• Aucun résultat trouvé

The Minkowski Theorem for Max-plus Convex Sets

N/A
N/A
Protected

Academic year: 2021

Partager "The Minkowski Theorem for Max-plus Convex Sets"

Copied!
20
0
0

Texte intégral

(1)The Minkowski Theorem for Max-plus Convex Sets Stéphane Gaubert, Ricardo David Katz. To cite this version: Stéphane Gaubert, Ricardo David Katz. The Minkowski Theorem for Max-plus Convex Sets. [Research Report] RR-5907, INRIA. 2006. �inria-00071358�. HAL Id: inria-00071358 https://hal.inria.fr/inria-00071358 Submitted on 23 May 2006. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE. The Minkowski Theorem for Max-plus Convex Sets Stéphane Gaubert — Ricardo Katz. N° 5907 May 2006. N 0249-6399. ISRN INRIA/RR--5907--FR+ENG. Thème NUM. apport de recherche.

(3)

(4) 

(5)      !#"%$'& (') * +*,.-/,0 31 254%6,789:<;=8>,?@:%AB2DC,EGFIHJ8A5K,LNMO82BP Q/RSUTWVGXY'Z\[^]`_badcSUTWVeaf`gTWheikjmlgVea nikoqpdV5c

(6) ZNrtsbuvwgxa y

(7) rquu3ozi c

(8) {bV|iVe}~RxVUi~}~RVf€ƒ‚q„q †‡[^Zˆr%_<‰J z qŠ‹[ŒŠŽu3rJqVa. D‘“’e”U•t–—q”q˜š™ V›Vea crqœvjmakRžcRV ŸIoqvwvot¡jwfˆT=rJs¢£uvwgxaWrJfxrqvozqgV<oJŸ‹Z‡jfx¤qot¡

(9) ak¤j¦¥ aGcRVUozikVeT §©¨

(10) f`_ u oqjwfc#oqŸrª}UoqTWuxrq}5c*T=rts`¢£uvwgxa*}Uoqf`«qVUsWakgœxakV5c/oJŸ (R ∪ {−∞}) }UrJfDœ3V¬¡ikjc cVUf rqackRV¬T=rts`¢¦uxvgxa }Uoqf`«qVUs­}UoqTŽœjf3rtckjwoqfžoJŸrtcWTWoza c oJŸ

(11) cRV V5s`ckiVUTWVDuoqjwfcaŽoJŸ

(12) cRjmaakgœxakV5c§ ™ V Vea crJœxvjma R iVUvmrtcVe{žikVa gvcaŸIozi=}5vwozakVe{TWrJs`¢¦uvwngxaW+}51ozf`«qV5sž}UoqfVaWrJfx{©}5vwozakVe{gf`œ3ozgfx{bV{žT=rJs¢£uvwgxaW}5ozf«zV5s akV5c~aU§¯®°f©uxrqi cjw}Ugvwrqie±ƒ¡#V›a Rot¡²cRxrtc=r³}5vwozakVe{´T=rJs¢£uvwgxa}5oqf`«zV5s´a VUcW}erJfœ3V›{bVe}UoqTWuozakVe{žrzaŽr T=rJs¢£uvwgxaakgTµoJŸ@jcaiVe}UVeaa jwoqf }5oqfxV‹rqfx{<oJŸ“ckRV‹T=rts`¢£uvg3a}5oqf`«zV5sOR`gvwvoJŸ@j¶c~a/V5s`ckiVUTWV‹uoqjwfzc~aU§ ·‡¸¹»º¼ª½ •t¾“’q˜ ZNrts`¢£uvg3aªrJvwqVeœi~r±!ckioqujm}Urqv*rJvwqVeœi~r±“V5s`ckiVUTWVOuoqjwfcae±ƒu3ozv_`RV{birx±!uoqvw_ckozu3VaU± }Uoqf`«qVUs›}UoqfVaU±»}5ozf`«qV5sNakV5c~aU±,rJœ3adcirz}Bc'}Uoqf`«qVUs`jcd_q±»¿‹iVUjwfb¢£ZNjvwT=rJf›ckRxVUoqiVUT›±À#rJi~rtcRhUob{bozik_DckRVeoJ¢ iVUT n. ÁÃÄ%ÅÆÃdÇÆà È5É@ÅÊÃdÄJËBÅÊÉ!ÌÍÇÎ~ÏÍǦËÎdÐBÎ~ÌÍÏÑÎ~Ò%ÏÍÃÎ~Ç!Î~ÅÆÓ!Ì ÐzÔ Õ

(13) ÎÉÆÂÖ ×@ØGÙ~ÚBÛBÚBÜBÚ5Ý~Þ.

(14)  ! 

(15) k

(16)  ! $| (

(17) &d´ ¬&d »  *+,ž “#"$¬& (.

(18) ’  ˜ X

(19) oqg3ah5c~rJœvwjwaakoqfxa/v¦¥ rqfxrJvwoqzgV¬TWrJs`¢¦uvwgxaakgjw«%rqfc{bg ckRheoqiSUTWV|{bVGZ‡jwf¤qot¡

(20) ak¤`jƧQ!oqgbc. uoqjwfc*{,¥ gfDakoqgxa ¢£VUfxakVUTŽœvV

(21) }Uoqf`«qVUsbV

(22) }5oqTWuxrz}Bc*{V (R ∪ {−∞}) uVUgbc/aU¥ he}UikjwikV

(23) }UoqTWTWVœxrqik_b}UVUfckiV {¥ rqgªuvwgxa u3ozjfca“VUsci eTWVea“{bV}5V/a ozgxad¢£VUf3a VeTªœvwVq§Xoqgxa“hUcrJœxvjmakakoqf3a!{bVa@ikha gxv¶c~rtca“akjTWjwvwrqjiVea uoqgxi

(24) vVa

(25) } n+1 zfVea}5oqf`«zV5sbVea#T=rts`¢£uvg3a/ŸIVUiTWheaVUcu3ozgi

(26) vwVea

(27) }Uoqf`«qVUsbVea/T=rts`¢£uvg3a#ŸIVUiThafozf‡œ3ozikfhaU§ XoqgxaTWoqfckioqfxa@VefOuxrqi cjw}UgvjwVUi*lzg¥ gfOakoqg3ad¢£VUfxakVUTŽœvwV

(28) }5oqf`«zV5sbV/TWrJs`¢¦uvwgxaŸIVUiTh'{bV ∪ {−∞}) uVUgc#akV

(29) {bhe}UoqTWu3oa Vei}5ozTWTV'a ozTTWV

(30) {bV'a ozfO} qfxV

(31) {bV

(32) ihe}5VakakjwoqfWV5c*{V

(33) vÆ¥ VUf`«zVUvwoquuV

(34) }5(R ozf«zV5sbV{bVakVea uoqjwfca/VUsci eTWVeae§  ½ ”’ º —  ’ˆ˜ ¨vzSUœiVŽT=rJs¢£uvwgxae±»rqvzSUœiVGcikozujm}UrJvwVq±,uoqjwfca¬V5s`ci eTVaU±,uoqvw_qS{biVeae±uoqvw_ckozu3VaU± } qfVa}Uoqf`«qVUs`VaU±xVUfxakVUTŽœvVa}Uoqf`«qVUs`VaU±3}5oqf`«zV5sbj¶chªrJœ3adcirqj¶cVq±cRhUozikSeTWVª{bVª¿‹iVUjwfb¢°Z‡jvwT=rJf±xckRheoJ¢ iSUTWV|{bVŽÀ#rqirJckRheo`{oqi_ n. n.

(35) 

(36)      !#"%$'&

(37) )(*  ,+-.0/213. 4. zŒ §657989:;=<?>=@,89AB;=7 Q/RV))2!#"$'&

(38) C2EDFG2 1`pdozjfjwfWcd¡#oWu3ozjfca jma/ckRxVGa VUc

(39) oJŸ!«zVe}5ckoqi~a#oJŸ“ckRV ŸIozikT (α + u) ∨ (β + v) ¡RVeikV α rJfx{ β rqikV'VUvwVUTWu,VUvfc~∈a*(R oqŸ R∪ ∪{−∞}) k a gx}~R=cRxrtc α ∨ β = 0 §IH

(40) VeikVz± {−∞}  { U V  f q o k c e V  a k c x R ' V = T t r b s w j ª T  g T J o “ Ÿ k a e } J r m v J r ~ i U a J ± z o  i  c  R ' V  u q o w j  f d c  ¡ w j k a  V = T J r ` s w j ª T x g T q o  Ÿ q « V}Bckoziae±zrqfx{WŸIozi*rJvwv»ak}erJvmrJi~a ∨ J r x f < { q «  V B }  c q o ~ i a ± b { e V  f J o  c e V * a k c x R ¬ V z « e V }5ckoqi/¡jckR VUfckijwVea § α ∈ R ∪ {−∞} α+u ¨akgœxakV5coJŸ (R ∪ {−∞}) ujm∈a )(R2∪!#"%{−∞}) $'&

(41) J  +.¬ j¶Ÿ“j¶c

(42) }5ozfcrJjwfxa/rJf`_=T=rts`¢£uvwgxa*akVUzTWVUfc!pdαoz+jfxjuf cd¡#ooqŸ3jca“uoqjwfzc~aU§@Q/RKV G !#"%$'&

(43) LJ  +.MJ  !qVUfxVUi~rtckV{Gœ`_ u, v jwa!ckRxV/akV5c@oJŸ3«qVe}5ckozia!oJŸ3ckRV*ŸIoqiT ±q¡RVeikV rqfx{ rJiV*rJiœjcki~rJi_VevVeTVefca!oJŸ §!¨©a gxœxa VUc“oqŸ (α+u)∨(β +v) jma‹r )2!#"%$N&

(44) GJ  ,+-.Jα  ¬j¶ŸβjcG}5ozfzc~rJjwfxa¬rJf`_›TWrJs`¢¦uvwgxa¬}5R∪{−∞} ozf«zV5sN}5ozfVªzVUfVeirJckV{‡(R∪{−∞}) œ`_›cd¡*o<oJŸjca uoqjwfcae§“Q/RxVeakV

(45) {bV Oxfxj¶cjozfxarqikVfxrJckgi~rJvbjŸ,oqfV'}5oqf3a jm{bVUi~a“ckRxV

(46) T=rts`¢¦uxvgxaa VeTjwijf3±J¡Rjm}~R=jwaƒckRVakV5c Velgjwuu3V{›¡j¶cR›ckRVŽrq{{bjckjwoqf b) 7→ a ∨ b rJfx{ cRVGTŽgv¶cjuxvjm}UrJckjwoqf (a, b) 7→ a + b § R ∪ {−∞} Zˆrts`¢¦uxvgxaƒ}Uoqf`«qVUsŽ}5ozfVearJiV/rqvwako|}UrqvvwVeP{ 2(a, Q ) R&S$TU@ot«qVei@ckRVTWrJs`¢¦uvwgxaƒakVUTWjwikjwfx§@¨

(47) fWVUsbrqTWuvV oqŸT=rts`¢£uvg3a}Uoqf`«qVUs´a VUcjmaWqjw«qVef´jW f V“jzgiVŒ X<ckRxV›}Uoqf`«qVUs´a VUc A jmaªcRV‡}5vwozakVe{žqiVU_­ikVeqjwoqf± coqzV5ckRxVUi¡jckRDckRV¬uoqikckjwoqfOoqŸ«qVUikckjm}Urqv3vwjwfVpdozjfjwfŽckRV'u3ozjfc b ckojce§ƒQ/RiVUVT=rJs¢£uvwgxa#a VeqTWVUfca jwfGzVUfVeirqvquozakj¶cjozf±~pdoqjwfjwf

