and f c a r e f u n c t i o n s of Reynolds number, a b s o l u t e roughness and h y d r a u l i c d i a m e t e r of p i p e . They can be computed from t h e Hagen-Poiseuille formula f o r Reynolds number l e s s t h a n 3000 and from t h e Colebrook and Karman formulae f o r h i g h e r Reynolds numbers (Daugherty and F r a n z i n i , 1965). The Reynolds number can be c a l c u l a t e d from t h e h y d r a u l i c diameter of t h e p i p e , t h e v e l o c i t y , and t h e dynamic v i s c o s i t y of t h e g a s e s ( t h e l a t t e r was taken a s t h e same a s f o r a i r ( K r e i t h , 1965). The Reynolds numbers and t h e v i s c o s i t i e s a r e computed i n t h e s u b r o u t i n e PRESSR. The f u n c t i o n s u b r o u t i n e FFACT computes t h e Darcy's f r i c t i o n f a c t o r s and p a s s e s them t o PRESSR, which i n t u r n c a l c u l a t e s t h e p r e s s u r e drop DE due t o f r i c t i o n l o s s e s and

p r e s s u r e P2 a t t h e damper i n s i d e t h e smoke p i p e , assuming t h a t t h e b a r o m e t r i c damper i s c l o s e d ( i . e . assuming t h a t t h e g a s flow Gc i n th e chimney e q u a l s t h e g a s flow Gf from t h e f u r n a c e ) . P2 i s passed on

to t h e s u b r o u t i n e CHMNEY.

The p r e s s u r e , Pq, a t t h e damper o u t s i d e t h e smoke p i p e i s computed i n t h e s u b r o u t i n e INFILT and i s passed on t o CHFgNEY where t h e p r e s s u r e

where t h e 1 on t h e r i g h t a c c o u n t s f o r a u n i t mass of f u e l o i l burned, A s t a n d s f o r t h e r a t i o of mass of a i r s u p p l i e d f o r combustion t o mass o f a i r t h e o r e t i c a l l y n e c e s s a r y f o r combustion (1.75 was u s e d ) , and F i s t h e b u r n e r c a p a c i t y ( i . e . , mass o f f u e l o i l burned p e r u n i t t i m e ) . I t should be noted h e r e t h a t t h e p o r t i o n of Gf t h a t i s w a t e r vapour i s given by 0.085 IIF. For power b u r n e r s , t h e mass flow r a t e of g a s e s l e a v i n g t h e f u r n a c e during t h e o f f - c y c l e period i s approximately 45 p e r c e n t of t h e mass flow r a t e Gf d u r i n g t h e on- c y c l e p e r i o d .

The number of on/off b u r n e r c y c l e s p e r hour (Nc) v a r i e s a c c o r d i n g t o t h e f u r n a c e load f a c t o r ( f )

.

I t i s obvious t h a t a t no load (f = 0.0)

Nc = 0.0 and a t f u l l l o a d ( f = 1.0) Nc = 1 . 0 . Between t h e s e two extremes, a t 50 p e r c e n t l o a d

(f = 0 . 5 ) , Nc a t t a i n s i t s maximum v a l u e M ( t y p i c a l l y 6) (Bonne and Johnson, 1974; Bonne, Torborg and J a n s s e n , 1975). Thus, Nc can b e expressed a s a q u a d r a t i c polynomial i n f

(8)

N = 2(1

-

2M) f 2 + (4M

-

1) f (18) Provided t h a t an e s t i m a t e o f t h e c o n s t a n t a may be computed from OStart can be found,

I A complete c y c l e c o n s i s t s of a n on-cycle period and

an o f f - c y c l e p e r i o d . T h e i r d u r a t i o n i n seconds i s

given by a = - T on loge [ : o n s : % t a r t ] (251 ons ' o f f s

f ton = 3,600 -

Nc The temperature a t t h e end o f t h e on-cycle period, and

estop,

can be o b t a i n e d by e v a l u a t i n g e q u a t i o n

(24) a t time t = ton. 1

toff = 3,600 -

-

t

on (20)

