• Aucun résultat trouvé

Full length article

N/A
N/A
Protected

Academic year: 2021

Partager "Full length article"

Copied!
8
0
0

Texte intégral

(1)

Full length article

Investigation of structural, optical and electrical properties of ZnS thin films prepared by ultrasonic spray technique for photovoltaic applications

A. Derbali

a

, A. Attaf

a,∗

, H. Saidi

a

, H. Benamra

a

, M. Nouadji

a

, M.S. Aida

b

, N. Attaf

c

, H. Ezzaouia

d

aLaboratoryofThinFilmsandApplicationsLPCMA,UniversityofBiskra,Algeria,BP145RP,07000Biskra,Algeria

bDepartementofPhysicsFacultyofSciences,KingAbdulazizUniversity,Djeddah,KSA,SaudiArabia

cLaboratoiredeCouchesMincesetInterfacesFacultédesSciencesUniversitédeConstantine,Algeria

dLaboratoiredesSemi-Conducteurs,NanostructuresetTechnologieAvancée,ResearchandTechnologyCentreofEnergy,Borj-Cedria ScienceandTechnologyPark,BP95,2050Hammam-Lif,Tunisia

a r t i c l e i n f o

Articlehistory:

Received25March2017 Receivedinrevisedform 26September2017 Accepted6October2017

Keywords:

Zincsulphide Thinfilms Ultrasonicspray Depositiontime XRD

Opticalandelectricalproperties

a b s t r a c t

ZnSfilmshaveimportantapplicationsinphotovoltaicdevices.Inthecurrentstudy,theZnS filmsweredepositedbyultrasonicspraymethodonheatedglasssubstrateattemperature equalto450C.

Inthisarticle,wereporttheeffectofdepositiontimeonthedifferentstructural,optical andelectricalpropertiesofZnS.AllthesamplesobtainedweretreatedusingX-raydiffrac- tion(XRD),opticaltransmittancespectroscopy(UV-V)andfour-pointmethod.Theresults ofX-raysdiffractionshowedthatthedepositedmaterialwaspurezincsulfidehavinga cubicsphaleritestructurewithpreferentialorientationalongthe(111)direction.Aswell thegrainsizewasaround38–102nm,whenthedepositiontimeincreases.Thetransmit- tancemeasurementsexhibitanaverageopticaltransparencybetween35and75%inthe visiblerange(400–750nm)fordifferentdepositiontimes.Thedirectbandgapenergyforall filmswascalculatedandfoundtobefrom3.48to3.92eV.Thefilms’thicknessisincreased withdepositiontimefrom195nmto1756nm.Theelectricresistivityofthedepositedfilm variesalsowiththedepositiontimebetween1.51×105and20.84×105.cm.

©2017ElsevierGmbH.Allrightsreserved.

1. Introduction

ZnScompoundisoneofthemostimportantsemiconductormaterial,andithasbeenlargelyinvestigatedintherecent years[1].Duetothewidebandgap(3.7eV),nontoxicity,safetytoenvironmentandhightransparency[2]ofZnS,itcan beusefulforextensivelyapplicationsinoptoelectronicdevices,suchaslight-emittingdiodeandlaserdiodefromblueto ultravioletband[3],fluorescenceandelectroluminescencethinfilmdevices[4]andn-typewindowmaterialinsolarcell [5].AswellincomparisonwithCdS,theZnSthinfilmsarepresentbetterlatticematchingtoCIGSowingtotheprecedent advantages.

∗ Correspondingauthor.

E-mailaddress:ab.attaf@gmail.com(A.Attaf).

https://doi.org/10.1016/j.ijleo.2017.10.034

0030-4026/©2017ElsevierGmbH.Allrightsreserved.

(2)

Fig.1. Theschematicexperimentaltousedofdepositionsystem.

Table1

ThedepositionconditionusedtodepositedofZnSthinfilm.

Depositioncondition Correspondingvalues

Amountofsolution 30ml

Substrate–nozzledistance 50mm

Substratetemperature 450C

Molarityofsolution 0.1M

Depositiontime 2min,4min,6min,8min,10min

Sprayingflowrate 50ml/h

Accordingtotheliterature,Zincsulphidefilmscanbedepositbyseveralmethodsincludingreactivesputtering[6], electro-deposition[7],pulsed-laserdeposition[8],chemicalvapordeposition(CVD)[9],molecularbeamepitaxy(MBE) [10],spraypyrolysis[11],chemicalbathdeposition(CBD)[12]andsol-gelprocess[13].Amongthosemethods,ultrasonic sprayisthebestonesuitedforthepreparationofZincsulphide(ZnS)thinfilmsbecauseitissimplicityanddonotcostan experimentalrequirement,easeofaddingvariousdopingmaterials,reproducibility,speedgrowthrateandmassproduction capabilityforuniformlargeareacoatings[14].

