• Aucun résultat trouvé

Modelling, simulation and feedback of open quantum systems

N/A
N/A
Protected

Academic year: 2022

Partager "Modelling, simulation and feedback of open quantum systems"

Copied!
39
0
0

Texte intégral

(1)

Modelling, simulation and feedback of open quantum systems

Pierre Rouchon

Centre Automatique et Systèmes Mines ParisTech

PSL Research University

Fall 2018

1 / 39

(2)

Outline of the lectures (Autumn 2018 at Mines ParisTech )

Lect. 1& 2 (Oct. 24: 11:10-13:00 and 14:00–15:50) Feedback for classical and for quantum systems; the first experimental realization of a

quantum-state feedback (LKB photon box); three quantum features (Schrödinger; collapse of the wave packet, tensor product); Quantum Non Demolition (QND) measurement of photons (ideal Markov model and Matlab simulations).

Lect. 3 (Nov. 7: 11:10–13:00) Models of the LKB photon box: entanglement between the probe-qubit and the photons; qubit-measurement back-action on the photons; measurement errors and imperfections; decoherence as unread fictitious measurements; discrete-time Markov chain; Kraus map; quantum trajectories and realistic Matlab simulations of the photon box

Lect. 4 (Nov. 14: 11:10–13:00) Feedback stabilization of photon-number state:

resonant interaction, the Lyapunov feedback scheme, closed-loop simulations / experimental data.

Lect. 5 (Nov. 21: 9:00–10:50) The LPA super-conduction qubit under continuous-time measurements (counting versus homo/hetero-dyne measurements):

continuous-time stochastic master equation (Poisson versus Wiener);

Lindblad master equation; QND measurement of a qubit and Matlab simulations.

Lect. 6 (Nov. 28: 11:10–13:00) Feedback stabilization of the excited state of a qubit;

quantum-state feedback based on QND measurement;closed-loop simulations.

2 / 39

(3)

Main references

I

S. Haroche and J.M. Raimond. Exploring the Quantum:

Atoms, Cavities and Photons. Oxford University Press, 2006.

I

H.M. Wiseman and G.J. Milburn. Quantum Measurement and Control. Cambridge University Press, 2009.

I

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

I

C.W. Gardiner and P. Zoller Quantum Noise. Springer, 2010.

3 / 39

(4)

Outline

Notion of Feedback

Discrete-time systems: The LKB photon-box

Continuous-time systems: qubit in circuit QED

Continuous diffusive-jump SME

4 / 39

(5)

Model of classical systems

control

perturbation

measure system

For theharmonic oscillatorof pulsationωwithmeasured positiony, controlled by the forceuand subject to an additional unknown force w.

x = (x1,x2)∈R2, y =x1

d

dtx1=x2, d

dtx2=−ω2x1+u+w

5 / 39

(6)

Feedback for classical systems

feedback observer/controller

perturbation

set point

control

measure system

Proportional Integral Derivative (PID) for dtd22y =−ω2y+u+w with the set pointv =yc

u=−Kp y −yc

−Kd

d

dt y−yc

−Kint

Z

y −yc with the positivegains(Kp,Kd,Kint)tuned as follows (0<Ω0∼ω, 0< ξ∼1, 0< 1:

Kp= Ω20, Kd =2ξ q

ω2+ Ω20, ,Kint=(ω2+ Ω20)3/2.

6 / 39

(7)

Quantum feedback: the back-action of the measurement.

A typical stabilizing feedback-loop for a classical system

system

controller

w

Two kinds of stabilizing feedbacks for quantum systems 1. Measurement-based feedback: controller is classical;

measurement back-action on the systemS is stochastic (collapse of the wave-packet); the measured outputy is a classical signal; the control inputuis a classical variable appearing in some controlled Schrödinger equation;u(t) depends on the past measurementsy(τ),τ≤t.

2. Coherent/autonomous feedback and reservoir engineering:the systemSis coupled tothe controller, another quantum system; the composite system,HS⊗Hcontroller, is an

open-quantum system relaxing to some target (separable) state.