(48) cRV*u3rJjwia!oJŸuoqjwfca (f, g) ± (h, i) ±trJfx{ (j, k) ±JrJiViVUuiVeakVUfckV{‹jfŽœ3ozvw{§ Y#_ª}UoqTWuxrqikjwf

(49) cRVa R3rJuVea@oJŸ3ckRVa VakVUzTVefca“¡j¶cRckRVakRxrJuV/oJŸ ±JoqfxV/}erJfW}~RVe}~¤|zVUozTVUckijw}erJvwv_ A cRxrtc A jma}5ozf`«qV5s,§ ®°fckRjma|uxrqu3Vei‹¡*Vqjw«qVikVeuiVeakVUfcrJckjwoqf‡cRVUozikVeTWae±,jwfˆcVUiTWa‹oqŸ*VUscikVeTWVŽuoqjwfca|rJf3{NV5s`cikVeTV i~r%_baU±ŸIoziTWrJs`¢¦uvwgxa}Uoqf`«qVUsDa VUcarJf3{<}UoqfVaU§ Z‡oqckjw«trtckjwoqf3a#cko=adcgx{b_=cRV|T=rts`¢£uvg3a#rqfxrJvwoqzgVea*oJŸ@}5ozf«zV5sD}UoqfVa#rqfx{ }5oqf`«zV5sDakV5ca/rqikjma V'ŸIioqT akVU«zVUi~rJ%v OxVevw{ae±bvwV5c

(50) gxaiVU«`jwVU¡ akoqTWV‹oJŸ“ckRxVeakV¬TWoqckjw«%rJckjwoqfxae§ ZNrJs`¢¦uvwgxa

(51) }Uoqf`«qVUsDa VUca¡#VUiV‹jfcikob{bgx}UVe{ œ`_<¿W,§ ZjwTWTWVUiTWrqf\ f []Z»jTD†q_† ^¦§À*oqf`«qVUs`jcd_=jma

(52) rWu3ot¡/¢ Vei ŸIgxv@cko`oqvƒjwfozubckjwTWTj `rtcjozf±rJf3{akox±T=rJs¢£uvwgxa‹}5ozf«zV5sˆakV5c~a|rJiozakVªjwfcRV=lgVea c|oJŸ#akoqvw«trJœvwVWoqub¢ cjTW#j `erJckjwoqfˆuxikozœvVeT=aa ['ZjwGT bFc=± ZjwTW 4-^£§ª]`VUVWrJvma oOckRVWœooz¤›oJŸ*Yªd§ Z»jTWTWVUiT=rJfe f []Zjw)T bUŒ ^@ŸIozi¬rqf ot«zVUi«`jVe¡|§ ZNrJs`¢¦uvwgxa‹}5ozf`«qV5sˆ}UoqfVa¬Rxr%«qVŽœ3VeVUf¯adcgx{bjwVe{jf³jm{bVUTWuoJckVefc|rqfxrJvw_ba jmae±rtŸ ckVei¬ckRVWoqœ3a Veik«trtcjozf {gVNcožZNrqakvwot«´ckR3rtcDcRVakoqvwgbcjozfxaOoqŸ|rqf f HrqTWjvckozfbE¢ grq}UoqœjVelgxrtcjozfšrqaa ob}UjwrJckVe{©¡jckR rž{bV5¢ cVUiTWjfjma ckjm}<ozubckjwT=rJv

(53) }Uoqfckioqv/uioqœvwVUT akrJckjmadŸI_žr h T=rts`¢¦uxvgxja i akguVUiu3oa jckjwoqf©uijfx}UjuxvVz±*rJf3{©akox± œVUvwoqfxDco›a ckigx}5ckgiVea¬a jwTWjvmrJi¬co›}Uoqf`«qVUsN}5oqfxVeae±,¡Rjw}~R³rJiV}erJvwvV{ˆakVUTWjwTob{bgxvVa‹oqi¬jw{bVeTWu3oqckVUfc vwjwfVerqi@akuxrz}5Veka [ lZˆ] ŒJ±znÀ mpo¬F c^¦§ƒ]`gx}~RWa ckigx}BcgikVa“Rxr%«qV#œ3VeVUfWgxakVe{,±JŸIoqi@jf3adc~rJfx}UVq±tco‹}~R3rJi~rq}BcVUiTj `eV cRVGakV5ca

(54) oJŸƒadc~rtckjwoqf3rJi_Da ozvgckjwoqfxa/oqŸƒ{V5ckVeikTWjwfjmadcjw}‹ozubckjwT=rJv}Uoqfckioqv,uioqœxvVeTWa [ L¨ m ™ z‚ ^¦±3rJfx{<cko {Veakjzf<f`gTWVUijm}UrJvrqvzoqij¶cRT=Ka [ V@ZN z b±xL¨ ml z-Š ^£±`cko=TWVUfckjwoqf›rikV}5Vefzc

(55) rquuvwjw}ertckjwoqf§ ZNrJs`¢¦uvwgxa}Uoqf`«qVUs=}UoqfVa/Rxr%«qV¬rJvma oœVUVUf‡a ckgx{jV{Djwf›ikVevwrJckjwoqfOco={bjwa}5iV5cV'Ve«qVefzc

(56) ak_badcVUT=aU§ƒQ/RV iVerz{bVUiŽT=r%_³}UoqfxakgvcŽcRV akgi«qVe_uxrqu3Vei0a [ m¬n*„†`±nÀ mpo¬„z_„ ^#ŸIoziŽTWozikV<œxrq}~¤`qioqgxfx{,§N®°fuxrJikckjm}5gb¢ vmrJi±iVerz}~RxrJœvwVWrJfx{³oqœ3a Veik«trJœxvV=akuxrq}UVea¬oJŸ}5Vei c~rJjwfˆcjTWVe{¯{jwa}5iV5cVVe«qVefzcªak_badcVUT=a|rJiVWfxrtcgi~rJvwv_ Vlgjuxu3V{‡¡j¶cRˆa ckigx}BcgikVa

(57) oqŸTWrJs`¢¦uvwgxau3ozv_`RV{birqv}5ozfVeaa [ ¿|rJc _‚ ^¦r§ qrJivjwVUi¬{bjmak}UikVUckVGVe«qVUfc'ak_bad¢ cVUT=a'Toqckjw«trtckjwoqf3a

(58) Rxr%«zVGœ3VeVUfˆrJccRVªozikjwqjwf›oJŸƒckRxVª¡#oqi¤`pa [ÍnÀ mpo¬„zŠb±,nÀ mpo¬„`†9± m‹rJgx„ b_^¦±»jwfN¡Rjm}~R cRV‹ckRxVUoqi_=oJŸ@T=rts`¢£uvg3a/u3ozv_`RV{birqv,}5oqfxVea/Rxrza/œ3VeVUf‡{bVU«zVUvwoquVe{,§ s Ÿª}Uoqgi~a Vz±

(59) rJfoqckRVeiDjwfckVUiVea c<jwfšT=rts`¢£uvwgxaD}Uoqf`«qVUs`jcd_a ckVeT=aOŸIioqT rJœ3adcirz}Bc<}Uoqf`«qVUs©rJf3rJvw_z¢ akjma [ ]bjfx„`† ^£§]bVU«qVeirqv,ikV}5Vefzc

(60) u3rJuVUi~ajf›cRjm6a OxVevw{,±jwf‡uxrJikckjm}5gvmrJi/cRozakV|oJŸZNrqi .c tfx2V `5u¢ lVezFr `q±ygœxj¶¢ fxot«±rqfx{›]`jfxqVUi [ Z l!y]b z-‰ ^¦±xrqfx{ ¨

(61) ¤`jwrqf‡rJfx{›]`jwfqVei [ ¨¬]bF 4-^£±xrqikV‹iVUvmrtckV{OcoWTWrJs`¢¦uvwgxarqvzVUœi~r§ n. n. i. n. n. v?v. ÈwxÜUxBÚ5Ý.

(62) c. /%1u" %L&2U1 C3JR G1

(63). ¨ ikVefVU¡#Ve{›jwfckVUiVea c

(64) jwfNT=rts`¢¦uxvgxa'}5ozf«zV5s<}UoqfVaU±oqki h°cikozujw}erJv}Uoqf`«qVUs akV5c~auiB±3rqfx{‡a uVe}Ujwrqvvw_q±jwf cikozujm}UrJvzu3ozv_`RV{bi~r±RxrqaikV}5VUfcv_|rJijma Vef¬jwfGiVUvmrtcjozf‹cko

(65) cikozujm}UrJvzqVeoqTWV5cik_ Ijwf|ckRxjwa“}5ozfzcV5s`ce±hdckioqub¢ jm}Urq'v i

(66) jmaVakakVUfckjmrJvwvw_ŽgxakVe{=rzarGak_`foqf`_`T oJŸ hdT=rJs¢£uvwgxja i~±zoqii~rtcRVUi±qoqŸ,ckRV¬{bgxrqvckVeikT›±hdTWjwfb¢£uvg3aui B§ Q!ioqujm}UrqvxrJfxrqvozqgVaƒoJŸuoqvw_ckozu3VaRxr%«zVœ3VeVUf }5oqf3a jm{bVUiVe{Wœ`_ Ve«qVevjwfDrJf3{D]ckgxikTŸIVUvmaC[ ‹]b cF^¦±`rJf3{ rqvwako‡œ`_ gzozak¡j [ gzoza z‚ ^ IckRVDckioqujm}Urqvuoqvw_zcoquVeaGckRVe_³}Uoqfxakjw{VUiªrqikVOaku3V}5jmrJv OxfjckVUvw_³qVUfxVUi~rtckV{ T=rJs¢£uvwgxaª}Uoqf`«qVUs³}UoqfVaU±ƒjwf´¡Rjm}~R¯ckRxVDqVefVUi~rtcoqi~a‹Rxr%«qV OxfjckV VUfckijVa 5§ 'VU«qVevjwfžrqfx{ž]cgikT¢ ŸIVevwa¬Rxr%«zVªrJvmakoDuoqjwfzcVe{ˆoqgbc|rJfNVevVezrqfzc¬ikVevwrJckjwoqfNœV5cd¡#VUVef‡ckioquxjw}erJv“u3ozv_ckozu3Va'rqfx{NuxR_`vwoqzVUfVUckjm} rqfxrJvw_ba jmKa [ ‹]bF c^£§ ]`ozTWV#oqŸckRxVeakV#TWoqckjw«%rJckjwoqfxa“Rxr%«zVzgjw{Ve{ªckRV{bVe«qVUvwoquxTVefc“oqŸxT=rts`¢¦uxvgxa@rqfxrJvwoqzgVea!oJŸ3}Uvwrzakakjm}UrJv iVeakgvca#oJŸ“}5oqf`«zV5sOrJfxrqv_bakjwae±`vjw¤qV'ckRxV H'rJRfE¢ Y/rJf3rq}~R=cRVUozikVeT []ZjwTD†q†±x]x]b„z‰`±3nÀ mpo¬F cb±3nÀ mpo‹]b z-‚ ^¦§ ™ VGrJiV'jwfckVeikVadcVe{ORxVUiV¬jwf<ckRV‹iVUuiVeakVUfcrJckjwoqfOoqŸ“}Uoqf`«qVUsDa VUca/jwfDcVUiTWa/oqŸV5s`cikVeTV‹uoqjwfca/oqi VUs`ckiVUTWVWir%_bae§OQ/RjwaGuikozœvwVUT›±jwf³ckRVD}erqakVWoJkŸ OxfjckVUvw_ˆzVUfVeirJckV{ˆT=rts`¢£uvwgxa|}5ozf«zV5s}UoqfVaU±!Rxrqa œVUVef}Uoqfxakjm{bVUiVe{Žœ`_Ga Ve«qVUi~rJvbrqgbckRozika [ Z‡oqv bFb± ™ rqz„Œt± m‹rJgx„ b`± ¬] c±nÀ mY/F c^¦§@Q/RV/qVefVUi~rJvb}erqakV R3rqaœVUVefOvwVeaaa ckgx{bjwVe{±¡jckROckRV'V5s}5VeubckjwoqfOoqŸ,ckRV'uxrJuVUCi [ HVUv bFb-^£±`jfD¡Rjw}~R HVUvwœjwªVea crqœvwjwakRVe{=r T=rJs¢£uvwgxa