Inthispaper,weattendedzincsulphide(ZnS)thinfilmsontheglasssubstratebyultrasonicspraytechnique.Theaimof thisworkistoinvestigatethestructural,electricalandopticalpropertiesofZnSfilmsasafunctionofdepositiontime.The obtainedresultsarediscussedandcomparedwithotherresearchresultsreportedintheliterature.

2. Experimentaldetails

Thedepositionsystemhasbeenpreparedinthelaboratorybythesimplesetupshowedin(Fig.1).Zincsulphidethinfilms weredepositedonglasssubstratesofthedimension(25×15)mm2usingsprayultrasonictechnique.TheseZnSthinfilms exhibitedgoodadherencetothesubstratesurfaces.Theglasssubstrateswerecleanedinacetone,ethanol,anddistilledwater respectivelyfor15min,andthenblowingdrywithacompressedair.Thestartingsolutionwaspreparedbydissolving0.1M ofZincChloride(ZnCl2)andthiourea(SC(NH2)2)inmethanol.Alltheparameterswerekeptconstantsuchas:thesubstrate temperature(450C),theflowratesolution(50ml/h),thedistancenozzle-substrate(50mm).While,thedepositiontime changedfrom2,4,6,8,10min.IntheTable1,wesummarizedallthedepositioncondition.

Commonlywhenthesolutiondropletsreachtotheheatedsubstratesurface,thefollowingchemicalreactionoccurs:

ZnCl2+CS(NH2)2+CH3OH+3

2O2→ZnS+2NH4Cl(gas)+2CO2(gas)

Accordingtothisreaction,aZnSthinfilmshouldbeformedontheglasssubstratesurfaceandtheNH4Cl,CO2leavesthe systemingasesform.

Thestructural,opticalandelectricalcharacteristicsofthesefilmshavebeenstudiedextensivelythroughseveraltech- niques.ForthecrystallinestructurepropertiesofthefilmwasanalyzedusingX-raydiffracto-meter(D8ADVANCEDBRUKER) withCu-K␣radiation(␭=1.5418Å)in2␪rangefrom10–90.

Theopticalpropertieshavebeenrecordedbyusinganultraviolet-visible(UV-VIS)spectrophotometer(PerkinElmer LAMBDA25)betweenthewavelengthsof300and1100nm.Moreovertheelectricalresistivitywasdeterminedusingthe four-pointmethodatroomtemperature.

3. Resultsanddiscussion 3.1. Structuralproperties

Accordingtothedepositionprocessandexperimentalfactors,Zincsulphidefilmscanbecrystallizedintwoforms,cubic (Zincblend)and hexagonal.TheFig.2showsXRDpatternsofZnSthinfilmsdepositedbyultrasonicsprayatdifferent depositiontimes.Itwasobservedatdifferentdepositiontimethatthereisasingleonepeakforallfilmswiththepreferred orientedgrowthalong(111)planeatthediffractionanglesof28.7 andthisiscompatiblewithexhibitedazincblende

(3)

Fig.2. XDRpatternofZnSfilmsdepositedatvariousofdepositiontime.

2 4 6 8 10

35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

0,08 0,10 0,12 0,14 0,16 0,18 0,20 0,22

Fig.3.VariationofgrainsizeandFWHMof(111)peackwithdifferentdepositiontime.

structure(JCPDScardNo.55-0566)inthediffractionangle(2␪)rangefrom10to90,whichmeansthattheplaneswere paralleltothesubstratesurface.Thereisnopeakrelatedtotheoxidationphase(ZnO)evenatthemaximumdeposition time,whichprovesthatthestoichiometryofourfilmswasimprovedwithincreasingdepositiontimes.Thesameconclusion aboutgoodstoichiometrywerereportedbyotherauthor[15,16],forZnSthinfilmsobtainedbyspraypyrolysisatdifferent depositiontimeand(Zn:S)ratiointheprecursorsolution(A)respectively.