7 / 39

(8)

The first experimental realization of a

quantum state feedback

The photon box of the Laboratoire Kastler-Brossel (LKB):

group of S.Haroche (Nobel Prize 2012), J.M.Raimond and M. Brune.

u y

1

Stabilization of a quantum state with exactlyn=0,1,2,3, . . .photon(s).

Experiment:C. Sayrin et. al., Nature 477, 73-77, September 2011.

Theory:I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.

R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

1Courtesy of Igor Dotsenko.Sampling period 80µs. 8 / 39

(9)

Three quantum features emphasized by the LKB photon box

2

1. Schrödinger: wave funct.|ψi ∈ Hor density op. ρ∼ |ψihψ| d

dt|ψi=−~iH|ψi, d

dtρ=−~i[H, ρ], H=H0+uH1

2. Origin of dissipation: collapse of the wave packetinduced by the measurement of observableOwith spectral decomp.P

µλµPµ:

I measurement outcomeµwith proba.

Pµ=hψ|Pµ|ψi= Tr(ρPµ)depending on|ψi,ρjust before the measurement

I measurement back-action if outcomeµ=y:

|ψi 7→ |ψi+= Py|ψi

phψ|Py|ψi, ρ7→ρ+= PyρPy Tr(ρPy) 3. Tensor product for the description of composite systems(S,M):

I Hilbert spaceH=HS⊗ HM

I HamiltonianH=HSIM+Hint+ISHM

I observable on sub-systemM only:O=ISOM.

2S. Haroche and J.M. Raimond.Exploring the Quantum: Atoms, Cavities and Photons.Oxford Graduate Texts, 2006.

9 / 39

(10)

Composite system built with an harmonic oscillator and a qubit.

I System

S corresponds to a quantized harmonic oscillator:

HS = (

X

n=0

ψn|

n

i

n)n=0

l

2(C) )

,

where

|

n

i

represents the Fock state associated to exactly n photons inside the cavity

I Meter

M is a qu-bit, a 2-level system (idem 1/2 spin system) :

HM =C2

, each atom admits two energy levels and is described by a wave function c

g|

g

i+

c

e|

e

i

with

|

c

g|2+|

c

e|2=

1; atoms leaving B are all in state

|

g

i

I State of the full system|Ψi ∈ HS⊗ HM

:

|Ψi=

+∞

X

n=0

Ψng|

n

i ⊗ |

g

i+ Ψne|

n

i ⊗ |

e

i, Ψneng ∈C.

Ortho-normal basis:

(|

n

i ⊗ |

g

i,|

n

i ⊗ |

e

i)n∈N

.

10 / 39

(11)

S: quantum harmonic oscillator (spring system)

I Hilbert space:

HS =n P

n≥0ψn|ni, (ψn)n≥0∈l2(C)o

≡L2(R,C)

I Quantum state space:

D={ρ∈ L(HS), ρ =ρ, Tr(ρ) =1, ρ≥0}.

I Operators and commutations:

a|ni=√

n|n-1i,a|ni=√

n+1|n+1i; N=aa,N|ni=n|ni;

[a,a] =I,af(N) =f(N+I)a;

Dα=eαa−αa. a=X +iP= 1

2 x+∂x

, [X,P] =ıI/2.

I Hamiltonian:HS/~=ωcaa+uc(a+a).

(associated classical dynamics:

dx

dtcp, dpdt =−ωcx−√ 2uc).

I Classical pure state≡coherent state|αi α∈C: |αi=P

n≥0

e−|α|2/2αn

n!

|ni;|αi ≡π1/41 eı

2x=αe(x−

2<α)2 2

a|αi=α|αi,Dα|0i=|αi.

|0

|1

|2 ω

c

| n

ω

c

u

c

... ...

11 / 39

(12)

M: 2-level system, i.e. a qubit (half-spin system)

I Hilbert space:

HM =C2=n

cg|gi+ce|ei, cg,ce∈C o

.

I Quantum state space:

D={ρ∈ L(HM), ρ =ρ, Tr(ρ) =1, ρ≥0}.

I Operators and commutations:

σ-=|gihe|,σ+-=|eihg| σx-+=|gihe|+|eihg|; σy=iσ-−iσ+=i|gihe| −i|eihg|; σz+σ-−σ-σ+=|eihe| − |gihg|; σx2=I,σxσy =iσz,[σxy] =2iσz, . . .