(67) rqfxrJvwoqzgV‹oJŸ¿‹ikVejf¢£Z‡jwvwTWrqf¥ a#ckRVeoqiVUT›±3akRot¡jwfckRxrJc¬rWfozfb¢¦VeTWubcd_<}UoqTWuxrq}5c}5ozf«zV5s akgœxakV5c'oJŸ ∪ {−∞}) jmacRVª}Uvoa giV|oJŸ@cRVª}5ozf`«qV5s R`gvv!oJŸƒjcaakV5c'oJŸƒV5s`ckiVUTWV|uoqjwfcae±xjwf‡ckRV T=rJs¢£uvwgxa(R akVUfxakVq§ Vxoqi|}5ozf«zVUfckjwoqf3rJv!}Uoqf`«qVUs›akV5c~a¬oJ* Ÿ Oxfxj¶cV{bjwTWVUfxakjwoqf±,Rot¡#VU«zVUi±rDTWoqiVªuiVe}UjwakVŽiVeakgvc'jma'ckigFV X cRVO}5vwozakgiVŽozu3VeirJckozi‹}erJf³œ3VO{jwaku3VefxakVe{¡j¶cR±!akjf3}5VOr›}5vmrqaa jm}Urqv“ckRVeoqiVUT.oqŸ#Z‡jwf¤qot¡

(68) ak¤`jƒa Rot¡

(69) a cRxrtcr‡foqf¢¦VeTucd_³}UoqTWuxrq}5cŽ}5ozf`«qV5s­a gxœxa VUcªoJŸr OxfjckV<{jTWVUf3a jwoqfxrqvakuxrq}UVOjwaGckRV }5ozf«zV5s³Rgxvv oqŸj¶c~aªakV5cªoqŸ/VUs`ckiVUTWVOuoqjwfzc~aU§ s fVDTWr%_³rqak¤ˆ¡RVUckRVeiGcRVDarJTWVOjma|ckigV=ŸIoziGT=rts`¢£uvg3aG}5ozf«zV5s akV5c~aU§ ™ V

(70) a Rot¡žckRxrJcckRxV

(71) rJfxak¡*Veiƒjwa@uozakjckjw«qVq±rJfx{Vadc~rJœvwjwakRWr‹TWrJs`¢¦uvwgxaƒrqfxrJvwoqzgV/oJŸ,Z‡jfx¤qot¡

(72) ak¤j¦¥ a cRVUozikVeT›§ XoJckVªckRxrJc'cRVŽ}Uvwrzakakjm}UrJv!uiooqŸƒoJŸZ‡jwf¤qot¡

(73) ak¤`jÆ¥ a/cRVUozikVeT }erJffxoJcœVªcirqfxaku3oa V{DcoOcRVŽT=rJs¢ uxvgxaª}UrqakVq§=Q/RVO}Uvwrzakakjm}UrJvƒrquuiozrq}~RV5sbuvwoqjca¬cRVWŸÊrq}Ujwrqvadcikgx}5ckgiVWoJŸ}5ozf«zV5sˆakV5c~aU§OyV}UrqvvƒcRxrtc r FJ¬oqŸ*r<}Uoqf`«qVUs›akV5c‹jma‹œ_‡{b2V OxfjckjwoqfckRVjwfzcVUi~a V}BcjozfˆoJŸckRVW}5ozf«zV5sNakV5c‹¡j¶cR³r a gxuu3ozi cjfx Q R`_`uVUiuvwrqfVq§ VoqirN}5ozf`«qVUfcjozfxrJv}Uoqf`«qVUs³akV5c±ƒoqfVD}erJfžakRot¡ ckR3rtcªcRVDVUs`ckiVUTWVOuoqjwfzc~aªoqŸckRV ŸÊrz}5Va#rqikV¬V5s`cikVeTV‹uoqjwfca#oJŸ!ckRVGakV5c±rJfx{<gxakVcRjwa

(74) oqœxakVUi«trtckjwoqfOckoWuiot«qV'ZNjf¤zot¡

(75) a ¤`j¦¥ ackRxVUoqiVUT›± œ`_Ojwfx{bg3}Bckjwoqf›ozf<cRVG{bjwTWVUfxakjozf›oJŸ“ckRVG}Uoqf`«qVUsDa VUce§Q/Rjma

(76) {bo`Va/foJc

(77) ¡#oqi¤=jf cRVGT=rts`¢£uvg3a}UrqakVq± œVe}erJgxakVOrJf¯VUs`ckiVUTWVOuoqjwfzcŽoJŸ

(78) r›ŸÊrq}UV=T=r%_foqcªœVDrJf¯VUscikVeTWVOu3ozjfcªoqŸ/ckRVDakV5c±ƒrqaGakRot¡f¯jwf qsbrqTWuv V 4§ bGœVUvwot¡|I§ H

(79) Vefx}5Vz±bj¶c{bo`Vea#foqc/akVUVeT uozaakjœvwV'ckogxa V H

(80) Vevœxj3¥ a/rJuxuikorq}~RWco{bVeikjw«qVckRV iVeakgvca/oqŸckRxV|uikVa Vefc/u3rJuVUi§ ®°fŸÊrq}5ce±¡#VWqjw«qVWr<{bjwiVe}Bc|uio`oJŸoqŸ#r Z‡jwf¤qot¡

(81) ak¤`j!cd_`uVckRVeoqiVUT ŸIoqi‹T=rts`¢£uvwgxa‹}5oqf`«zV5sˆ}5ozfVea ÆQ/RVUozikVeT 4x§Œ 5±ŸIikozT ¡Rjm}~R=¡*V'{bVe{bg3}5VcRVT=rts`¢£uvwgxaZ‡jwf¤qot¡

(82) ak¤`jbckRxVUoqiVUT ÊQ/RVeoqiVUT 4§Í‰ B±`rJf3{ jca'qVefVUi~rJvw#j `ertcjozfDcoOcRVŽ}erqakVGoJŸƒgf`œoqgfx{Ve{N}Uoqf`«qVUs akV5ca ÊQ/RxVUoqiVUT 4§ 4 5r§ V“jfxrqvvw_q±»¡#Vª{bV{bgx}5V rzarGakuVe}5jmrJv»}Urza V

(83) rŽa vwjwqRckvw_ŽTWozikV

(84) uxikV}5jma V

(85) «zVUi~a jwoqfWoqŸcR6V hdœxrza jma@cRVUozikVeaT i

(86) oqŸZ‡oqvwvVeri [ Z‡oqv bFb_^,rJf3{ ™ rJzfVUgxKi [ ™ rJz„xUŒ ^ŸIozni OxfjckVUvw_DzVUfVeirJckV{OT=rts`¢£uvg3a}5oqf`«zV5sD}5ozfVeae±3À*oqioqvwvmrJiG_ 4x§ cx§ V“jwfxrJvwv_z±b¡*V'foJcVcRxrtc#ckRxV¬T=rqjfOiVeakgvca#oJŸckRV¬uiVeakVUfc*uxrqu3Veie±bQ/RVeoqiVUT=k a 4§wŒ

(87) 4x§ 4`±bRxr%«zVœVUVef rqffozgfx}5V{ Ê¡j¶cRoqgc

(88) uiko`oqŸ #jf cRV|a gi«qVe_Ouxrqu3Vei [ m‹¿| z-Š ^¦§ . . . . .  . . . n. . . . . . . . . .  . v. "!.

(89) ‚. 

(90)      !#"%$'&

(91) )(*  ,+-.0/213. x2 A e. k i j f. h g. d c. a b. x1. nA ?>d: '¨

(92) fDgxfœoqgxfx{bVe{DT=rts`¢¦uxvgxa#}5ozf`«qV5s=akV5c#rqfx{WcRikVeV¬akVUzTWVUfcajf<qVUf¢ Veirqvuozakjckjwoqf‡}5ozfzc~rJjwfVe{Djf›jce§ . . b‰ § C: A CA 7 =:9A ®°f=cRjmaakVe}Bcjozf±¡*V

(93) zj«zVœxrqakjm}

(94) {bVO3fj¶cjozfxarqfx{WVea crqœvwjwakROa ozTWVVUvwVUTWVUfcrqik_ŽvVeTWTWrzaU§ƒQ!oGœijfx co=vjwqRc

(95) cRVªrqfxrJvwoqz_=¡j¶cRN}5vmrqaa jm}Urqv}5oqf`«zV5s rqfxrJvw_ba jmae±b¡*VGakRxrJvwvgxakV|cRV|ŸIoqvwvwot¡jfWfoqcrJckjwoqf§ ™ V {VUfoqckV¬œ_ R cRV‹TWrJs`¢¦uvwgxa/akVUTWjijwfx§ ™ V|{bVefoJcV‹œ_ a ⊕ b := a ∨ b ckRV‹T=rts`¢£uvwgxa/rq{{bjckjwoqf± rqfx{=œ`_ ckRxV'T=rts`¢£uvwgxaTŽgv¶cjuxvjm}UrJckjwoqf§ ™ V'akV5c ± §“Q/RxV'akV5c*oqŸ«qV}Bcoqi~a oqŸakjT`eV nabot«z:=VUi aR+ b jwaƒ{bVefoJcVe{Žœ`_ R §@¨«qV}Bckoziƒ}5oqf3a jmadcjfx:= ¬oz−∞ fvw_GoJŸ ª:=Vefck0ijVa@jwaƒ{bVefoJcVe{œ`_ »§ Y#_=a}UrJvmrJi±q¡#VTWVrJfDrqfOVUvwVUTWVUfc#oJŸ §@®£Ÿ rJfx{ ±`¡*V¬a VUc ± rqfx{›¡#VŽ{bVefoJcVGœ`_ λu cRVª«zVe}5ckoqi'¡Rj¶cRNVUfcikjwVeu,a vλ ∈+Ru §Zˆrts`¢¦uxλvgx∈a'R}5ozf«zV5s›a VUca¬rJufx{‡⊕}Uvoq:= fVa

(96) uRx∨r%«zvV œVUVef {V OxfV{Djwf<ckRV‹jwfzcikob{bg3}Bckjwoqf§“®°fDckRV|akVelgVevƱ`ŸIozi#œxikVe«jcd_q±cRV¬ckVUiT hk}5ozf«zV5s i

(97) gxakVe{<¡j¶cRoqgbc uxikV}5jma jwoqfxaŽa R3rJvwv/rqv¡/r%_baGœV<gxfx{bVUi~a cko`ob{¯jfžckRV›T=rts`¢£uvwgxaŽakVUf3a Vz\ § Y#_ hk}5oqfxUV iB±ƒ¡*V›a R3rJvwv#rqv¡/r%_ba TWVrJf›r ÊT=rts`¢¦uxvgxa /}5ozf`«qV5sD}UoqfVz§  ¸ ” ʽ ?21 .QGU& 21n j ¬}Uoqf`«qVUsORgxvn v j AA RF2 % 1uR G}5o R(A)  1Bp21n jp$ $ *  1u ‹}Uoqf`«qVUsD}5oqTŽœjwfxrtcjozfxaa j. 