Nc period has two d i s t i n c t p a r t s , each d e s c r i b e d by The temperature f a l l d u r i n g a n o f f - c y c l e a decaying e x p o n e n t i a l . During t h e f i r s t p a r t o f r e s p e c t i v e l y . I f t h e s t e a d y - s t a t e o f f - c y c l e tem- a n o f f - c y c l e period t h e a i r c i r c u l a t i o n f a n i s on p e r a t u r e of t h e f l u e gases l e a v i n g t h e furnace i s and t h e temperature i s given by

( t y p i c a l l y 21°C), t h e average on-cycle f l u e gas temperature i s Ton and t h e average o f f - c y c l e f l u e gas temperature i s Toff, t h e n t h e h e a t l o s s

during one on-cycle p e r i o d i s given by 'off1 ( t

'1

= 'ons - ['ons

-

'offs]

+ 0.085 H E F]ton (21) t' + b Lon = rGfCpf (Ton - 'offs)

where Cpf i s t h e s p e c i f i c h e a t of t h e f l u e g a s e s

I

I - e

-E]

(26)

(taken a s t h e same a s t h e s p e c i f i c h e a t of a i r a t temperature Ton) and E i s t h e h e a t of v a p o r i z a t i o n of water a t temperature S i m i l a r l y , t h e h e a t

l o s s d u r i n g one o f f - c y c l e period i s given by where t ' i s t h e time measured from t h e s t a r t of t h e o f f - c y c l e and r o f f l i s a time c o n s t a n t

( t y p i c a l l y 150 s ) . The c o n s t a n t b r e p r e s e n t s t h e Loff = 0.45 G €

(Toff - 'of f s ) tof f (22) time i n t e r v a l t h a t corresponds t o t h e temperature

f P drop from t h e s t e a d y - s t a t e on-cycle f l u e g a s

temperature

eons

t o t h e temperature a t t h e where C i s t h e s p e c i f i c h e a t of a i r a t temperature end of t h e on-cycle ( s e e F i g . 2 ) . I t 1s g i v e n by T o f f Fhus t h e f u r n a c e e f f i c i e n c y Ef can be

computed from

b = - T 'st0 'offs (271 CLon + Loff)

Nc

o f f 1 l o g e

[eOn1

1

iOffiJ

E f = 1 -

3,600 F HHV f (23)

The average on- and o f f - c y c l e temperatures Ton Assuming t h a t t h e a i r c i r c u l a t i o n f a n i s and Toff needed t o f i n d t h e l o s s e s Lon and Loff can c o n t r o l l e d by thermostat and t h a t t h e f a n s t o p s be c a l c u l a t e d i f one assumes t h a t t h e f l u e gas tem- when t h e f l u e g a s temperature f a l l s t o Ofan p e r a t u r e d u r i n g t h e on- and o f f - c y c l e s can be r e p r e - ( t y p i c a l l y 55"C), t h e l e n g t h o f time t h e f a n i s s e n t e d by r i s i n g o r decaying e x p o n e n t i a l f u n c t i o n s on ( t f a n ) can be o b t a i n e d from e q u a t i o n s (26) and of time ( t ) , r e s p e c t i v e l y (Larsen, 1976; Bonne and (27) a s

Johnson, 1974; Bonne, e t a 1 1975). A t y p i c a l s i t u a - t i o n i s i l l u s t r a t e d i n Fig. 2. In t h e g e n e r a l case, t h e on-cycle f l u e gas temperature e o n ( t ) can be

expressed a s t f a n = - T ("fan

:

%ffs'; (28)

+ a o f f 1 l o g e 'stop ' o f f s

[

-5

eon

( t ) = (eons

-

e o f f s ) 1

-

e + Ooffs (24)

During t h e second p a r t o f t h e o f f - c y c l e , when t h e a i r c i r c u l a t i o n f a n i s t u r n e d o f f , t h e temperature i s given by

where

eons

i s t h e s t e a d y - s t a t e on-cycle f l u e g a s

temperature ( t y p i c a l l y 3 0 0 ' ~ ) and T~~ i s a time 'off2 ( t ' ) = 'fan - ['fan - e o f f s

c o n s t a n t ( t y p i c a l l y 100 s )

.

