• Aucun résultat trouvé

A limited queuing problem with any number of arrivals and departures

N/A
N/A
Protected

Academic year: 2022

Partager "A limited queuing problem with any number of arrivals and departures"

Copied!
8
0
0

Texte intégral

(1)

R

EVUE FRANÇAISE D

AUTOMATIQUE

,

INFORMATIQUE

,

RECHERCHE OPÉRATIONNELLE

. R

ECHERCHE OPÉRATIONNELLE

R. S. G AUR

A limited queuing problem with any number of arrivals and departures

Revue française d’automatique, informatique, recherche opé- rationnelle. Recherche opérationnelle, tome 6, noV2 (1972), p. 87-93

<http://www.numdam.org/item?id=RO_1972__6_2_87_0>

© AFCET, 1972, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique, in- formatique, recherche opérationnelle. Recherche opérationnelle » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/

conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

<6eJannée, octobre 1972, V-2, p. 87-93)

A LIMITED QUEUING PROBLEM WITH ANY NUMBER

OF ARRIVALS AND DEPARTURES

by R. S. GAUR(*)

Abstract. — A limited queueing probîem with any number of Poisson arrivais and depar- eSy less than a certain fixed number, has been considered. Probabilities for the queue length and the steady state mean queue length have been obtained.

INTRODUCTION

The paper studies the behaviour of a single channel queueing process with a limited space of N. The queue discipline is first corne first served and arrivais anddeparturesmaybe in batches. A batch of arrivais is assumed to be at the most of / (/ ^ N) units and that of departures at the most of /' (/' ^ N) units.

If a batch of j units arrives at N-i (i <j), j — i units balk with probability 1.

Two cases have been considered. In case /, / and /' are taken to be equal and in case II, they are different.

Cases of such queues are very common. For example, any number of persons may board a bus from a queue at a bus stop or any number of them may arrive to join the queue.

The distribution function for the queue lengths in terms of Laplace Trans- forms have been found out in the two cases. Steady state mean queue lengths have also been obtained.

NOTATION We adopt the following notation :

Pn{t) = the probability that at time t there are n units in the queue including the one in the channel.

= f e-j

Jo

f(s) = e stf(t) dt is the Laplace transform (L. T.) of a function f(t).

(*) Dept. of Applied Sciences and Humanities Régional Engineering College, Kurukshetra University, India.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle n° octobre 1972.

(3)

88 R. S. GAUR

F= lim. F(t) = lim. sF(s) is the steady state notation correspondu^ to a function F (t) or F(s) of the unsteady state.

L = The mean queue length for the steady state.

FORMULATION OF EQUATIONS AND THEIR SOLUTIONS

Case I

The model consists of a first come first served single service channel where units arrive with Poisson mean rate X and form a queue. The units are served exponentially at the head of the line basis with rate \L. The arrivais and depar- tures are in batches of maximum size /(/ < N). The probability that a batch

i

of arrivais will consist of exactly i units (1 < z* < /) is p{k where Ê p- — 1.

The probability that a batch of departures will consist of exactly i units is

i

kt\i (1 < i < /) where ]T kt = 1

The probability considérations lead to the following set of différence équations governing the system :

i

P' ( i\ I *i P (f\ > P ( i\h* ii

P'JLt) + f £ Pt* + E k#. ) P

n

(t) = J P(f)p{k + £ P

n+i

(t)k

i[

i

\i=l t=l / i = l n-i »=1

« = l , 2?. . . , i V — 1

(1)

[

m = / for « ^ iV— / 1 r = n for n < / 1

= N — nforn > N—li , = / for n ^ / J

i = l JV-i

Initially we assume that

(2) Po(0) = 1, PM = 0, n > 0.

Taking L. T. of the équations (1) and using (2) we have (S + X)P0(5) = £ P|(j)fcrfl + 1

i?evw£ Française d'Automatique, Informatique et Recherche Opérationnelle

(4)

*=1 î = l / i = l n-i 1=1

n = 1,2 AT—1.

(s + &P

N

($) = £ *(*)/>iX.

1 = 1 iV—f

We define the following generating function :

Multplying équations (3) by appropriate powers n of 8 and summing over. n we have

j - i i f

E

— • V""1 I IL

Z P/W E o»,x—/>,xe

N l f (4)

Since 2(0, s) is a polynomial the zéros of the denominator of (4) must vanish its numerator. If Qx (x = 1, 2, . . , , 2/) be the zéros of the denominator of (4) we have.

j=o

(5)

S P/sM £ 0»,X-/»

l

X8i)+ 1=0.

j=iV-| + l i = ^ - i + l

P/5), 0' = 1, 2,..., ƒ— 1, JV— / + 1, N— l + 2,..., N)

can be determinedfrom the équations (5). Hence 2(6, s)9 the distribution fuction for the queue length in terms of L. T. is completely known.

It is to be noted that this complete solution of JL(Q, s) is valid only so long N + 1 JV + 1

as / ^ —-— - When / > —-î— > the number of zéros in the denominator of (4) exceed the number of unknowns in its numerator. The latter case needs further investigations. These investigations are being carried out and will be communicated in the next paper.

n° octobre 1972, V-2.