I Hamiltonian:HM/~=ωqσz/2+uqσx.

I Bloch sphere representation:

D=n

1

2 I+xσx+yσy+zσz (x,y,z)∈R3, x2+y2+z2≤1o

| g

| e ω

q

u

q

12 / 39

(13)

The Markov ideal model (1)

C

B

D R

1

R

2

B R

2

I When atom comes outB,|ΨiB of the full system isseparable

|ΨiB=|ψi ⊗ |gi.

I Just before the measurement inD, the state is in general entangled(not separable):

|ΨiR2 =USM |ψi ⊗ |gi

= Mg|ψi

⊗ |gi+ Me|ψi

⊗ |ei whereUSM is a unitary transformation (Schrödinger propagator) defining the linear measurement operatorsMgandMeonHS. SinceUSMis unitary,MgMg+MeMe=I.

13 / 39

(14)

The Markov ideal model (2)

C

B

D R

1

R

2

H S M

The unitary propagatorUSM is derived from Jaynes-Cummings HamiltonianHSMin the interaction frame.

Two kinds of qubit/cavity Hamiltonians:

resonant,HSM/~=i Ω(vt)/2

a⊗σ-a⊗σ+ , dispersive,HSM/~= Ω2(vt)/(2δ)

N⊗σz, whereΩ(x) = Ω0ex

2

w2,x =vt withv atom velocity,Ω0vacuum Rabi pulsation,wradial mode-width and whereδ=ωq−ωc is the detuning between qubit pulsationωqand cavity pulsationωc (|δ| Ω0).

14 / 39

(15)

Dispersive and resonant Jaynes-Cummings propagators

The solution of

ıdtdU =−~iHSM(t)U, withU0=I

reads

I

for

HSM(t)/~=

i f

(t) a⊗ |

g

ih

e

| −a⊗ |

e

ih

g

|

(resonant)

Ut =

cos

θt

2

N

⊗ |

g

ih

g

|+

cos

θt

2

N+I

⊗ |

e

ih

e

|

a

sin

θt

2

N

N ⊗ |

e

ih

g

| +

sin

θt

2

N

N a⊗ |

g

ih

e

|.

I

for

HSM(t)/~=

f

(t)N⊗(|

e

ih

e

| − |

g

ih

g

|)

(dispersive)

U(t) =

exp

(iθ(t)N)⊗ |

g

ih

g

|+

exp

(−

iθ(t

)N)⊗ |

e

ih

e

|.

where

θ(t) =Rt

0

f

(τ)

d

τ

.

15 / 39

(16)

Quantum trajectories

Just beforedetectorDthe quantum state isentangled:

|ΨiR

2= (Mg|ψi)⊗ |gi+ (Me|ψi)⊗ |ei

Just afteroutcomey, the state becomesseparable3:

|ΨiD =

My q

hψ|MyMy|ψi|ψi

⊗ |yi.

Outcomeyobtained with probabilityPy =hψ|MyMy|ψi..

Quantum trajectories(Markov chain, stochastic dynamics):

k+1i=

Mg q

k|MgMgkiki, yk =gwith probabilityhψk|MgMgki;

Me

k|MeMekiki, yk =ewith probabilityhψk|MeMeki;

with state|ψkiand measurement outcomeyk ∈ {g,e}at time-stepk:

3Measurement operatorO=IS⊗(|eihe| − |gihg|).

16 / 39

(17)

Quantum Non Demolition (QND) measurement of photons

4

|ΨiR

2 =UR2UCUR1 |ψi ⊗ |gi

C

B

D R1

R2

B R2

UR1 =IS|gi+|ei

2

hg|+−|gi+|ei

2

he| UC =e−i

φ0 2N

⊗ |gihg|+ei

φ0 2N

⊗ |eihe| UR2 =UR1

UR1 |ψi ⊗ |gi

=1

2(|ψi ⊗ |gi+|ψi ⊗ |ei) UCUR1 |ψi ⊗ |gi

=1

2

e−i

φ0 2N

|ψi

⊗ |gi+

ei

φ0 2N

|ψi

⊗ |ei

|ΨiR

2 =12

e−i

φ0 2N

|ψi

⊗(|gi+|ei) +

ei

φ0 2N

|ψi

⊗(−|gi+|ei)

=

−isin(φ20N)|ψi

⊗ |gi+

cos(φ20N)|ψi

⊗ |ei ThusMg=−isin(φ20N)andMe=cos(φ20N).