(98). . . max. . . n max. max. . n max. max. . max. i. . . . . .   "!. . . n max #. %$. '&)(. +*. 2 $T2G2 1 Q  %U2 J QIU 1 1E2 - k?.  Q"(*  1uM21   k  Q A# ⊕k∈K αk uk K u k∈K M $,$P ja2$T2G2 1 p j  %R 2J$#p1B1 21   -$  ⊕k∈K αk = #  }UoqfVCD 2 %21uR A.$  RF{α 2 %k }1Ek∈K R .$

(99) }UoqfV   n1B621 jr$ $/&)(*  1u+*K$' #rJ   1 3   a2$T)2 1 M j 2)A J. aIU 1 1u2 \ (A)  ?  M0(  1u221   k  u k∈K A# ⊕k∈K αk uk K rQ 1$ $P a$#) ,13p j  R p2J.$T {αk }k∈K '  iVe}UVeaa jwoqf }5oqfxVP j A 1n "  ,1  aRF (* # R%$32 A. v∈A. ki V} (A) := {u ∈ R | v ⊕ λu ∈ A  M$ $ λ ∈ R } . * L"$Tˆ‰§ ‰ Q/RV ikV}5Vakakjozf´}5ozfV<oqŸ

(100) ckRxV }Uoqf`«qVUs­akV5c oqŸCV“jzgiVˆŒ›rtcrqf`_¯u3ozjfc jma iVe} (A) = }5oqfxV ({(0, 1), (2, 0)}) §®£c/jma

(101) akRot¡f oqf<ckRV|ijzARc/R3rJfx{ a jm{bV|oqŸ V“jzgiVG‰±bœ3Vevvot¡|∈§ A v. 4. #. v. v?v. ÈwxÜUxBÚ5Ý. n max. max.

(102) Š. /%1u" %L&2U1 C3JR G1

(103). ™ VVlgju R ¡j¶cRšcRVˆgxakgxrqvcoquoqvwoqq_z±/¡Rjw}~R }UrJf {bVOxfxVe{ œ`_©ckRVTWV5ckijm}X (x, y) → §GQ/RVakV5c jwa¬VelgjwuuVe{¡j¶cRNcRVŽuxikob{bgx}5c'coquoqvwoqz_q§ ™ V={bVefoJcVŽœ`_‡}5vwo (A) ckRV |e − e | }Uvoa gxikV¬oJŸƒrWa gœ3a VUc RA oqŸ R § Q/RV‹ŸIozvvwot¡jwfŽvwVUTWT=rqa

(104) qjw«qV‹a ozTV‹uioquVUikckjwVea/oqŸ!iVe}UVeaa jwoqf }5oqfxVeae§ *¸  ´– ?21 a)J2$T -2RGU& 21  % 1 JUU3  J  %a  1  J2$T -2R A R A v max. x. y.  a$ $. n max. /. n max. . !. . n max #. v ∈ A#. n  lV5c § VozirJvwv ±x{bV2OxfV|cRV|T=rJu ϕ : R → R œ`_ ϕ (u) = v ⊕ λu § jwa'rJf‡jwfzcVUi~a V}Bcjozf oqŸ}5vwozakVe{‡akV5cae±3rqfx{Nakox± b] jfx}UV ϕ jma¬v}5oq∈fcAjf`gozgxaU±xikV}λ ∈(A)R = ∩ ϕ (A) jc

(105) jma}5vwozakVe{,§  *¸  ´– =21 ) J  ,+-.PU& U2216   R  p2 G 3 A R v, w ∈ A βv ≤ w β 6= 1B2 OiVe}  i e V } (A) ⊂ (A) n  lV5c iVe} (A) § ™ V=rqaa gxTVz±,¡j¶cRoqgc¬vwozaa¬oJŸzVUfVeirqvjcd_q±ckR3rtc β ≤ »§ªQ/RVef±»ŸIoqi|rJvwv u∈ ± λ∈R . max. #. λ. v. /. . λ∈Rmax. . !. v. . w. n max. λ. −1 λ. n max. λ.  . . n max. #. #. . . v. #. max. −1. −1. ∈A akjwfx}5V v ⊕ β λu ∈ wA ⊕rqfxλu{ a =jwfx}5wV ⊕A βvjma

(106) }5⊕ozf`ββ«qV5s,§“λu®£cŸI=oqvwvwot¡

(107) ⊕a#β(v cRxrtc ⊕uβ∈ ikλu) V} (A) §  • ½ ½ ’ ” ʽ º  ¸ ” ƽ =21 .a)J$T 2.R)J  +QU& 21  2 1 JUU3  R J  %Q j 1   %RFu" RF2 16 j A QQRF2 % 1Ea 1 |iVe} A v v∈A (A) n  m¬jw«qVef ±b¡*VG{b2V OxfV¬ckRxGV &_"" U1oJŸ x ckoWœV‹ckRVGakV5c x∈R a guxu x := {1 ≤ i ≤ n | x 6= } . s œ3a Veik«z V Oxia c

(108) cRxrtc¬j¶Ÿ ±3cRVUf rqfx{›ckRxVŽakguuoqikcoJŸ jmackRxVªgfjwoqfˆoJŸƒckRxV akguuoqikcaªoJŸ u rqfx{ v §Nu,®£vcG∈ŸIozvAvwot¡

(109) a|ckR3rtucª⊕cRvVUi∈VOAjmaªrqf¯VUvwVUTWVUfc w ∈ A u¡⊕jckR´v T=rtsbjwTªgT akguuoqikce± TWVrJfjwfGcRxrtc/a gxuu akguu ŸIoqi/rJvwv § HVUfx}UV

(110) ŸIozi*Ve«qVUi_ * ckRVeikV'V5sbjmadc~a =a g3}~R cRxrtc λ v ≤ w §<Q/RVevik⊂VUŸIoqiVq±œ`w_ lVUTWT=r‡v ‰b∈§ cxA±!j¶ca g O}UVea‹coNa Rot¡ v ck∈RxrJAcªiVe} (A) ⊂ λikV} 6=(A) ŸIoqi Ve«qVeik_ v ∈ A § lV5c œV ra VlzgxVUfx}UVDa g3}~R¯ckRxrJc lim β = ¯rJf3{ < β ≤ ­ŸIoziŽrqvv {β } ⊂ R ƒ § £ ® Ÿ k i  V } q r x f { λ ∈ R ±bcRVUf r∈N u∈ (A) −1. . . .  . w. . . . . . . / /0!. . n max #. .$. #. . #. n max. #. . i. . v.

(111). v. w. . max. r r∈N. r→∞. v. . r. . r. max. w. v ⊕ λu = lim (v ⊕ βr (w ⊕ βr−1 λu)). mj a#r|vjwTWj¶c/oJŸVevVeTWVUfca*oJŸ œ3V}Urqgxa V ŸIozi#rqvv §]`jf3}5V jma*}Uvoa V{,±qjc*ŸIozvvwot¡

(112) a cRxrtc v ⊕ λu ∈ A §Q/RVUiV5ŸIAozikVz± u ∈ iVew} ⊕(A)β ±xrJλuf3{ ∈akoxA±biVe} (A)r ∈⊂ NikV} (A) ŸIAozi

(113) rJvwv v ∈ A §  C) ›‰§ Š Q/RV¬}Uvoa gxikVrzakakgTWubcjozfOjfDckRV¬uiVU«`jwoqgxa*uioquozakj¶cjozfO}UrJfxfoJc#œ3V|{bjma uVUf3a V{=¡j¶cR§ À*ozfxakjw{bVei A = ([ , ] × { }) ∪ R = {(x , ) | x ≤ } ∪ R ⊂ R §Q/RVUf± ikV} (A) = (u , u ) ∈ R | u 6= ∪ {( , )} rJfx{<ikV} (A) = R . Q/RV›ŸIozvvwot¡jwfT=rJs¢£uvwgxa=rJf3rJvwoqqgxV<oqŸ'cRV‡foJcjozfoqŸ'VUscikVeTWV uoqjwfcO¡#rza=rJvwikVrq{b_¯g3a V{žœ`_ HVUvwœjw [ H

(114) Ve#v bb^£§ r→∞. −1 r. v. w. v. . #. ( , ). . . . . 2. 1. 2. . 1. 2 max. 2. 1. . 2. . 2 max. . ( ,  ). 2 max.  . v. "!.

(115) †. 

(116)      !#"%$'&

(117) )(*  ,+-.0/213.  ¸ ” ʽ 3qƒs`ckiVUTWVGuoqjwfzc ?1 G J  +PU& A  WV5s`ckiVUTWVuoqjwfcM j  ? p$ $  %R A y, z ∈ A α, β ∈ R . .  . . /.  !. . " ."2U1$) 21  ( R. Œ . 21L j n U&J.01BR max 1 #. . α⊕β =. max. . x = αy ⊕ βz =⇒ x = y. . 2$T2G2 1  x∈A  I1B $ $# I D. . x = z.. |VUsc (A) A Q/R`gxae±rªuoqjwfcoJŸ jma#V5s`ckiVUTWV¬j¶Ÿ@j¶c

(118) }erJffoqc#œVUvwoqfxªcoWrakVUqTWVefzc/oJŸ gxfvVaka#jcjwarqfDVUf3{DoqŸ cRjmaƒa VeqTWVUfce§ ™ V/¡/rJAifGcRV/ikVrq{bVei!cRxrtc{bgxV*co¬ckRV/jm{bVUTWuoJckVefx}5_ªoJŸrz{{bAjckjwoqf±JckRV/uioquVUikcd_ dŒ B± ¡jckR α ⊕ β =  rqfx{ α, β 6= DjmafoqcVelgjw«%rqvVefc#co rqfx{ x = z. x = αy ⊕ βz =⇒ x = y C) ž‰b§ b ®£Ÿ jmaGrqf³VUs`ckiVUTWV=u3ozjfcGoqŸ A ±cRVUf x = αy ⊕ βz ±!¡j¶cR α ⊕ β = ³rqfx{ x ±  j W T  u w v  j  V 2xX ∈ A a y, z ∈ A ozi (x = z, β = ). (x = y, α = ) ®°f3{bVUV{,±rzakakgTWV|cRxrtc x = y œgbc α < »§

(119) Q/RVUf± β = »§¨'akakgTWVGœ`_›}5oqfcirz{bjw}5ckjwoqf ckR3rtc x 6= z § Q/RxVUf±¡#V|Rxr%«zV ±xŸIoqi

(120) akoqTWV 1 ≤ i ≤ n ±3rqfx{›a o3± x = αy ⊕ z = αx ⊕ z < x ±x¡Rjm}~R›jwa fxoqfxakVUfxakVq§ x > z ™ RVef jwa‹rD}UoqfVz±3jc‹jwa¬}5vwVerqi

(121) ckR3rtc‹j¶c~aozfv_›VUscikVeTWVªuoqjwfzc‹jma »§¬®°fNcRjma'}erqakVq±ckRV iVUvwVU«trqfzcfCoqckjw⊂oqf Rjwa#cRxrtc

(122) oqŸ“VUs`ckiVUTWV‹qVUfxVUi~rtckozie§  ¸ ” ʽ 3qƒs`ckiVUTWV=qVefVUi~rtcoqi ?1 0J  % 2$T)2 1  0 x∈C VUs`ckiVUTWV‹qVUfxVUi~rtckozia j C  1B  $ $# I Da" ."C2U⊂1 R 21   R 221n p1 )k"  ,13a . I $ $ . QRF2 % 1ER. .$. #. . . . . . . #. . . . i. . i. i. i. i. i. .  . . . i. ". n max. . i.  . !. $.  n max (. . #. . x = y ⊕ z, y, z ∈ C =⇒ x = y. x = z.. 3   .1 .)6D2 %21E   1B2 1BK221   =V5s`ckiVUTWV'ir%_ | λ ∈ Rmax }  x %a21k a.F1 2GCD2 %2C1E p  I $ $ RMmax R x = 1uR {λx %$|V5s`c ¢£ . C#. C. (C) #. qƒs`cikVeTV|zVUfVeirJckozia#rJiV|}UrJvwvwVe{2   UR&J2 $T