(5)

9 0 R. S. GAUR

STEADY STATE SOLUTION

Using the well known property of the Laplace Transforms, viz, lim F(t) = lim sF (s)

if the limit on the left exists, we have from (4),

= O i-j+l \ ö / j = N-t + l i-N~j+l

2_j (pî^ —Pi^

This on simplification yields

(6) ,4(6) =

EE

A (0) being a polynomial, if Qx(x = 1, 2, . . . , 2/— 1) are the zéros of the denominator of (6) we have

(?) £ PM t /^Üfes-'fjyg É *«5ÜÏflS-o

j = j V H l i = i V 7 + l « = 0 = O =+1 Vn = 0

E Pj É A» - E'

PJ

É

j 7 «=0

And since ^((1) = 1, we have (8)

From (7) and (8) Pj (j = 0, 1, 2, . . . , /— 1, N— l + 1, . . . , # ) can be determined and hence ^4(8) is completely known. Differentiating (6) at 6 = 1, we have

Z { E É

Zon*—w{ E É Z É

{ £ É PjPiM-'ï, É ^

*• j = N-l + l i=N-j+l j = O >=; + t

X

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

(6)

Case II

The Model, as before consists of a first come first served single service channel where units arrive with Poisson mean rate X and form a queue. The units are served exponentially at the head of the line basis with rate jx. The arrivais are in batches of maximum size /(/ ^ N). Departures are also in batches of maximum size /'(/' < N). The probability that a batch of arrivais will consist

i

of exactly f(l < i < /) units is pt\ so that ]T p. = 1 whereas the probability that a batch of departures will consist of exactly i units (1 < / < /') is kt[i so

Here we assume that

Po(0) = 1, P.(0) = 0, n > 0.

and define the following generating function

Probability considérations lead to the following set of différence équations governing the System.

p«o + È Plooit) = É *i^i(o

= É ki

n+i

É />

l

n=

m = /= / for n < iV— / 1 r = n for n < V 1

= N— nîoxn > N—l J , = / ' f o r « ^ /' / j = /' for n < AT— /' | g = « for w < / 1

= N—nîovn > N—V J , = / for n ^ l i

JV-i

Proceeding on the lines similar to those of case I, we get (9)

j = 0 l \ 0 /

+ É (Pil—pi^') + Ë f *»«*—*» S Ë

i = l i = l

Fj(s) 0 = 0,1, 2,..., /' — 1, N — l + 1, AT— / + 2,.... JV.

n» octobre 1972. V-2.

(7)

92 R. S. GAUR

are determined from the équations

E

E

AT l•0 /c\Ç\3 \ (r% \ n "ï.f^^\ 1 — . \ ^ * "I f\

j=N-t+l i-N-j+1

Where 0x(x = 1, 2, . . . , / + /') are the zéros of the denominator of (9).

Here again, as in case I, J4(8, s) is completely solvable so long as / + /' < N + 1. The case when / + /' > N + 1 needs further investigation and will be communicated in the next paper.

The corresponding results for the steady state are

i'-i r / p

This on simplification yields

ii pp É p*%

e

"-

1

%

p

p.i

+1ki

Qis

Qn

d o ^(6)=

j

"

w

'

+i

—'""1

j + i i

_ , '

i = o

— ï T

j z i

-

i

_

1 i = i + i

— " - ° —

Z Z Z S I

1 = 1 n = 0 t = l U n = O

/ 7 = 0, 1, 2, . . . , /' — 1, N—1+ l,N—l + 2, . . . , iV) are determined from the équations

/»A É *x S « - I

1

pfi £ k

t

£ 't e: = o

l i=N-j+l n = l jO i=j+l V n = Oj = O i=j+l \JX n = O

and

N i r-i i' ( / '

2 J PJ 2 J Pi**— 2-f ' j ' 2 J «i(A«= jLPfo— 2 J ^ i P

j=W-/ + l i=N-j+l j = O i=j+l x = l i = l

Where 0x(x = 1, 2 . . . , / + /' — 1) are the zéros of the denominator of (10).

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

(8)

The steady state mean queue length is given by

Z ) { É

ff Ê

= l / <• j=JV-J + l i = N-j+l *

Ë (2/-/-l)ip/

i[

x}-

Z _Z ^ i l4' I { Z, PMi — 1) 2 + Z *»{*(» + !) 2 ƒ

ACKNOWLEDGEMENT

The author is extremely grateful to Dr. N. N. Agarwal, Assist. Professor in Mathema- tics, Régional Engineering College, Kurukshetra University, (India) for his invaluable guidance and inspiration in the préparation of this paper.

REFERENCES

1. T. L. SAATY, Eléments of Queueing theory with applications, Me Graw Hill Book Company, New York, 1961.

2. A. M. LEE, Applied Queueing Theory, S. T. New York, 1965.

n° octobre 1972, V-2.

Références

Documents relatifs

In continuation of our ab initio investigations of the electronic and magnetic structures and chemical bonding of uranium based compounds within DFT [5, 8-11], we address herein

The first step was to calculate, using the density functional formalism [10, 11], the displaced electron densities around a nucleus embedded in a jellium vacancy for

Indeed, instead of conceiving sentences or utterances as the sole “maximal-units” of syntactic description, our framework suggests that two different kinds of

We introduce the Monte-Carlo based heuristic with first-come-first-served approximation for future optimal strategy (MC-FCFS) in order to maximize profit in a

represents an irrational number.. Hence, large partial quotients yield good rational approximations by truncating the continued fraction expansion just before the given

L’interruption est violente, le public reste dans la salle, les acteurs sur la scène et les militants en avant-scène, pendant plus de trente minutes, questionnant les acteurs

To obtain an asymptotic formula for the MRT, we show that in the long time asymptotics, where winding occurs, the GOUP can be approximated by a standard Ornstein- Uhlenbeck

We first observe that, according to the definition of our model and contrary to the claim in C-2016, production and perception tasks result in three distinct computed