Quantum Monte-Carlo simulations with MATLAB:

IdealModelPhotonBoxWaveFunction.m

4M. Brune, . . . : Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non-demolition measurements and generation of "Schrödinger cat"

states . Physical Review A, 45:5193-5214, 1992.

17 / 39

(18)

The Markov ideal model (3)

Just beforeD, the field/atom state isentangled:

Mg|ψi ⊗ |gi+Me|ψi ⊗ |ei

Denote byµ∈ {g,e}the measurement outcome in detectorD: with probabilityPµ=hψ|MµMµ|ψiwe getµ. Just after the measurement outcomeµ=y,the state becomes separable:

|ΨiD=√1

Py

(My|ψi)⊗ |yi= q My

hψ|MyMy|ψi|ψi

!

⊗ |yi. Markov process(density matrix formulationρ∼ |ψihψ|)

ρ+=





MgρMg

Tr(MgρMg), with probabilityPg= Tr

MgρMg

;

MeρMe

Tr(MeρMe), with probabilityPe= Tr

MeρMe .

Kraus map:

E

+/ρ) =K(ρ) =MgρMg+MeρMe.

18 / 39

(19)

LKB photon-box: Markov process with detection efficiency

I With pure stateρ=|ψihψ|, we have ρ+=|ψ+ihψ+|= 1

Tr

MµρMµMµρMµ

when the atom collapses inµ=g,ewith proba. Tr

MµρMµ .

I Detection efficiency:the probability to detect the atom is

η∈[0,1]. Three possible outcomes fory:y =gif detection ing, y =eif detection ineandy =0 if no detection.

The only possible update is based onρ: expectationρ+of|ψ+ihψ+| knowingρand the outcomey ∈ {g,e,0}.

ρ+=





MgρMg

Tr(MgρMg) ify=g, probabilityηTr(MgρMg) MeρMe

Tr(MeρMe) ify=e, probabilityηTr(MeρMe)

MgρMg+MeρMe ify=0, probability 1η

ρ+does not remain pure: the quantum stateρ+becomes a mixed state;|ψ+ibecomes physically irrelevant.

19 / 39

(20)

LKB photon-box: Markov process with detection errors (1)

I With pure stateρ=|ψihψ|, we have ρ+=|ψ+ihψ+|= 1

Tr

MµρMµMµρMµ

when the atom collapses inµ=g,ewith proba. Tr

MµρMµ .

I Detection error rates: P(y =e/µ=g) =ηg∈[0,1]the probability of erroneous assignation toewhen the atom collapses ing;P(y =g/µ=e) =ηe∈[0,1](given by the contrast of the Ramsey fringes).

Bayes law: expectationρ+of|ψ+ihψ+|knowingρand the imperfect detectiony.

ρ+=





(1−ηg)MgρMgeMeρMe

Tr((1−ηg)MgρMgeMeρMe)ify=g, prob. Tr

(1ηg)MgρMg+ηeMeρMe

; ηgMgρMg+(1−ηe)MeρMe

Tr(ηgMgρMg+(1−ηe)MeρMe)ify=e, prob. Tr

ηgMgρMg+ (1ηe)MeρMe .

ρ+does not remain pure: the quantum stateρ+becomes a mixed

state;|ψ+ibecomes physically irrelevant. 20 / 39

(21)

LKB photon-box: Markov process with detection errors (2)

We get

ρ+=





(1−ηg)MgρMgeMeρMe

Tr((1−ηg)MgρMgeMeρMe), with prob. Tr

(1ηg)MgρMg+ηeMeρMe

; ηgMgρMg+(1−ηe)MeρMe

Tr(ηgMgρMg+(1−ηe)MeρMe) with prob. Tr

ηgMgρMg+ (1ηe)MeρMe .