(123) VUvwVUTWVUfc~a/jf›vmrtc cjw}UV¬ckRVeoqi_q§. C) ž‰b§wŒe ®£cŽ}Urqf¯œ3V<ikVrq{bjwv_³}~RVe}~¤zVe{ckR3rtcªVe«qVUi_ˆVevVeTWVUfcªoJŸ

(124) rqf¯V5s`ckiVUTWVOi~r%_ˆoqŸ jmaªrqf C VUs`ckiVUTWV‹qVUfxVUi~rtckozi*oqŸ C § * L"$T ‰b§wŒqŒ lVUc¬gxa‹}Uoqfxakjw{VUi'ckRV=}5vwozakVe{ˆ}5oqf`«zV5s‡a VUc a Rxot¡fNjf V“jzgikV<Œq§|®£c|}Urqf R œV=Verza jwvw_ˆa VeVUfckRxrJcGj¶c~a|V5s`cikVeTVWuoqjwfca|rJiV a = (5, 2) ± Ab =⊂ (4, ± ± rqfx{ 0) c = (3, 2) d = (1, 3) O § / Q  R = V U V ` s k c  i U V W T W V  i % r b _ ¬ a J o / Ÿ k i  V } q r k i V q r x f { Æ. a e V W V k c  R = V  i w j q   R | c x R rJfx{ e = (2, 5) (A) R (0, 1) R (2, 0) akjm{bV‹oJIŸ V!jwqgxikVG‰ 5§ Q/RV¬ŸIozvvwot¡jfxŽ}5ozfxa ckigx}BcjozfD¡jwvvrqvvwot¡ gxa*cko={bVeikjw«qV'ikVa gvca*ŸIozi/}Uoqf`«qVUsOa VUca/rqa/}5ozfxakVelgVUf3}5Vea oqŸ!iVeakgvca#ŸIoqi

(125) }UoqfVaU§ *¸  ´– =21 .Q0J  +0U& U221k  2 *1Bp21 A R . #. 4. 2 max. #. . max. . / .  aPJ.  %. v?v. !. . . n max #. max. . CA = {(λx, λ) | x ∈ A, λ ∈ Rmax } ⊂ Rn+1 max #. ÈwxÜUxBÚ5Ý.

(126) b. /%1u" %L&2U1 C3JR G1

(127). n  lV5c rJf3{ ±¡jckR rJfx{ ¨'akakgTWVq±»¡jβckR∈ozgbRc'vwozaa

(128) oqŸqVe(λfVUi~xrJvwj¶,cdλ_z±),cRx(λrtc xλ ,:=λ λ) ∈⊕Cλ 6= »§‹]`xjf3,}5xV A∈ jwAa¬}5ozf`«qV5λs,± ,λλ ±3rJfx{ a o3± λ x )∈A . max. #. 1. 1. 1. 2. 2. 2. 1. 2. 2. 1. A. 2. §. 2 ∈ −1. 1. . 2. Rmax (λ1 x1 ⊕. (λ1 x1 , λ1 ) ⊕ (λ2 x2 , λ2 ) = (λλ−1 (λ1 x1 ⊕ λ2 x2 ), λ) ∈ CA .. ZNoqiVUot«qVeie± C jma/oqœ`«`jozgxakv_=uiVeakVUi«qV{Oœ`_=cRV|Tªgvckjwuvwjw}ertcjozf œ`_DrWa}Urqvwrqie§ *¸  ´– 3  M J  +.P21n1  ›}5vwo  M J  ,+-.P21 A⊂R (A). . A. /  .  aJ  %. . . n max. Q2)a M1 U& #. /Q RxjwaŸIoqvwvot¡

(129) aƒŸIikozT cRV'}Uoqfckjwf`gjcd_ŽoqŸ,ckRV'ŸIgfx}5ckjwoqfxa (x, y) → x ⊕ y rJf3{ (λ, x) → λx §  ™ V|fV5s`c

(130) Vadc~rJœvwjwakR›a ozTV‹uioquVUikckjwVea/oqŸcRVG}5ozfV C § • ½ ½ ’ ” ʽ 3  aPJ$T 2.R J  ,+-.021 1B2 A⊂R }5vwo (C ) = C ∪ (iVe} (A) × { }). n  lV5c }5vwo § ¨'akakgTWIV Ox(y,i~adc,α)cRx∈rtc α 6=(C»§@)]`jwfx}5V (y, α) ∈ }5vwo (C ) ±ckRVeikVƒVUsbjwa carakVelgVefx}5V {(λ x , λ )} ⊂ a g3}~R­ckRxrJc §NQ/RxVUf±@rqa lim λ = α 6= ­rJfx{ A jmaª}Uvoa V{,± C (λ x , λ ) = (y, α) ¡#V­¤`fot¡.cRxrtc lim œ3Vevozfza co A §\Q/RVeikVUŸIoqiVq± x := lim x = lim § λ λ x = α y (y, α) = lim ¨'akakgTWVfot¡©c(λRxrtc xα, =λ )»I§ =l(αx, V5c x α)∈ A∈ rJCfx{ β ∈ R §ƒQ!oGuiot«qV/cRxrtc (y, α) ∈ (ikV} (A) × { }) jc#akg O}5Vaƒcoªa Rxot¡cRxrtc x ⊕ βy ∈ A §¨'a x ∈ A ¡#V

(131) ¤`fot¡ckRxrJc (x, ) ∈ C §ƒY'a jwf|cRV

(132) ŸÊrz}BccRxrtc }Uvo (C ) jma*rG}UoqfV Iœ`)_ lVUTWT=rqa#‰b§wŒ‰|rqfx{D‰§_Œ 4 B±`j¶c*ŸIoqvwvot¡

(133) ackRxrJc (x ⊕ βy, ) = (x, ) ⊕ β(y, ) ∈ }Uvo (C ) §@Q/RVUf±JckRVeikV#V5sbjmadc~a“r¬akVelgVUf3}5V {(λ x , λ )} ⊂ C akgx}~RGcRxrtc lim (λ x , λ ) = §Q/RxVUiV5ŸIoqiVq± (x ⊕ βy, ) }5vwo (A) = A. x ⊕ βy = lim λ x = ( lim λ )( lim x ) = lim x ∈ Q/R`gxae±x}5vwo (C ) ⊂ C ∪ (iVe} (A) × { }) § s œ`«`jozgxakv_ }5vwo § lVUc fot¡ ikV} (A) × { } § Q!rq¤qVrqf`_ x ∈ A § ™ V ¤`fot¡µckRxrJc x ⊕C λy⊂∈ A (CŸIoqiO)rqvv λ ∈ R (y,§ Q/)RVe∈f±#j¶Ÿ {λ jwaOr­akVelgVefx}5V›a g3}~R cRxrtc lim λ = »±*j¶cŸIoqvwvwot¡

(134) aªcRxrtc (y, ) = lim (λ} (x⊂⊕ Rλ y), λ ) rJfx{´ckRVeikVUŸIoqiV }5vwo akjfx}UV ŸIoqi

(135) rqvv r ∈ N § (y, ) ∈ Q/R`gxae± C (C∪ ()iVe} (A)(λ× { (x}) ⊕⊂λ}5vwoy),(Cλ ) § ) ∈ C  ½ • ½  ʖb• ¹ B  aPJ. L"FJ216J.  +0221 *1B2  p J2$T -2R0J   A⊂R C ⊂R n  ®£Ÿ jma

(136) r=}5ozTWuxrq}5cakgœxakV5c

(137) oqŸ  ±  j  c ª T x g. a

(138) c  œ G V 3 œ z o  g x f b {  V < { ŸIikozT rJœot«qVz±rJfx{›akoWikV} (A) = R § I Y#_OnAioquozakj¶cjozf‡‰b§w2Œ c±}Uvo x ± J r 3 f < { k a x o ± jma

(139) }Uvoa V{,§ { } (C ) = C ∪ { } = C C  *¸  ´–  =21 A .Q0J2$T R J  +. U& 21n j R 2 V5s`c ¢£ (}Uvo (C )) ∩ (iVe} (A) × { }) = V5s`c ¢£ (iVe} (A)) × { } . n . #. . #. A. . . .  .  . . . . n max. . A. A. . #. . A. A. A. r→∞. r. r. r. r→∞. r→∞. r. r. r. r. r. r∈N. r→∞ r −1. −1 r r r. r→∞. r. r. . A. . . max.

(140). . . A. . . . . A A. r. r. . r. r→∞. r. r→∞. r. A. r∈N r. r→∞. r. r. r. r. r. r→∞. r→∞. . A. A. A. . max. . −1 r. r→∞. . . r→∞. −1 r . A. r. A. −1 r. . −1 r. r. A. . n max. A. . n max. #. A. /  /. max. r r∈N −1 r. A.  /. . . A. !. . n+1 max. #. . A. A. . . n max #. A. . . A.  . v. "!.

(141) „. 

(142)      !#"%$'&

(143) )(*  ,+-.0/213. n  lV5c V5s`ck¢¦ }5vwo )) ∩ (ikV} (A) × { }) §Q/RVef±jwf uxrJikckjm}5gvmrJi± x ∈ iVe} (A) § '¨ akakgTWVckRxrJ(x, c x )=∈ y ⊕ z ±( ¡jck(C R iVe} § ¨'a›}5vwo (C ) = C ∪ (iVe} (A) × { }) œ_ nikozu3oa jckjwoqf ‰§Œ cb±¡#V¤`fot¡ cRxrtc y,(y,z ∈), (z, (A) }Uvo (C ) §µQ/RVef x = y ozi x = z ±akjf3}5V ) ∈ q r x f { U V  s k c ¦ ¢  5 } w v o § Q/RVeikVUŸIoqiVq± x ∈ V5s`c ¢£ (iVe} (A)) rJfx{ (x, ) = (y, ) ⊕ (z, ) (x, ) ∈ ( (C )) U V ` s. c £ ¢   i e V } § (x, ) ∈ ( (A)) × { } lV5c|fot¡ V5s`c ¢£ iVe} × { } §GQ/RVUf±oqœ`«`jozgxakv_ (x, ) ∈ iVe} (A) × { } §Ž¨aa gTWV (x, ) ∈ cRxrtc (x, ) = (x , λ ) ⊕ (x( , λ(A)) ±¡j¶cR }5vwo (C ) § Q/RxVUf± x = x ⊕ x ∈ rqfx{ λ = λ = »§‡Q/RVeikVUŸIoqiVq±@rq)aG}Uvo (C (x) =, λ C), (x∪ (, ikλV} )(A) œ`_nioquozakjckjwoqf´‰§Œ c±@j¶c ŸIozvvwot¡