The c o n s t a n t , a, r e p r e - s e n t s t h e time i n t e r v a l t h a t corresponds t o t h e

1

temperature r i s e from t h e s t e a d y - s t a t e o f f - c y c l e

I

-

t'

-

tfan f l u e g a s temperature t o t h e temperature

(9)

642

where ~ ~ f f 2 i s a time c o n s t a n t ( t y p i c a l l y 500 s ) . The computer program p r e d i c t i o n s o f t h e The temperature a t t h e end o f t h e o f f - c y c l e , n e u t r a l l e v e l s a t each e x t e r i o r w a l l o f t h e house

eend

= O o f f 2 ( t t = t o f f ) must equal t h e temperature a r e u s e f u l f o r v i s u a l i z i n g t h e e f f e c t s on a i r

1

estart

a t t h e beginning of t h e next o n - c y c l e . i n f i l t r a t i o n of indoor/outdoor temperature

d i f f e r e n c e s , windspeed, wind d i r e c t i o n and I n t h e s u b r o u t i n e FRNACE, a n i t e r a t i v e furnace o p e r a t i o n . For example, t h e computed

'

procedure based on s u c c e s s i v e e v a l u a t i o n s o f n e u t r a l l e v e l s a t a f u r n a c e load f a c t o r of 0 . 5

e q u a t i o n s (24) through (29) is s e t up t o match f o r t e s t No. 2 a r e

BStart t o eend. TO begin t h e i t e r a t i o n s , t h e

i n i t i a l v a l u e of

estart

i s computed from equation

(24) by s e t t i n g t = 0 and a = 0. When Wall o r i e n t a t i o n NE SE SW

NW

estart

and

eend

match w i t h i n 0.55 c e n t i g r a d e deg,

t h e i t e r a t i o n s t o p s and t h e average temperatures Furnace on, h 4.80 m 1 . 5 3 m 2.33 m 1 . 5 3 Rt Furnace o f f , h 4.57 m 1 . 3 1 m 2.11 m 1.31 m

Ton and Toff a r e computed. Ton i s found by

i n t e g r a t i n g Oon(t) between t h e l i m i t s t = 0 and Wind speed: 1 6 . 3 km/h

t = ton and then d i v i d i n g t h e r e s u l t o f t h e Windfrom: NE

i n t e g r a t i o n by ton. Toff i s found by i n t e g r a t i n g Indoor temp: 21.1 "C

eOffl

( t ' ) from t ' = 0 t o t ' = t f a n and

eoff2

( t ' ) Outdoor temp: - 3 . 9 " ~

from t ' = t f a n t o t ' = toff and then d i v i d i n g t h e i r

sum by t o f f . Ton and Toff a r e needed t o compute

t h e e f f i c i e n c y given by equation (23) and, t h e The house i s 3.05 m h i g h . I t i s e v i d e n t p r e s s u r e l o s s c o e f f i c i e n t Z given by e q u a t i o n (15). t h a t when t h e f u r n a c e i s on, t h e n e u t r a l l e v e l s

a r e r a i s e d ( h i g h e s t on t h e upwind w a l l ) . Below t h e n e u t r a l l e v e l s a i r flow is i n t o t h e

PRESENTATION OF RESULTS AND house, above it, o u t o f t h e house. For compari-

COMPARISON WITH MEASUREMENTS son, t h e r e s u l t s f o r t e s t No. 5 a r e a s f o l l o w s The computer program was t e s t e d a g a i n s t a i r

i n f i l t r a t i o n measurements on a o n e - s t o r e y house Wall o r i e n t a t i o n NE SE SW NW