Key point:

Tr

(1−ηg)MgρMgeMeρMe

and Tr

ηgMgρMg+ (1−ηe)MeρMe are the probabilities to detecty =g ande, knowingρ.

Generalizationby merging aKraus mapK(ρ) =P

µMµρMµwhere P

µMµMµ=I with aleft stochastic matrix(ηµ0):

ρ+= P

µηyMµρMµ Tr

P

µηy,µMµρMµ when we detecty =µ0. The probability to detecty =µ0knowingρis Tr

P

µηy,µMµρMµ .

21 / 39

(22)

Cavity decay (decoherence) seen as unread measurements The cavity mirrors play the role of a detector with two possible outcomes:

I zero photon annihilation

during

∆T

: Kraus operator

M0=I∆T2 L−1L−1

, probability

Tr

M0ρtM0

with back action

ρt+∆TM0ρtM

0

Tr

M0ρtM0

.

I one photon annihilation

during

∆T

: Kraus operator

M−1=√

∆TL−1

, probability

Tr

M−1ρtM−1

with back action

ρt+∆TM−1ρtM

−1

Tr

M−1ρtM−1

where

L−1= q 1

Tcava

is the

Lindbald operator associated to cavity damping

(see bellow the continuous time models) with T

cav

the photon life time and

∆T

T

cav

the sampling period (T

cav =

100 ms and

∆T ≈

100

µs

for the LKB photon Box).

22 / 39

(23)

Cavity decoherence: cavity decay, thermal photon(s)

Three possible outcomes:

I zero photon annihilationduring∆T: Kraus operator M0=I∆T2 L−1L−1∆T2 L1L1, probability≈ Tr

M0ρtM0 with back actionρt+∆TTrM(M0ρ0ρtMtM00).

I one photon annihilationduring∆T: Kraus operator M−1=√

∆TL−1, probability≈ Tr

M−1ρtM−1

with back action ρt+∆TM−1ρtM

−1

Tr(M−1ρtM−1)

I one photon creationduring∆T: Kraus operatorM1=√

∆TL1, probability≈ Tr

M1ρtM1

with back actionρt+∆TTrM(M1ρ1tρMtM11) where

L−1= q1+nth

Tcav a, L1=q

nth

Tcava

are theLindbald operators associated to cavity decoherence:Tcav the photon life time,∆T Tcav the sampling period andnthis the average of thermal photon(s) (vanishes with the environment

temperature) (nth≈0.05 for the LKB photon box). 23 / 39

(24)

Experimental results

5

Valeur moyenne du nombre de photons le long d’une longue séquence de mesure:

observation d’une trajectoire stochastique

Une trajectoire correspondant au résultat initial n=5

Sauts quantiques vers le vide dus à l’amortissement du champ Des mesures répétées

confirment n=5

Projection de l’état cohérent sur n=5

nNombre moyen de photons A partir de la probabilité Pi(n) inférée après chaque atome, on déduit le nombre moyen de photons:

Première observation des trajectoires stochastiques du champ, en très bon accord avec les prédictions théoriques (simulations

de Monte- Carlo. Voir cours précédents).

n = nPi(n)

n

! (6"10)

See the quantum Monte Carlo simulations of the Matlab script:

RealisticModelPhotonBox.m.

5From Serge Haroche, Collège de France, notes de cours 2007/2008.

24 / 39

(25)

Feedback: Kraus operators depend on the control input

u6

u=0: dispersiveinteraction with

Mg(0) =cos

φ0N+φR

2

andMe(0) =sin

φ0N+φR

2

,

u=1: resonantinteraction with atom prepared in|ei

Mg(1) = sinθ

0 2

N

N aandMe(1) =cos θ0

2

pN+I

u=−1: resonantinteraction with atom prepared in|gi

Mg(−1) =cosθ

0 2

N

andMe(−1) =−a sinθ

0 2

N

N 0, φR, θ0)are constant parameters.

6Zhou, X.; Dotsenko, I.; Peaudecerf, B.; Rybarczyk, T.; Sayrin, C.; S.

