• Aucun résultat trouvé

Quantum Fluids of Light

N/A
N/A
Protected

Academic year: 2022

Partager "Quantum Fluids of Light"

Copied!
19
0
0

Texte intégral

(1)

L ABORATOIRE K ASTLER B ROSSEL

R

APPORT DE

S

TAGE

Quantum Fluids of Light

Author:

Titus FANZ

Supervisor:

Alberto BRAMATI

Master LUMI in the

Quantum Optics Group Sorbonne University

2017

(2)
(3)

T µ

N =X

k

nk=X

k

1 e (✏k µ) 1

nk k = kB1T

k = ¯h2m2k2 µ <0 nk <0

P

k! lim

V!1 V (2⇡)d

R1 0 ddk n= NV > nc µ= 0

n0 k= 0 n=n0+

Z

k6=0

ddk (2⇡)d

1 e (✏k µ) 1.

n0

(4)

c

ei =4n0

i 0 ni

i 2 {a, b}

k = (kk, kz)

kz = 2⇡nc 0

E (kk =¯hc nc

s✓2⇡nc 0

2

+ kk2

hc

0 +¯h2k2k 2m m = n2ch

0c

c =Lef f

nc

F

c Lef f = c

1 + 2nnanb

b na

F

(5)

Incident light

| {z }

| {z } | {z }

optical cavity of length

c=m2nc layera

with thickness ea=m4na

layerb with thickness

eb=m4nb

0

ea eb

k = (kk,kz)

Eexc2D(kexck ) =Eexc+

¯hkkexc2

2mexc

Eexc kkexc

mexc

kexc=k = Enc

¯

hc sinc,

(6)

8

E c

Hˆ =X

k

Eexc(k)ˆbkˆbk+E (k)ˆakˆak+¯h⌦R

2

ˆakˆbk+ ˆbkˆak

⌘◆,

ˆbk ˆbk ˆak ˆak

k = |kk| R

ˆ

(LP)k ˆ

(U Pk )

!

=

Ck Xk

Xk Ck

◆ ✓ˆak

ˆbk

.

ˆ

(LP)k ˆ(U Pk )

E(U P)=1 2

Eexc(k) +E (k) +q

2

k+ (¯h⌦R)2

,

E(LP)= 1 2

Eexc(k) +E (k) q

2k+ (¯h⌦R)2

.

(7)

InGaAs GaAs GaAs

Incident light

| {z }

| {z } | {z }

optical cavity of length

c=m2nc layera

with thickness ea=m4na

layerb with thickness

eb=m4nb

| {z } | {z }

Bragg mirror

| {z }

Bragg mirror quantum well

Polariton

0

ea eb

k = (kk,kz)

(8)

ˆbk+qˆbk0 qˆbkˆbk0

ˆ

ak+qˆbk0 qˆbkˆbk0

ˆ

(U P)

Hˆ = ˆHlin+ ˆHint=X

k

2

4Ekˆkˆk+1 2

X

k0,q

Vk,kpol pol0,q ˆk qˆk0+qˆkˆk0

3 5.

ˆ

k= 1 V

Z

r (r)eˆ k·r/¯h

q

Vk,kpol pol0,q =Vqpol pol= Z

rVpol pol(r)e k·r/¯h,

Hˆ = Z

r

¯h2

2mrˆrˆ + ˆVext(r) ˆ

+1 2

ZZ

r r0

ˆ(r) ˆ(r0)Vpol pol(r r0) ˆ (r0) ˆ (r) .

h@ (r, t)ˆ

@t =h

(r, t),ˆ Hˆi

=

¯h2r2

2m +Vext(r, t) + Z

r0ˆ(r0, t)Vpol pol(r0 r) ˆ (r0, t) ˆ (r, t).

ˆ =a0ˆ0+X

i6=0

aiˆ0a0ˆ0 0.

(9)

Pthr

Pthr Pthr a

±23

kk= 0

b a

(10)

Vpol pol(r0 r) =g (r0 r)

t 0(r, t) =

¯h2r2

2m +Vext(r, t) +g| 0(r, t)|2 0(r, t).

!L

=Elas ELP = 0 Elas= ¯h!L

ELP

t 0(r, t) =

¯h2r2

2m +Vext(r, t) +g| 0(r, t)|2 i¯h

2 0(r, t) +FL(r, t).

FL(r, t)

kLP

(3)

!0

0 =@z2E(r, z) +r2?E(r, t) +!20 c2

+ ✏(r, z) + 3)|E(r, z)|2

E(r, z).