(144) a‹cRxrtc x , x ∈ iVe} (A) § V“jwfxrJvwvw_q± x = x oqi x = x akj×f3}5{V x})∈ VUsck¢¦ (ikV} (A)) §NQ/R`gxae± VUs`c ¢£ (}5vwo (C )) § (x, ) ∈  *¸  ´– =21 .Q0J  +0U& U221k  2 A R VUs`c ¢£ (}5vwo (C )) ∩ C ⊂ VUs`c ¢£ (C ). n  s œ`«`jwoqgxa/akjfx}UV }5vwo (C ) § C ⊂  Q/RV‹ŸIozvvwot¡jwfŽuxikozu3oa jckjwoqf ikVevwrJckVa*VUs`ckiVUTWV|u3ozjfc~arJfx{<V5s`ckiVUTWV|i~r%_baU§ • ½ ½ ’ ” ʽ  =21 C ⊂ R   J.  % $T1 γ 6=  %R $T21 ψ : R → R .  . . . A. #. . . . . . A. . A. . . A. . . . . 1. 2. 2. 1. . 1. A. . 1. 2. 2. 1. A. 1. 2. 2. . . 1. A. 2. A. 1. 2. . A. /  . . !. . . n max #. A. A. A. . A. #. . . .  . / . . A. !. . n. . . ψ(x) 6=. . U&Smax ) 1 1. x∈ C \{ }. Σ := {x ∈ C | ψ(x) = γ} ..   n . . n. max )2!#"$'&

(145) P$'  U M  ) 

(146) D max 1B1   2 ) ψ(x) = ⊕n ai xi a ∈ Rnmax # G M$ $    %RPRF(* p1BQJ  i=1 +.)221 2. V5s`c (Σ) = V5s`c ¢£ (C) ∩ Σ . l V5c x, y ∈ Σ qr fx{ α, β ∈ R œV|a g3}~R<cRxrtc α ⊕ β = ,§Q/RVUf±rqa . . #. max. ψ(αx ⊕ βy) = αψ(x) ⊕ βψ(y) = γα ⊕ γβ = γ(α ⊕ β) = γ. rqfx{<oqœ`«`jozgxa vw_ αx ⊕ βy ∈ C ±xj¶cŸIozvvwot¡

(147) a#ckRxrJc αx ⊕ βy ∈ Σ §Q/RVeikVUŸIoqiVq± Σ jma

(148) }Uoqf`«qVUs»§ lV5c VUsc (Σ) §D¨'akakgTWVWckR3rtc x = y ⊕ z ±ŸIoqiGakoqTWV y, z ∈ C \ { } §OQ/RVUf± ψ(y) = γ ozi x∈. a w j x f }UV §]`gxuu3oa Vz±b¡j¶cRoqgc/vwozaa#oJŸ“qVUfxVUi~rJvwj¶cd_z±qcRxrtc ψ(y) = γ § ψ(z) = γ = ψ(y) ⊕ ψ(z) ¨'a x = y ⊕ ψ(z)γγ = ψ(x)  ±  ¡ x R U V  i ¬ V U }  v  V rJiv_ γψ(z) z ∈ Σ rqfx{ ψ(z)γ ≤ »±¡#V'¤`fot¡ cRxrtc γψ(z) z ozi x = γψ(z) z. x=y ]bjfx}UV x 6= y jTWuvwjVa ψ(z)γ = Æa VeVy

(149) VUT=rJi¤›‰§ b B±,jc'ŸIozvvwot¡

(150) a

(151) cRxrtc x = y ozi x = z §|Q/RVef± VUsck¢¦ § x∈ lV5cGfot¡ (C) ∩ ΣV5s`c ¢£ §D]bguuozakVŽcRxrtc x = αy ⊕ βz ±¡jckR y, z ∈ Σ rJfx{ α ⊕ β = »§ Σ ckRxrJc ]bjfx}UV x ∈ V5s`xc ¢£∈ (C) ±¡*(C) VŽ¤fx∩ot¡ oqi x = βz §Ž¨aa gTWVz±,¡j¶cRoqgbc‹vwozaaoqŸqVefVUi~rJvwj¶cd_z± x = αy cRxrtc x = αy §#Q/RxVUf± γ = ψ(x) = ψ(αy) jTWuvwjVa/ckR3rtc α = »±3rqfx{›a o x = y §*Q/RVeikVUŸIoqiVq± = αγ U V  s c § x∈ (Σ)  XoJckV*ckR3rtc“ckRV/}5ozfx{bjckjwoqfªoqŸbckRV#uiVU«`jwoqgxa!uioquozakj¶cjozf|jwa@artckjma OxVe{,±tjwfªu3rJikckjm}5gvmrJi±e¡RxVUf ψ(x) = ŸIozi

(152) a ozTWV a ∈ R § ⊕ ax . −1. −1. −1. −1. . −1. −1. . . . . . n i=1 i i. v?v. ÈwxÜUxBÚ5Ý. n.

(153) Œ . /%1u" %L&2U1 C3JR G1

(154). ½ • ½  ʖb• ¹. ?1.  . "!. a J  ,+-.)U&21n j . 2. Rnmax #. . 5V s`c ¢£ (C ) ∩ (A × { }) = V5s`c (A) × { } . n  À*ozfxakjw{bVeicRV/T=rts`¢¦uxvgxa“vwjfxVerJi“ŸIozikT oqf {bV2OxfVe{Žœ`_ λ) = λ ±tŸIozi@rqvv z ∈ R rqfx{ λ ∈ R ±#c~rJ¤qV γ := »±rJfx{rquuvw_žψnioquRozakj¶cjozfš‰b§wŒ bcko´ψ(z, ckRVN}UoqfV § ™ V {Ve{bgx}UV¬ckRxrJc/VUs`c ¢£ (C ) ∩ Σ = VUsc (Σ) ±¡RxVUiV Σ := {(xλ, λ) ∈ C | λ = }C= A⊂×R{ } §ƒ]bjfx}UV VUs`c (A × { }) = V5s`c (A) × { } ±`cRVG}5ozikozvvmrJi_Wjwa/uxikot«zVe{,§  lV5cWgxaikV}UrJvwv*ckRxrJcWr³}5ozfV m j a * , 1E2$ D 2 %21uRDjŸ

(155) cRVUiV<VUsbjwa ca r O3fj¶cV akgœxakV5c a g3}~RDcRxrtc C = }UoqfV C(A)⊂ § R A⊂R *¸  ´–  * , 1E2$ aD  1ERPJ.  %Q j R  pJ2$T R n  lV5c rqfx{ C = }5ozfV (A) § ™ V'rqaakgTWVq±q¡jckRxoqgbc#voakaƒoqŸ,qVUfxVUi~rJvwj¶cd_z±JckR3rtc A = {u , . . . , u } L < I Ÿ q o  i q r  v v § lV5c {VUfoqckVªrWvwjfxVerJi

(156) ŸIoqiT ±3a gx}~R cRxrtc u 6= 1≤k≤m ψ(x) := ŸIoziªrJvwv 1 ≤ i ≤ n §‡Q/RVUf± ψ(u ) 6= »±“ŸIoqirJvwv 1 a≤xk ≤ m § lV5c x = ⊕ λ u a œ3>VDr akVelgVefx}5V‹oqŸ!VUvwVUTWVefzc~aoJŸ C akgx}~R<ckRxrJc lim x = x ŸIozi

(157) a ozTWV x ∈ R § ]`jwfx}UV ±'rJfx{šakjwfx}5V »± jmaDœoqgxfx{bVe{ rqa cVUfx{xaOco´jf Oxfjcd_q§ HVUfx}UVq±ƒ¡#λVD}Uψ(u rqfžrq)aak≤gTWψ(x Vq±@¡j¶)cRoqgcvwozaaGoqŸ

(158) ψ(u qVUfxVU)i~rJ6=vwj¶cd_z±cRxλrtcŽckRVeikV<V5sbjwa ca λ r ∈ R akgx}~R¯cRxrtc ŸIozi

(159) rJvwv k = 1, . . . , m c~rJ¤`jwfOa gxœxa VlgVUfx}UVea#jŸ“fV}5VakarJi_ B§ƒQ/RVUf± lim λ =λ A. . . A. . #. n+1 max. . max. . A. . n max. (. . . 1$. 1$. n max. 1. #. k. (. n max. /  /. #. m. . k. r k. k. i i. i. r. r. r→∞ k. r. . r k. .  . 3. lim xr = lim. r→∞. r→∞. m M. n . / . jp1k) -U1. k=1. k=1. . ;. 

(160)  > G@;=7   S8/GA 7 8:

(161) ");   =8:

(162) 0;?A 798/ ?  7d< d89:

(163) 0  7/: 

(164) 8d;=:/.

(165) . !. . n. .1 2)rDmax  1E a j. $. .  %RG2. . }5oqfxV (V5s`ck¢¦ (C)). C= l V5c x ∈ C § VoziVerq}~R i ∈ {1, . . . , n} {bVO3fV‹ckRVGakV5c. #. max. k. m  M λk uk ∈ C. λrk uk =. Xot¡ ¡#V|uikot«zVcRV‹T=rJjwf iVeakgvca/oqŸ!cRjwa/u3rJuVUi§ pQ   ,! r"%1 QJ2$T -2R)J   ?21  ¸`½ • ¸  C⊂R . m r k k=1 k r∈N. n max. k. Q/RxVUiV5ŸIoqiVq± C jwa}5vwozakVe{,§ 4 §  : 798

(166) 89AB;?7 . 1≤i≤n. . . r k. r→∞. U&S. A. . A. n max. n+1 max . n. C. #. 2 . +2 G $ 2$T2G2 1 . C.  C1B. Si = {u ∈ C | u ≤ x, ui = xi } = C ∩ {u ∈ Rnmax | u ≤ x, ui = xi } .. ¨'a {u ∈ R | u ≤ x, u = x } jwa‹}UoqTWuxrq}5c¬rqfx{ C jma‹}5vwozakVe{,±,¡#Vª¤`fot¡cRxrtc S jma¬r }5ozTWuxrq}5c akgœxakV5c*oJŸ R ¡Rxjw}~R=jmafxoqfb¢£VUTWubcd_œ3V}Urqgxa V x ∈ S §ƒQ/RVeikVUŸIoqiVq± S Rxrza*r|TWjwfjwTWrqv3VevVeTWVUfc u § ™ V}5vmrJjwT cRxrtc jmarJfWVUscikVeTWVqVUfxVUi~rtckozi@oJŸ §@¨'akakgTWV/ckR3rtc ŸIoqiakoqTWV § Q/RxVUf± u = y oqi uu = z §*lV5c/gxa#rqaa gTWVz±¡jckRxoqCgbc/voaka*oJŸ!qVUfxVUi~rJvwuj¶cd_z=±qcyRxrt⊕c zu = y §@Q/y,RxVUziV5∈ŸIoqiCVq± akjwfx}5V rqfx{ §rH

(167) Vefx}5Vz± akjwfx}5V rJfx{ jma¬r=TWjfjwT=rJv y∈S VevVeTWVUfc'oqŸ S y§¬≤Q/Rug3aU≤± ux jwa¬rJf‡yVUs`=ckiVUuTW=VªzxVUfVeirJckoqioqŸ uC =§®£yc¬jwa¬}5vwVerqyi

(168) ≤ckR3rtuc x = ⊕u u ±,rJfx{Nakox± }UoqfV VUs`c ¢£ § x∈ ™ V|Rxr%(«qV|akRot(C)) ¡fOcRxrtc C ⊂ }UoqfV (V5s`ck¢¦ (C)) §Q/RxV¬oqckRVeijf3}5vwgxa jwoqf›jma#ckij«`jmrJv¦§  n max n max. i i. i. i. i. i. i. i. i. i. i i i. i. i i. i. i. i. i i. i. i. i. i i. i. i. n i i=1.  . v. "!.

(169) ŒzŒ. 