Gleyzes, J. R.; Brune, M.; Haroche, S. Field locked to Fock state by quantum feedback with single photon corrections. Physical Review Letter, 2012, 108, 243602.

25 / 39

(26)

The Lyapunov feedback law

I Computeuk as a function ofρk such thatρk converges towards the goal|¯nih¯n|.

I Lyapunov functionV(ρ) = Tr (N−¯n)2ρ

for example: when uk =0 we have

E

(Vk+1/ ρk,uk =0) =Vk) (martingale)

I Lyapunov control: chooseuk in{0,1,−1}at each stepk in order to minimizeu7→

E

(Vk+1/ ρk,u).

I In closed-loop,

E

(Vk+1)will be decreasing. It is reasonable to guess thatV(ρk)tends to 0, i.e., thatρk converges to|n¯ihn¯|.

26 / 39

(27)

Closed-loop experimental results

Zhou et al. Field locked to Fock state by quantum feedback with single photon corrections.

Physical Review Letter, 2012, 108, 243602.

See the closed-loop quantum Monte Carlo simulations of the Matlab script:RealisticFeedbackPhotonBox.m.

27 / 39

(28)

Stochastic Master Equation (SME) and quantum filtering

Discrete-time modelsareMarkov processes

ρk+1= Kykk)

Tr(Kykk)), with proba.pykk) = Tr(Kykk)) where eachKy is a linear completely positive map admitting the expression

Ky(ρ) =X

µ

My,µρMy with X

y

My,µMy,µ=I. K =P

yKy corresponds to aKraus maps(ensemble average, quantum channel)

E

k+1k) =K(ρk) =X

y

Kyk).

Quantum filtering (Belavkin quantum filters)

data: initial quantum stateρ0, past measurement outcomes yl forl ∈ {0, . . . ,k−1};

goal: estimation ofρk via the recurrence (quantum filter) ρl+1= Kyll)

Tr(Kyll)), l =0, . . . ,k−1.

28 / 39

(29)

Continuous/discrete-time Stochastic Master Equation (SME)

Discrete-time modelsareMarkov processes

ρk+1= Kykk)

Tr(Kykk)), with proba.pykk) = Tr(Kykk)) associated toKraus maps(ensemble average, quantum channel)

E

k+1k) =K(ρk) =X

y

Kyk)

Continuous-time modelsarestochastic differential systems dρt = −~i[H, ρt] +X

ν

LνρtLν12(LνLνρttLνLν)

! dt

+X

ν

√ην

LνρttLν− Tr

(Lν+Lνt ρt

dWν,t driven byWiener process7dWν,t =dyν,t−√ην Tr

(Lν+Lνt dt with measuresyν,t, detection efficienciesην ∈[0,1]and

Lindblad-Kossakowskimaster equations (ην ≡0):

d

dtρ=−~i[H, ρ] +X

ν

LνρtLν12(LνLνρttLνLν)

7and/or Poisson processes, see next slides. 29 / 39

(30)

Ito stochastic calculus

Given a SDE

dXt =F(Xt,t)dt+X

ν

Gν(Xt,t)dWν,t,

we have the following chain rule summarized by the heuristic formulae:

dWν,t =O(√

dt), dWν,tdWν0,tν,ν0dt. Ito’s ruleDefiningft =f(Xt)aC2function ofX, we have

dft = ∂f

∂X Xt

F(Xt,t) +1 2

X

ν

2f

∂X2 Xt

(Gν(Xt,t),Gν(Xt,t))

! dt

+X

ν

∂f

∂X Xt

Gν(Xt,t)dWν,t.

Furthermore

E

d dtft

Xt

=

E

∂X∂f

Xt

F(Xt,t) +1 2

X

ν

2f

∂X2 Xt

(Gν(Xt,t),Gν(Xt,t))

! .

30 / 39

(31)

Continuous/discrete-time diffusive SME

With a single imperfect measuredyt= ηTr

(L+L)ρt

dt+dWtand detection efficiencyη[0,1], the quantum stateρtis usually mixed and obeys to

t=

i

~[H, ρt] +tL1 2

Lt+ρtLL dt +

η

t+ρtL Tr

(L+Lt

ρt

dWt

driven by the Wiener processdWt(Gaussian law of mean 0 and variancedt).