E(r, z) (r, z) = (x, y, z)

✏(r, z)

(11)

E(r, z) = E(r, z)e ik0z

i@zE(r, z) = r2?E(r, t) k20 2✏

✏(r, z) + 3)|E(r, z)|2 E(r, z).

z

Vext(r, t) ˆ= k02✏✏(r,z)

(3)

g= (3)2k0

T =

2.17K

v

p E0+✏(p) E0

✏(p

E0=E0+✏(p) p·v+1 2Mv2.

E =✏(p) p·v<0 ,v > vc=✏(p)

p .

(12)

v < vc= lim

p!0

✏(p) p .

0

(r, t) =h

0(r) +Aei(l·r !t)Be i(l·r !t)i e iµth¯.

A B

e±!t

¯

h!±=±

s✓¯h2k2 2m

2

+¯h2k2 m gn0.

cs= @!

@k k=0= rgn0

m .

v = hk¯m0 cs

v > cs

(13)

I III IV VI

Pthr I IV

Pthr III VI

kk

II V

(14)

I III IV VI

Pthr I IV

Pthr III VI

kk

II V

(15)

(r, t) =p

n0(r, t)ei✓(r,t).

@n

@t +r·(n0(r, t)v(r, t)) = 0 v(r, t) = m¯hr✓(r, t)

r ⇥v= mh¯r ⇥ r= 0

0(r= (r, )) =p

n0(r)e.✓( )

v(r) = ¯h mr

@✓

@ u = ¯h mrlu.

2⇡

I

C

v s= ¯h ml.

1

r n0(r)r!!00

l2 Ekinl =

ZZ 1

2mv2(r)nl(r) 2r/l2..

N l = 1

l=N

Epair / ZZ

(v1(r) +v2(r))2 2r )Epair =Ekinl1 +Ekinl2 + l1l2.

(16)

kk

= 0,5,5,10,15,21

3⇡ N

l = 1

l = N l = 1

(17)

References

[1] J. F. Allen and A. D. Misner. Flow Phenomena in Liquid Helium II.

Nature, 142(3597), 1938.

[2] T. Boulier, E. Cancellieri, N. D Sangouard, R. Hivet, Q. Glorieux, E. Giacobino, A. Bramati. Lattices of quantized vortices in polariton superfluids. Comptes Rendus Académie des Sciences. 17, 893 (2016).

[3] T. Boulier, E. Cancellieri, N. D. Sangouard, Q. Glorieux, A. V. Ka- vokin, D. M. Whittaker, E. Giacobino, and A. Bramati. Injection of Orbital Angular Momentum and Storage of Quantized Vortices in Po- lariton Superfluids. Phys. Rev. Lett. 116, 116402 (2016).

[4] T. Boulier, H. Tercas, DD. Solnyshkov, Q. Glorieux, E. Giacobino, G.

Malpuech, A. Bramati. Vortex chain in a resonantly pumped polariton superfluid. Scientific Reports5, 9230 (2015).

[5] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose-Einstein Con- densation of Lithium: Observation of Limited Condensate Number.

Physical Review Letters, 78(6) , feb 1997.

[6] S. Removille, R. Dubessy, B. Dubost, Q. Glorieux, T. Coudreau, S.

Guibal, JP. Likforman, L. Guidoni. Trapping and cooling of Sr+ ions:

strings and large clouds.J ournal of Physics B42, 154014 (2009).

[7] F. Chevy, K. W. Madison, and J. Dalibard. Measurement of the An- gular Momentum of a Rotating Bose-Einstein Condensate. Physical Review Letters, 85(11) sep 2000.

[8] Q. Geng, M. Manceau, N, Rahbany, V. Sallet, M. De Vittorio, L.

Carbone, Q. Glorieux, A. Bramati, C. Couteau. Localised excitation of a single photon source by a nanowaveguide. Scientific Reports 6, 19721 (2016).

[9] M. Manceau, S. Vezzoli, Q. Glorieux, F. Pisanello, E. Giacobino, L.

Carbone, M. De Vittorio, A. Bramati. Effect of charging on CdSe/CdS dot-in-rods single-photon emission. Phys. Rev. B90, 035311 (2014).

[10] S. Vezzoli, M. Manceau, G. Leménager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, A. Bramati. Exciton Fine Structure of CdSe/CdS Nanocrystals Determined by Polarization Microscopy at Room Temperature. ACS Nano9, 7992 (2015).

(18)

[11] J.B. Clark, R.T. Glasser, Q. Glorieux, U. Vogl, T. Li, K.M. Jones, and P.D. Lett. Quantum mutual information of an entangled state propa- gating through a fast-light medium.Nature Photonics8, 515 (2014).

[12] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S.

Durfee, D. M. Kurn, and W. Ketterle. Bose-Einstein Condensation in a Gas of Sodium Atoms. Physical Review Letters, 75(22):3969, nov 1995.