(170)      !#"%$'&

(171) )(*  ,+-.0/213. ¸`½ • ¸. ÊZNrJs`¢¦nvwgxa<Z‡jfx¤qot¡

(172) ak¤j'Q/RVUozikVeT.     . !=21 \   ,! r"%1 $eJ r"J1 J  ,+-.  U&21) j n 2 0+2 e $ $#) ,1 j  1  J  A+WJ   1 3  j 1QG 1 A n+1 .1 .)k" R ,max 13a# j k RG2 . }5o (V5s`c (A)).. A. A=. n  l V5c § V2xO fV´cRV}UoqfV max lVUTWT=# r=‰b§wŒ‰`x§Q/∈RVeAf±bœ`_›À*ozikozvvmrJi_O‰b§wŒ‚± CA jma=r=}5{(λz, vwozakVe{ λ)}5oz|fV|z rJ∈fxA, {DckλR`gx∈a Rmax} ⊂ Rn+1. }5ozfV (VUs`c ¢£. rqajwf. CA. œ`_DQ/RxVUoqiVUT 4§wŒJ§ ¨'a (x, ) ∈ C ±!œ_³Q/RVUozikVeT 4 §wŒW¡*VW¤`fot¡ cRxrtc|cRVUiV=V5sbjmadc ±fxrqTWVUvw_ (λ u , λ ), . . . , (λ u , λ ) ±xakgx}~R<ckRxrJc C CA =. (CA )). . 1. A 1. A. 1. n+1. n+1. V5s`ckiVUTWVWqVefVUi~rtcoqi~aoqŸ. n+1. . (x, ) =. HVUfx}UVq±. n+1. n+1 M. (λk uk , λk ).. k=1. ¡RVeikV M λ = . Y#_À*ozikozvvmrJi_N‰b§wŒe„`±¡#VŽ¤`fot¡ ckRxrJc jwa|rqfˆVUscikVeTWVzVUfVeirJckozioJŸ j¶Ÿd±“rJfx{ˆoqfvw_ jŸd± u ∈ A jwaŽrJf¯VUscikVeTWVOu3ozjfcoJŸ (uA §, Q/) R∈jwaŽCa Rxot¡

(173) a|ckR3rtc x jwaGckRV }5ozf«zV5s­}5oqTŽCœjwfxrtcjozf¯oJŸ

(174) rtc TWoadc V5s`ckiVUTWV=uoqjwfca|oqŸ A §<®£cGŸIozvvwot¡

(175) a¬ckR3rtc A ⊂ }Uo (V5s`c (A)) §‡Q/RV=oJcRVUiGjwfx}Uvgxakjwoqf­jwa cikjw«`jwrqvÆn§ + 1  ?1 M) %  ! 2L"1 J2$T -2R0J  + 21  k+2 0$T2) ,1k j  ¸`½ • ¸   1BU&S 1 aJ  ,A+-.⊂ 0JR  2 %1 3  j .1 .) "  1 p j  %R  .1 .)LD  1E A p A q /ikV} I 1B  RG2 (A) p+q ≤n+1 }5o V5s`c (A)) ⊕ iVe} (A). A= ( HVUiVq±¡*V

(176) {bVefoJcV

(177) œ`_ ckRxVT=rts`¢£uvg3arJfxrqvozqgV/oqŸcRVZ‡jwf¤zot¡

(178) a ¤`jxakgT oJŸ»cd¡*oGakgœxakV5c~aU±z¡Rjw}~R jma#{bV OxfxVe{ rqackRV‹a VUc*oqŸ⊕T=rts`¢¦uxvgxa#akgT=a*oqŸ!rG«zVe}5ckoqiŸIikozT²ckRCV Oxi~adc/a VUc/rqfx{OoqŸrª«zVe}5ckoqiŸIikozT²ckRV akVe}Uoqfx{<oqfxVq§ § 2V OxfV´cRV}UoqfV C = {(λz, λ) | z ∈ A, λ ∈ R } ⊂ R rqajwf n  lV5c lVUTWT=r=‰b§wŒ‰`x§Q/∈RVeAf±bœ`P _ lVUTWT=rW‰§_Œ 4`±x}5vwo (C ) jma

(179) rW}5vwozakVe{ }5ozfV|rJfx{DckR`gxa }Uvo (C ) = }5ozfV (VUs`c ¢£ (}5vwo (C ))) œ`_DQ/RxVUoqiVUT 4§wŒJ§ Y#_Dnikozu3oa jckjwoqf›‰b§w2Œ cW¡*V‹¤`fot¡ ckRxrJc }5vwo (C ) = C ∪ (iVe} (A) × { }), rqfx{DckRVef lVUTWT=rqa

(180) ‰§ŒŠŽrqfx{‡‰b§wŒ%†GjTWuvw_ X V5s`ck¢¦ (}5vwo (C )) = [VUs`c ¢£ (}5vwo (C )) ∩ C ] ∪ [V5s`ck¢¦ (}5vo (C )) ∩ (ikV} (A) × { })] V5s`ck¢¦ (C ) ∪ (VUs`c ¢£ (iVe} (A)) × { }). ⊂ x=. n+1 M. n+1. λk uk ,. . k. k=1. k=1 k . A. A. k. .  . .  n max . !. . . $. . . 32. . . $. #. max. A. #. n+1 max. A. A. A. . A. A. . A. A. A. v?v. ÈwxÜUxBÚ5Ý. A. . A.

(181) Œ%‰. /%1u" %L&2U1 C3JR G1

(182). Xot¡|±zrqa ) ∈ C ⊂ }5vwo (C ) ±œ`_ŽQ/RVeoqiVUT 4x§Œ¡#V/¤fxot¡žcRxrtcƒcRVUiVV5sbjmadc*rCOxfxj¶cV

(183) f`gTªœVUi qo Ÿ3VevVeTVefca“(x, oJŸV5s`c ¢£ ±qfxrJTWVUvw_ ¡jckR ±zrJfx{rLO3fj¶cVf`gTªœVUi@oJŸVUvwVUTWVUfc~a oqŸ!VUsck¢¦ (ikV} (A)) × {(C} ±)f3rJTWVUvw_ (y(λ, u) ,¡λjckR) 1 ≤ h1 ≤≤ qk±x≤a g3p}~RDcRxrtc . A. . A. A. k h . . (x, ) =. ¡jckR. §Q/RVeikVUŸIoqiVq± p+q ≤n+1.  M. k. 1≤k≤p. k.    M  (λk uk , λk ) ⊕ (y h , ) , 1≤h≤q. ¡ RVUiV M λ = rqfx{ iVe} ŸIoziªrJvwv 1 ≤ h ≤ q §Y#_¯À*ozikozvvmrJi_³‰b§wŒe„›¡#VO¤`fot¡ cRxrtc (u , ) ∈ C jmaªrqf VUs`ckiVUyTWV∈zVUfVei(A) rJckoqioJŸ j¶Ÿd±brqfx{=oqfxv_WjŸd± jwa#rJfDV5s`ckiVUTWV

(184) uoqjwfc#oqŸ §Q/Rjma*akRot¡

(185) ackRxrJc jma#ckRxVGa gT oJŸcRVG}5ozf`«qCV5sD}UoqTŽœjf3rtckjwoqf<oJŸ up VU∈s`ckAiVUTWV‹u3ozjfca/oqŸ A rJf3{DoqŸ Aq V5s`ckiVUTWV¬qVUfxVUi~rtckozixa oqŸikV} ¡j¶cR p + q ≤ n + 1 § H

(186) VUf3}5Vq± A ⊂ }5o (V5s`c (A)) ⊕ ikV} (A) §‡Q/RVOoJcRVUiªjfx}Uvg3a jwoqf¯jma cikjw«`jwrqvÆ(A) §  ¨'a

(187) r=}5ozikozvvmrJi_WoJŸƒQ/RVUozikVeT 4§wŒ¬¡#V|qVUc

(188) rWuikV}5jma V‹«zVUi~a jwoqf<oJŸ“ckRrV h œxrqakjmacRVUozikVeMT i'ŸIoqLi OxfjckVUvw_ zVUfVeirJckV{N}5ozfVeae§ŽQ/RQV Oxi~a c‹iVeakgvca¬oJŸ*ckRjma‹¤`jf3{ˆ¡#VUiVŽozœbcrqjfxVe{œ_NZNoqvwvVeQi [ Z‡oz#v bb-^rJfx{ ™ rJJ¢ fxVUgi [ ™ rqz„xUŒ ^¦§]bVU«qVeirqv»«%rqikjmrJfc~a*oqŸcRjwa

(189) ikVa gvc

(190) Rxr%«zV¬rquu3VrJiVe{Dj\ f []m‹rJgx„ bb± ‹]b c±»nÀ mY#F c^£§   * , 1E2$ 0D  .1u.R J    %R ½ • ½  ʖb• ¹ Y#rza jma‹cRVUozikVeT ?1 C  U } q o  f V   I %R)  $ M  JC  ,⊂ 1E R K1I$T-U1*  %K   2 G2$T)2 1* jFJ A1 ⊂) C= (A) A x=.  M. 1≤k≤p. .   M  λk uk ⊕ yh ,. k. 1≤k≤p. 1≤h≤q. k . h. A. k. A. . . . . . .. . .  $0 j C# n  Q/Rxjwa#ŸIozvvwot¡

(191) a/ikVrq{bjwvw_WŸIikozT. 1$. !. .  n max. (. 1$. #.

(192). /Q RVeoqiVUT 4§wŒ|rJfx{<ŸIioqT lVUTWT=r=‰b§Í‰J b§  * L"$T4§Í‚ ¨a*rJfjvwvg3adcirJckjwoqfWoJŸ,Q/RVUozikVeT 4§ 4b±zvVUcgxa}5ozfxakjw{bVeiƒoqfx}UV

(193) rJrJjwfªcRV

(194) }5vwozakVe{}5ozf«zV5s akV5c A ⊂ R {bVUujm}BcVe{¯jwf V“jzgiVNŒJ§ ™ VORxr%«qVOrqviVerz{b_akVUVef BqƒsrJTWuvwVeaW‰b§Í‰›rJf3{´‰b§wŒqŒ ‹cRxrtc VUs`c (A) rJfx{<ikV} (A) = }5ozfV {(0, 1), (2, 0)} §Q/RVef± = {a, b, c, d, e} }5o {a, b, c, d, e} ⊕ }UoqfV {(0, 1), (2, 0)} A= œ`_DQ/RxVUoqiVUT 4§ 4b§Q/RV|a VUca

(195) }Uo (VUsc (A)) rJfx{<iVe} (A) rJiV¬{VUujm}BcVe{ jf V“jwqgiVG‰b§ * L"$TQ4§ Š Q/RxVGa VUc/oqŸ!VUscikVeTWV¬uoqjwfcaoqŸ“rW}5ozTWuxrq}5c}Uoqf`«qVUsDa VUcTWr%_DfoJcœVG}5vwozakVe{,§@®°f ckRV T=rJs¢£uvwgxa

(196) }erqakVq±bcRVUiVGrJiV|VU«zVUf‡}5ozgfckVUik¢£V5srJTWuvwVea/jwfN{bjwTVefxakjozf‡‰§/]bgx}~RNr=}5ozgfckVUik¢£V5srJTWuvwV‹jwa akRot¡f jf V“jzgiV 4x±¡RVeikV¬ckRxV‹akV5c A jma/qjw«qVef<œ`_ #. 4. #. . 2 max. . 4. #. . A = ([−2, 0] × {0}) ∪ ({0} × [0, −2]) ∪ x ∈ R2 | −1 ≤ x1 + x2 , x1 , x2 ≤ 0 ,. rqfx{. V5s`c (A) = {(−2, 0), (0, −2)} ∪ x ∈ R | −1 = x + x , x , x < 0 . C) 4x§Í† ¨'a'jwfNcRVW}5vmrqaa jm}Urqv!}Urza Vz±xcRVWa VUc¬oqŸV5s`ckiVUTWVŽu3ozjfca'oJŸ#rD}5ozTWuxrq}5c¬}5ozf`«qV5s‡akV5c‹jwa r G a VUc Êr<{bVUf`gTWVeirqœvV|jwfckVeiakVe}5ckjwoqf‡oJŸozu3VefNa VUca B§

(197) ®°f3{bVUV{,±3vwV5c A œVŽr=fxoqfb¢£VUTWubcd_‡}5ozTWuxrq}5c }Uoqf`«qVUs<akgœxakV5c

(198) oJŸ ±rJfx{ vwV5c d {bVUfoqckVªrqf`_OTWV5ckijm}|jf3{bgx}5jwfWcRV|ckozu3ozvozq_OoqŸ R § Vxoqirqvv uozakjckjw«qV‹jfcVUqVeia kR±xvVUc 2. 1. 2. 1. 2. . . #. . δ. n max. n max. .  Fk := (x, y, z, β) ∈ A3 × Rmax | d(x, y) ≥ 1/k, d(x, z) ≥ 1/k, β ≤ , x = y ⊕ βz ..  . v. "!.