WithIt¯o rules, it can be written as the following "discrete-time" Markov model

ρt+dt =

MdytρtMdy

t + (1η)LρtLdt

Tr

MdytρtMdy

t+ (1η)LρtLdt

withMdyt =I+

i

~H12 LL

dt+

ηdytL. The probability to detectdytis given by the following density

P

dyt[s,s+ds]

= Tr

MsρtMs+ (1η)LρtLdt

2πdt es

2 2dt ds

close to a Gaussian law of variancedtand mean ηTr

(L+L)ρt

dt.

31 / 39

(32)

A key physical example in circuit QED

8

Superconducting qubit dispersively coupled to a cavity traversed by a microwave signal (input/output theory).

The back-action on the qubit state of a single measurement of both output fieldquadraturesIt

andQt is described by a simple SME for the qubit density operator.

t = −2i[uσx+vσy, ρt] +γ(σzρσz−ρt) dt +p

ηγ/2 σzρttσz−2 Tr(σzρtt

dWtI+ıp

ηγ/2[σz, ρt]dWtQ withIt andQt given bydIt =p

ηγ/2 Tr(2σzρt)dt+dWtI and

dQt =dWtQ, whereγ≥0 is related to the measurementstrengthand η∈[0,1]is the detection efficiency.uandvare the two control inputs.

8M. Hatridge et al. Quantum Back-Action of an Individual Variable-Strength Measurement. Science, 2013, 339, 178-181.

32 / 39

(33)

Qubit, density matrix and Bloch sphere

With

|ψi=ψg|

g

i+ψe|

e

i

satisfying

ı~dtd|ψi=H|ψi

, the density operator corresponds to

ρ=|ψihψ|

. Then

ρ

is non negative Hermitian operator such that Tr

(ρ) =

1 and obeying to

d

dt

ρ=−ı

~[H, ρ].

For mixed states,

ρ= I+xσx+yσ2 y+zσz

with

x

=

Tr

xρ),

y

=

Tr

yρ)

and z

=

Tr

zρ).

Then

(x,

y

,

z)

∈R3

are the cartesian coordinates of vector M

~

inside

Bloch sphere

( Tr

ρ2

=

x

2+

y

2+

z

2

1):

d dt

M

~ = (u~ı+

v~

)×

M.

~

is another formulation of

dtdρ=−2i[uσx+

v

σy, ρ]. Here

u stands for the

rotation speed

around x -axis and v the rotation speed around y -axis.

33 / 39

(34)

QND measurement: asymptotic behavior in open-loop

Almost such convergence:Consider the SME

t = −2i[uσx+vσy, ρt] +γ(σzρσz−ρt) dt +p

ηγ/2 σzρttσz−2 Tr(σzρtt

dWtI+ıp

ηγ/2[σz, ρt]dWtQ

withu=v =0 andη >0.

I For any initial stateρ0, the solutionρt converges almost surely ast → ∞to one of the states|gihg|or|eihe|.

I The probability of convergence to|gihg|(respectively|eihe|) is given bypg= Tr(|gihg|ρ0)(respectively Tr(|eihe|ρ0)).

Proof based on the martingalesVg(ρ) = Tr(|gihg|ρ) = (1−z)/2 and Ve(ρ) = Tr(|eihe|ρ) = (1+z)/2, and on the sub-martingale

V(ρ) = Tr2zρ) =z2:

E

dVgt

=

E

(dVet) =0,

E

(dVt) =2ηγ 1−z22

dt ≥0.

Confirmed by the quantum Monte Carlo simulations:

IdealModelQubit.m

34 / 39

(35)

Adding decoherence due to finite life-time of

|ei

d

ρt = −2i[uσx+

v

σy, ρt] +γ(σzρσz −ρt)

dt

+p

ηγ/2 σzρttσz

2 Tr

zρtt

dWtI+ıp

ηγ/2[σz, ρt]dWtQ +

LeρtLe12

LeLeρttLeLe

dt

where

Le=p

1/T1|gihe|

and T

1

is the life time of the excited state

|

e

i

.