[13] NV. Corzo, Q. Glorieux, AM. Marino, JB. Clark, RT. Glasser, PD.

Lett. Rotation of the noise ellipse for squeezed vacuum light generated via four-wave mixing. Physical Review A88, 043836 (2013).

[14] Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto. Exciton-polariton Bose- Einstein condensation. Reviews of Modern Physics, 82(2):1489, 2010.

[15] Albert Einstein. Quantentheorie des einatomigen idealen Gases, 1924.

[16] Q. Glorieux, JB. Clark, NV. Corzo, PD. Lett. Generation of pulsed bi- partite entanglement using four-wave mixing. New Journal of Physics 14, 123024 (2012).

[17] JB. Clark, Q. Glorieux, PD. Lett. Spatially addressable readout and erasure of an image in a gradient echo memory.New Journal of Physics 15, 035005 (2013).

[18] A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto. Nonequilibrium conden- sates and lasers without inversion: Exciton-polariton lasers.

Physical Review A, 53(6):4250, jun 1996.

[19] P. Kapitza. Viscosity of liquid helium below the l-point, 1938.

[20] Q. Glorieux, J.B. Clark, A.M. Marino, Z. Zhou, P D. Lett, Tempo- rally multiplexed storage of images in a gradient echo memory.Optics Express20, 12350 (2012).

[21] J Kasprzak, M Richard, S Kundermann, A Baas, P Jeambrun, J M J Keeling, F M Marchetti, J L Staehli, V Savona, P B Littlewood, B Deveaud, Le Si Dang, R Andre, and M H Szyman. BoseEinstein condensation of exciton polaritons. 443(September):409, 2006.

[22] AM. Marino, JB. Clark, Q. Glorieux, PD. Lett. Extracting spatial information from noise measurements of multi-spatial-mode quantum states. European Physical Journal D66, 1 (2012).

(19)

[23] JB. Clark, Z. Zhou, Q. Glorieux, AM. Marino, PD. Lett. Imaging using quantum noise properties of light. Optics Express20, 17050 (2012).

[24] G. Rochat, C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann. Excitonic Bloch equations for a two-dimensional system of interacting excitons. Physical Review B, 61(20):13856, may 2000.

[25] Vera Giulia Sala. Coherence, dynamics and polarization properties of polariton condensates in single and coupled micropillars. PhD thesis, 2013.

[26] Q. Glorieux, L. Guidoni, S. Guibal, JP. Likforman, T. Coudreau.

Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons.Physical Review A 84, 053826 (2011).

[27] Q. Glorieux, T. Coudreau, L. Guidoni, JP. Likforman. Strong quantum correlations in four wave mixing in 85Rb vapor. Proc. of SPIE 7727, 772703 (2010).

[28] Jan Klaers, Julian Schmitt, Frank Vewinger, and Martin Weitz. Bose- Einstein condensation of photons in an optical microcavity. Nature, 468(7323):545, 2010.

[29] B Laikhtman. Are excitons really bosons? Journal of Physics: Con- densed Matter, 19(29):, jul 2007.

[30] S. Removille, R. Dubessy, Q. Glorieux, S. Guibal, T. Coudreau, L.

Guidoni, JP. Likforman. Photoionisation loading of large Sr+ ion clouds with ultrafast pulses.Applied Physics B97, 47(2009).

[31] J Landau. de Physique, UR S. S, 5:71, 1941.

Références

Documents relatifs

In summary, the quantum Monte Carlo technique is useful for treating spontaneous emission in the regime of quantized internal and external motion as it straightforwardly models both

Fort de l’´etude du bruit ´electrique en r´egime non lin´eaire, puis du d´eveloppement d’outils de caract´erisation en bruit haute-fr´equence sous un fort signal de pompe,

Keywords: Computer science, Privacy, Network, Fingerprinting, Wi-Fi, Tracking, Probe request, MAC address

We address the general problem of the excitation spectrum for light coupled to scatterers having quantum fluctuating positions around the sites of a periodic lattice.. In addition

In this work, we have succeed in controlling and programming quantum walks of photons - single-photon and photon-pairs - in complex systems by using wavefront shaping.. Our study

In the last years, many works were devoted to the estimates, or asymptotics, of the correlation of two local observables, (or Ursell functions of n local observables), for

En effet à partir des contributions du chapitre 5 dénommé « la détermination du statut et du niveau de vulnérabilité d’un individu à travers les Réseaux Bayésiens dans

In the case of quantum noise, which might be realized by using the multilevel nature of superconducting qubits to sim- ulate a quantum harmonic oscillator [82], the longevity of