(Tamura and Wilson, 1963) u s i n g t h e t r a c e r gas Furnace on, h 2.27 m 2.75 m 2.08 m 4.20 m

t e c h n i q u e (Dick, 1950). The a i r leakage c h a r a c t e r - F u r n a c e o f f , h 2.11m 2 . 6 0 m 1 . 9 2 m 4 . 0 4 m i s t i c s of t h e same house were measured by t h e

method of p r e s s u r i z a t i o n (Tamura, 1975). Thus, Wind speed: 1 6 . 6 km/h

leakage r e s i s t a n c e s of t h e roof and e x t e r i o r w a l l s , Wind from: NW

windows and doors were c a l c u l a t e d from a i r flow Indoor temp: 23.9"C

r a t e s measured by Tamura (1975; s e e T a b l e s 1, 2, Outdoor temp: -9.4"C

5, House No. 4) by applying e q u a t i o n s (1) and ( 2 ) . I n t h e program t h e leakage openings of each

component were r e p r e s e n t e d a r b i t r a r i l y by f o u r The computer program r e t u r n s many more d e t a i l s h o l e s (N = 4 ) . The flow exponent used f o r roof and than i t i s p o s s i b l e t o reproduce h e r e (e.g., a i r w a l l s was 0.65, and f o r d o o r s and windows 0 . 5 . flow r a t e s f o r t h e chimney and f o r each h o l e when

t h e f u r n a c e i s on and when it i s o f f ; t h e The computer program was r u n f o r a l l t h i r t y p r e s s u r e a t ground l e v e l r e l a t i v e t o outdoor combinations of indoor/outdoor temperature, wind- p r e s s u r e a t t h e same l e v e l ; f u r n a c e e f f i c i e n c y )

.

speed and wind d i r e c t i o n given by Tamura and Wilson,

(1963; s e e Table 111). The c o r r e l a t i o n of computed

and measured a i r exchange r a t e s i s p r e s e n t e d i n Fig. CONCLUSIONS

3. Some of t h e measurements were taken with t h e

f u r n a c e t u r n e d o f f ; some were t a k e n with i t A mathematical model f o r a i r i n f i l t r a t i o n i n o p e r a t i n g . A s f u r n a c e load f a c t o r s a r e not known, small houses has been p r e s e n t e d i n d e t a i l and a t h e computations were c a r r i e d o u t f o r load f a c t o r s computer program implementation b r i e f l y o u t l i n e d . of 0, 0.25, 0.5, 0.75 and 1 . The r e s u l t s i n d i c a t e The program i s capable of p r e d i c t i n g t h e a i r a f a i r l y s t r o n g v a r i a t i o n i n a i r leakage r a t e s with exchange r a t e of a small house under v a r i o u s f u r n a c e load f a c t o r . For example, f o r t e s t No. 2 combinations of indoor/outdoor temperature, wind- (Tamura and Wilson, 1963) t h e computed a i r exchange speed, wind d i r e c t i o n and o p e r a t i o n o f a n o i l - r a t e s were 0.551, 0.564, 0.578, 0.597 and 0.612, f i r e d f u r n a c e .

r e s p e c t i v e l y .

The program h a s been t e s t e d a g a i n s t a i r F i g u r e 3 shows t h a t p r e d i c t e d and measured a i r exchange r a t e s measured by t h e t r a c e r g a s t e c h - exchange r a t e s may d i f f e r by a s much a s 225 p e r nique on a o n e - s t o r e y house under v a r i o u s indoor/ c e n t , save f o r t e s t p o i n t No. 12, which can be outdoor c l i m a t i c c o n d i t i o n s . For t h i s p a r t i c u l a r

ignored because t h e measurements were taken with t e s t house it was found t h a t agreement between

t h e f i r e p l a c e damper open. The p o i n t s p l o t t e d i n c a l c u l a t e d and measured a i r exchange r a t e s i s Fig. 3 a r e f a i r l y evenly d i s t r i b u t e d about t h e l i n e w i t h i n 25 p e r c e n t .