(199) Œ_4. 

(200)      !#"%$'&

(201) )(*  ,+-.0/213. x2. x2. e. }Uo (V5s`c (A)). yVe} (A). d c. a b. x1. x1. nA ?>d:  'Q/RV‡akV5ca=}Uo VUsc rJfx{žikV} œoqgf3{bVe{›}5ozf`«qV5sDakV5c

(202) {bVeujm(}BckV{ (A)) jfV“jzgiVŒq§ . . . A. (A). oqŸ¬Q/RVeoqiVUT 4 § 4NŸIoziWckRV›gfb¢.                      V5s` c  (A)                        . 

(203) ¨}Uoqf`«qVUsDa gœ3a VUc

(204) oJŸ R rqfx{<j¶c~a

(205) a VUc

(206) oJŸ“V5s`ckiVUTWV‹u3ozjfc~aU§. nA?>d:. v?v. ÈwxÜUxBÚ5Ý. . 2 max.

(207) Œc. /%1u" %L&2U1 C3JR G1

(208).         +  H          p   F      nA ?>d:  'Q/RVªuoqjwfc jma¬rJfNVUscikVeTWVGu3ozjfc¬oJŸƒckRxVªŸÊrz}5V VUscikVeTWV¬uoqjwfcoJŸ“ckRVG}Uoqpf`«qVUsDa VUc . . . F. œgbc‹jc'jmafoqc¬rqf. lV5c {bVefoJcVWckRVOuxikoqpdVe}Bcjozf¯a Vefx{bjwf y, z, β) co x §›]bjfx}UV A jmaG}5ozTWuxrq}5ce± F jmaG}UoqTWuxrq}5ce± qr fx{ˆπakjwfx}5V π jma¬}Uoqfckjwf`goqg3aU± π(F ) jma¬}Uoq(x, TWuxrz}Bce§|®°f³uxrqi cjw}Ugvwrqie±jc‹jma‹}5vwozakVe{,§G¨ uoqjwfzc jf jma fxoJcVUscikVeTWV

(209) j¶Ÿrqfx{=ozfv_jŸ,ckRVeikV

(210) VUsbjwa ccd¡#oGu3ozjfc~a y, z ∈ A cRxrtc*rqikVœ3oqckRD{bj»VUiVUfcŸIioqxT x ±bArJfx{ r a}UrJvmrJi β ≤ »±akgx}~RNcRxrtc x = y ⊕ βz §ªQ/RVvmrtc cVUi‹uioquVUikcd_‡TWVerJf3acRxrtc x œ3Vevozfza'co›akoqTWV §]`ocRV|a VUc/oqŸ!VUscikVeTWV¬uoqjwfca/oqŸ A ±¡Rxjw}~R›}UrqfDœV|¡ikjc cVUf›rqa ∩ (R \ π(F )) ±jwar π(F ) k a 5 V e c § G lV5c rJfx{vwV5c ψ , ψ {bVefoJcVvwjwfVerqi‹ŸIoqiTWae§ ™ VO}erJvwkv $ !E "JGr›a VUcGoJŸ#ckRV ŸIozikT a , a ∈ R k. k. . k. k≥1. n max. k. δ. +. −. +. max. −. . H + = x ∈ Rnmax | ψ + (x) ⊕ a+ ≥ ψ − (x) ⊕ a− .. /Q RxV\ "F" -U 1E $ !E "J. H jmaŽ{VOxfV{žœ`_­iVU«qVeiakjwf‡ckRxV jwfVlzg3rJvwj¶cd_z§ ™ V‡akr%_ckR3rtc H jmar Q  )$ U&_"F" U1  D$ !E "FJŽoJŸ jŸ

(211) jc}5ozfcrJjwfxa rJfx{´j¶Ÿ

(212) jc}UoqfcrqjfxaªfoNoqckRVeiªRxrqv¶Ÿ ¢°a u3rq}5V }Uoqfcrqjfxjf A § ™ VW{bVOxfxVŽrpJ.'oqŸArD}5ozf`«qV5s‡akV5c A AckoDœVGcRVjfckVeiakVe}5ckjwoqf‡oqŸ A ¡jckRˆrqfNRxrJvŸ ¢ akuxrz}5V=oquxu3oa jckVWcoNr›TjwfjwT=rJv*akguuoqikckjwf‡Rxrqv¶Ÿ ¢°akuxrq}UVq§DQ/RVOŸIoqvwvot¡jwf‡}5ozgfckVUik¢£V5srJTWuvwV=a Rot¡

(213) a cRxrtc›gfvwjw¤qV­jf }5vmrqaa jm}Urqv¬}Uoqf`«qVUsšrJfxrqv_bakjwae±

(214) cRVVUs`ckiVUTWVuoqjwfca›oqŸGŸÊrq}UVea›rJiVˆfoqc‡fVe}UVeaakrqikjwv_ VUs`ckiVUTWV‹u3ozjfca/oqŸ!cRVGakV5ce§ * L"$TG4§ b À*oqfxakjw{VUi#ckRV|R3rJvŸ ¢£akuxrq}UV −. +. 4. #. . H + = x ∈ R2max | x1 ⊕ 1y1 ≥ 0 ,. ¡ Rxjw}~R©jwaWiVUuxikVa VefzcVe{žœ_´ckRV‡vwjzRcWzir%_­iVUzjozfžjwf V“jwqgiV c§ s fV‡}UrJf}~RV}~¤­ckRxrJc=ckRjmaWjwa=r TWjwfjwTWrqv!akguuoqikckjwf=Rxrqv¶Ÿ ¢°a u3rq}5V|oqŸ ÊakVUV)[ÑÀnmpo‹]b z‚-^!oqia[ gzoza z‚ ^!ŸIoqirO{Vea}5ijubcjozf›oJŸƒT=rts`¢¦uxvgxa R3rJvŸ ¢£akuxrq}UVea B§QH

(215) VUf3}5Vq± F := A ∩ H A jma‹r<ŸÊrq}5VWoqŸ A §=Q/Rjma¬ŸÊrq}UVŽjma‹iVUuiVeakVUfckV{Njwf­œ3ozvw{oqfckRV O3qgiVq§ƒQ/RV‹uoqjwfzc jmarJf V5s`cikVeTV¬uoqjwfzcoqŸ F ±œgc/jc

(216) jma/foJc

(217) rJf V5s`cikVeTV¬uoqjwfzcoqŸ A § p = (0, −1) . . −.     :7=@.  !“× `ÚBÛ ØÖ !

(218) UÌÑÎ~È J֋×@΍ÒqÃdÅIÉ WÎ~È !*ÖbÎ

(219) UÂ%Ët΍֬ÁÂ%ÃÕ

(220) Î  Ä%ύÇtÈ%Ì ÉÆóÃdÏÍÃdÕÃdÈUÉ ÕðɦÂ%˝ËBŠǦËBÏ Ð ÌÍÈ!%ðÉÆà ÅÊÕÌÍÈ%ÌÍÇÊɦÌ"ËBÄeɦÌÍÕ

(221) Î~Ï#"dËBÈUÉÆÅÆËBχčÅÆËBÒ%ÏÍÃdÕÇ Ô Ò%Î~ǦÌ"Ä%ÅÊËBÄJÃdÅÊÉÆÌÍÃdÇ Î~È$"dËBÈ5Ð5ÃdÅ%BÃdÈ"dà Î~ÈtÎ~Ï &ÇÆÌÍÇkÖ Î~ÅÆÓ!Ì ÐzÔ Õ

(222) ÎÉÆÂÖ ')( Ù~ÚBÛBÚB* Û,+ x-% Ø|Î~Å%¦" Â/B. ÚBÚBۍÖ.  . v. "!.

(223) 

(224)      !#"%$'&

(225) )(*  ,+-.0/213. Œ%‚.  !“× ÚBÜ ³ØÖ !

(226) UÌÑÎ~È ,qÖe×@Î%ÒJÃdÅÊÉ tÎ~È (“ÖŽÎ~ÏÍǦÂÖUÁÂ%ÃÕ

(227) Î  mÄ%Ï%Ç3Ø|Î~ÅÊÉÆÌÍÈÒJË%ÈtÎ~Å &5ÖtÎ~ÅÊÓ“Ì ÐqÔ Õ

(228) ÎɦÂÖ ØG׃Ù~Ú+ .5ÚBÞ B. ÚBÚBÜÖ  !) Ú* ØÖ ! U

(229) ÌÑÎ~ȋÎ~È £Ö-e ÌÍÈBÃdÅ ÖJÁbËBÄJËBÏÍËBÌÍÃdǓËBȬÏÑÎÉÆÉÆÌ"dÃ*ËBÅ %ÃdÅÆà  BÅÊË%Ä%Ç JÇÆÃdÄtÎ~ŦÎÉÆÌÍËBÈ wÅÊËBÕ "dÏÍËBÇÆà  %ËÈÎ~Å% Ç¦Ã°É¦Ç J Î~È " ËBÈ %5ÎÉÆÌÍËBÈ%Ç!Ëb É & ÄJà b Î Ö

(230)   t Ü. wÛ°Ô Û.UxeÛ5Ý., .BÚBÚ*Ö  ( ×,Ú vÖ !Ö( % È%ÌÍÈBÂ%Î~Õà I דÅÆÃdÃdÈ

(231) Î~È! bÖ  É%B

(232) ËkÐeÌ#"BÖ,Î~ÇÆÃdǁÌÍÈ#Õ

Références

Documents relatifs

À cet effet, un nombre considérable de recherches démontre cliniquement que les enfants de parents souffrant de problème de santé mentale sont plus à risque d’un retard dans leur

usual route to school and provide us with some details about their travel routine (e.g., schedule, mode of transportation, people accompanying them, etc.); 3) recent interventions

La question de l’extension des limites de Paris jusqu’à cette ligne avait été discutée mais ne fut tranchée que par un décret impérial du 9 janvier 1859 qui décidait de

C'est aussi le résidant pas chez leurs parents fréquentent deux fois parativement à la province, les étudiants de Nanterre ne lement ce moindre attachement à la ville

In this paper, we study the performance of an enhanced channel estimation technique combining estimation using an autocorrelation based method and the Expectation-

Selon Laeven et Valencia (2012) , le coût budgétaire de la crise bancaire s’est respectivement élevé à 44 et 41 points de PIB en Islande et en Irlande, ce qui place ces deux

Dans ce travail, nous comparerons les entreprises coopératives, détenues par leurs membres, dont le produit risqué est la ressource critique apportée et dont l’objectif est