For u

=

v

=

0, convergence of all trajectories towards

|

g

i

, the ground state. Proof based on the super-martingales

V

e(ρ) =

Tr

(|

e

ih

e

|ρ) = (1+

z)/2:

E

(dVet) =−

1 T

1

V

e

dt

.

Confirmed by the quantum Monte Carlo simulations:

RealisticModelQubit.m

35 / 39

(36)

Feedback stabilization of the excited state

t = −2i[uσx+vσy, ρt] +γ(σzρσz−ρt) dt +p

ηγ/2 σzρttσz−2 Tr(σzρtt

dWtI+ıp

ηγ/2[σz, ρt]dWtQ

Withuandv arbitrary, we have forV(ρ) = Tr(σzρ) =z,

E

(dVt|ρt) =u Tryρt)v Trxρt) =uyvx.

With the quantum state feedback

u= sign(y)

T (1−Vt), v =−sign(x)

T (1−Vt)

we get in closed loop

E

(dVt|ρt) = |x|+|y|T (1−Vt)and thusV tends to converge towards 1, i.e.,z tends to converge towards 1. Confirmed by the closed-loop simulations:IdealFeedbackQubit.m

Robustness of such feedback illustrated by the more realistic simulations:

RealisticFeedbackQubit.m

36 / 39

(37)

Continuous/discrete-time jump SME

With Poisson processN(t),hdN(t)i=

θ+ηTr VρtV dt,and detection imperfections modeled byθ≥0 andη∈[0,1], the quantum stateρt is usually mixed and obeys to

t =

−i[H, ρt] +VρtV12(VttVV) dt +

θρt+ηVρtV θ+ηTr(VρtV)−ρt

dN(t)−

θ+ηTr VρtV dt

ForN(t+dt)N(t) =1we haveρt+dt= θρt+ηVρtV θ+ηTr(VρtV). FordN(t) =0we have

ρt+dt= M0ρtM0+ (1−η)VρtVdt Tr

M0ρtM0+ (1−η)VρtVdt withM0=I+ −iH+12 η Tr VρtV

I−VV dt.

37 / 39

(38)

Continuous/discrete-time diffusive-jump SME

The quantum stateρtis usually mixed and obeys to dρt =

−i[H, ρt] +LρtL1

2(LttLL) +VρtV1

2(VttVV)

dt +√

η

ttL− Tr

(L+Lt

ρt

dWt

+

θρt+ηVρtV θ+ηTr(VρtV)−ρt

dN(t)−

θ+ηTr

tV dt

ForN(t+dt)N(t) =1we haveρt+dt= θρt+ηVρtV θ+ηTr(VρtV). FordN(t) =0we have

ρt+dt = MdytρtMdy

t+ (1−η)LρtLdt+ (1−η)VρtVdt

Tr

MdytρtMdy

t + (1−η)LρtLdt+ (1−η)VρtVdt

withMdyt =I+ −iH−12LL+12 ηTr VρtV

I−VV dt+√

ηdytL.

38 / 39

Références

Documents relatifs

Process tomography of field damping and measurement of Fock state lifetimes by quantum non-demolition photon counting in a cavity... Curie, 24 rue Lhomond, F-75231 Paris Cedex

The telegraphic signals 29 obtained by detecting a stream of atoms reveal the photon number evolution, with quantum jumps between n = 0 and 1 as the field randomly exchanges

The production of entropy solely vanishes for reversible transfor- mations, which corresponds to quasi-static (infinitely slow) processes. The second law has crucial

We also prove that, under appropriate rescaling of the system and probe interactions, the state probability distribution and the system density matrix are solutions of

Next, we investigate the asymptotic behavior of trajectories of open quantum spin- 1 2 systems with unknown initial states undergoing imperfect continuous-time measurements, and

The reliable estima- tion of the cavity state at each feedback cycle allows us to follow in real time the quantum jumps of the photon number and then to efficiently compensate

1: (Color online) (a) Average Purity for initial pure state (solid black line) and initial completely mixed state (dashed black line) calculated using the Euler-Milstein method

The quantum feedback operation injects energy and entropy or information into the system and thus modifies the energy balance the first law as well as the entropy balance the