of agreement. Taking a l l t h e u n c e r t a i n t i e s i n

both t h e mathematical model and t h e experimental ACKNOWLEDGEMENTS

r e s u l t s i n t o c o n s i d e r a t i o n , t h e agreement between The a u t h o r s a r e i n d e b t e d t o G . P . M i t a l a s f o r t h e measured and c a l c u l a t e d a i r changes may be h i s generous a s s i s t a n c e during t h e c o u r s e of t h i s

r e g a r d e d a s good. r e s e a r c h work; and t o R . L . Q u i r o u e t t e f o r

(10)

T h i s p a p e r i s a c o n t r i b u t i o n from t h e D i v i s i o n o f B u i l d i n g Research, National Research Council o f Canada and i s p u b l i s h e d w i t h t h e approval of t h e D i r e c t o r of t h e D i v i s i o n .

REFERENCES

ASHRAE, 1977. Handbook and Product D i r e c t o r y . Fundamentals, New Nork: A .S .H .R .A. E

.

I n c . , Ch. 1 4 .

BAHNFLE'IH, D .R., MOSELEY, T . D . , and HARRIS, W .S. 1 9 5 7 ( a ) . Measurements of i n f i l t r a t i o n i n two r e s i d e n c e s , P a r t I : Technique and Measured

I n f i l t r a t i o n , ASHRAE T r a n s . , 63, 439-452. BAHNFLETH, D . R . MOSELEY, T .D

.

,

and HARRIS, W .S.

1 9 5 7 ( b ) . Measurements o f i n f i l t r a t i o n i n two r e s i d e n c e s , P a r t I I : Comparison o f v a r i a b l e s a f f e c t i n g i n f i l t r a t i o n , ASHRAE T r a n s . , 63, 453-476.

BONNE, U . , and JOHNSON, A . E . 1974. Thermal

e f f i c i e n c y i n non-modulating combustion systems, Proc. o f Conference on Improving E f f i c i e n c y i n HVAC Equipment and Components i n R e s i d e n t i a l and Small Commercial B u i l d i n g s , Sponsored by NBS and ASHRAE, Purdue Univ., W . L a f a y e t t e , Ind. BONNE, U., TORBORG, R . H . , and JANSSEN, J . E . 1975.

D i g i t a l s i m u l a t i o n o f t h e performance of combus- t i o n h e a t i n g systems, A.1.Ch.E. 1 5 t h Annual Regional Symposium, Twin C i t y S e c t i o n , Bloomington, Minnesota.

CHIEN, N . , FENG, Y., WANG, H . - J . , and SIAO, T.-T. 1951. Wind t u n n e l s t u d i e s o f p r e s s u r e d i s t r i b u - t i o n on e l e m e n t a r y b u i l d i n g forms, P r o j e c t sponsored by t h e O f f i c e o f Naval Research under c o n t r a c t N80NR-500, Iowa I n s t i t u t e o f Hydraulic Research, S t a t e Univ. o f Iowa, Iowa C i t y , U.S.A. COLBORNE, W .G

.

,

and MOFFATT, W .C

.

1959. A fundamen-

t a l a n a l y s i s of chimney performance, P r e s e n t e d a t ASHRAE Annual Meeting, Lake P l a c i d , N . Y .

DALGLIESH, W.A., and BOYD, D.W. 1962. Wind on b u i l d i n g s , D i v i s i o n of Building Research, N a t i o n a l Research Council of Canada, CBD 28. DAUQIERTY, R.L., and FRANZINI, J . B . 1965. F l u i d

mechanics w i t h e n g i n e e r i n g a p p l i c a t i o n s , New York. McGraw-Hill

.

DICK, J . B . 1950. Measurement o f v e n t i l a t i o n u s i n g t r a c e r g a s technique, ASHRAE J o u r n a l , Heating

,

P i p i n g and A i r - C o n d i t i o n i n g , p

.

131.

HUNT, C . M . , and BURCH, D . M . 1975. A i r i n f i l t r a t i o n measurements i n a four-bedroom townhouse u s i n g s u l f u r h e x a f l u o r i d e a s a t r a c e r g a s , ASHRAE T r a n s . , 81, P a r t I , 186-201. KREITH, F . 1965. P r i n c i p l e s of h e a t t r a n s f e r , S c r a n t o n , Pennsylvania: I n t e r n a t i o n a l Textbook Co., Table A - 3 , p . 595. LARSEN, B.T. 1976. D i g i t a l s i m u l a t i o n of e n e r g y consumption i n r e s i d e n t i a l b u i l d i n g s , P r e s e ~ t e d a t I n t e r n a t i o n a l CIB Symposium on Energy

C o n s e r v a t i o n i n t h e B u i l t Environment, B u i l d i n g Research S t a t i o n , Garston, England, A p r i l 6-8. LARSEN, B.T. 1977. Energy consumption o f r e s i d e n -

t i a l b u i l d i n g s ; The computer program ENCO*, P a r t 2, Documentation, Norwegian Building Research I n s t i t u t e , Computer Program L i b r a r y , Program No. 12, O s l o .

MOFFATT, W.C., and COLBORNE, W.G. 1959. New method o f chimney d e s i g n and performance e v a l u a t i o n , P r e s e n t e d a t ASHRAE Annual Meeting, Lake P l a c i d

N . Y .

REKTORYS, K . (Ed.) 1969. Survey o f A p p l i c a b l e Mathematics, Cambridge, Massachusetts, The M.I.T. P r e s s .

TAMURA, G.T. 1975. Measurement o f a i r l e a k a g e c h a r a c t e r i s t i c s of house e n c l o s u r e s , ASHRAE T r a n s . , 81, I , 202-211.

TAMURA, G.T. and WILSON, A . G . 1963. A i r l e a k a g e and p r e s s u r e measurements on two occupied houses, ASHRAE J o u r n a l , 5, No. 12, 65-73.

(11)

3 I C h i m n e y C e i l i n g j - t h h o l e I R j ) I 1 I P I I Figure 1 Diagram showing c r o s s - s e c t i o n of b u i l d i n g used i n a i r leakage model

F U R N A C E EXHAUST GAS T E M P E R A T U R E ( 8 ) 4

4,

Ic

I I f a n I I I I I

>

o

' o n 'on+'off T I M E (11 F i g u r e 2

Typical v a r i a t i o n o f f u r n a c e exhaust gas temperature w i t h time; n o t i c e t h a t t ' = t

-

t on 0 W i n t e r - s p r i n g t e s t I f - 0 ) S u m m e r t e s t ( f - 0 1

4

W i n t e r - s p r i n g t e s t ( O c f c l ) ( p o s s i b l e r a n g e ) 1 F u r n a c e l o a d tactor 0 . 5 w U

$

0 . 4 I 0 7 U 0 12

-

0 . 3 4: F l r e n p l a c e w d a m p e r I- open 3 u L i n e of a g r e e m e n t 4 u 0 . 1

M E A S U R E D A I R CHANGE PER HOUR

Figure 3

C o r r e l a t i o n of measured and c a l c u l a t e d a i r exchange r a t e s

Références

Documents relatifs

We have investigated the full three-dimensional momentum correlation between the electrons emitted from strong field double ionization of neon when the recollision energy of the

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For

Cette tendance, combinée à l'avènement de nouveaux matériaux de construction, pose un défi pour le maintien d'une bonne qualité de l'air intérieur (QAI), laquelle dépend en effet

Thus the transient caspase- 3 activation induced by 10 min NMDA stim- ulation is not associated with eventual neuronal death, which supports a nonapop- totic role of caspase-3 in

The geography of *R-loss described in the previous sections outlines a vast area consisting of the two archipelagoes of Vanuatu and New Caledonia—in other words, what Lynch

⁴Direct/inverse systems are oen illustrated with data om Algonquian languages, but they generally lack di- rect/inverse marking in the local domain, and are thus farther removed