BothworksofHwangetal.[17]andAshratetal.[18]foundthesamecubicphasewiththepreferredorientatedalong (111)planeofZnSthinfilmspreparedbyRFmagnetronsputteringandclose-spacesublimation.Fig.2,alsorevealsthat theintensityof(111)peakincreaseswiththeincreasedepositiontimes;itbecomesnarrower,intensewhenthedeposition timeequals10minduetotheappearanceofthisorientation,itdependson:filmsandthesubstratesurfaceenergiesonone hand,thearrivingatomstosubstrateontheotherhand.Thegrowthisachievedalong(111)planeduetoitslowestsurface energy[19]

Thegrainsize(D)ofthedepositedfilmscanbedeterminedbyusingequationofScherer[20]:

D= K

ˇcos (1)

WhereKisapproximatelyequalto0.94,␭=1.54184Å,␪isthediffractionangleand␤isthewidthofdiffractionlineathalf maximumintensity.

ThegrainsizeresultsarepresentedinFig.3.Itcanbeobservedthereisaslightincreasewithincreasingindeposition timesbetween2and 6min(38–57nm)andthisresultisingoodagreementwiththereportedonesbyothersauthors (25–60nm)[21],becausegrainsizeenhancementyieldstothefilmsopticaltransmissionimprovement.Thesoluteatoms comingtothesubstratesurfacecanbediffusedalongthesubstratesurfaceandformclusters(nuclei)whichcancontribute totheformationofcrystallites.Atlowdepositiontime(2–6min),thediffusionofsoluteatomsonsubstratesurfaceisnot

(4)

Table2

StructuralparametersofZnSthinfilmsatdifferentdepositiontime.

Deposition time(min)

(hkl) 2␪(degree) FWHM(degree) D(nm) ␦x1014(Lines/m2) ␧x10−4

2 (111) 28.7488 0.216 38 6.93 9.13

4 (111) 28.7358 0.18 45.6 4.81 7.6

6 (111) 28.806 0.2 41 5.94 8.45

8 (111) 28.7785 0.144 57 3.08 6.08

10 (111) 28.6966 0.08 102 0.95 3.38

eminentwhichreducedtheclustersformation.Hencethedensityofnucleationcenterissmall,andthisleadtosmallergrain size.

Thensignificantincreasesbetween6and10mininthecrystallitesizefrom38to102nm.Similarresultshavebeen observedbyAbdietal.[22]andTouatiaetal.[23],findingthatthegrainsizewasvariedbetween64and104nmand 50–125nmbyelectronbeamdepositionandVacuumEvaporationMethod.Withincreasingthedepositiontime(6–10min) thenumberofsoluteatomsarrivingontothesubstratesurfaceisincreasing.Consequentlythenumberofnucleicenter formedonthesubstratesurfaceislargewhichleadstolargergrainsformation[24].

Theincreaseofthecrystallitesizewiththeincreaseofdepositiontimemaybealsoduetodecreasingthevalueoffull widthhalfmaximum(FWHM)correspondingto(111)peak(asseeninFig.3),resultingfromtheincreasingfilmsthickness.

Adislocationisknownasacrystallographicdefect,orirregularity,inacrystalstructure,anditspresenceinsidethe crystallitestructurestronglyaffectsmanyofthepropertiesofmaterials.Usingthevaluesofgrainsize,thedislocation density(␦),isdefinedasthenumberofdislocationlinesperunitvolumeofthecrystal,andithasbeencalculateddepending ontheWilliamsonandSmallman’srelationship[25]:

ı= 1

D2 (2)

Themicrostrains(␧)offilmswereestimatedusingtheequations[26]:

ε=ˇcos

4 (3)

Thestructuralparameterswerecharacterizedaccordingtothecalculatedvaluesofaveragegrainsize(D),microstrains (␧)anddislocationdensities(␦)forZnSthinfilmswithdifferentdepositiontimerepresentedinTable2

TheTable2showsthecalculatedmicrostrainanddislocationdensityalongtheorientation(111)crystallographicplane fordifferentdepositiontimes.Itcanbeseenthatthemaximumvalueofdislocationdensitywasobtainedforfilmsprayed at2minofthedepositiontime,thereasonisduetoinversecorrelationbetweendislocationdensityandthegrainsizeas confirmedinEq.(2).AsseenintheTable2theincreaseingrainsizeinZincsulphidethinfilmsledstoadecreaseingrain boundariesanditdecreaseddislocationdefectinsidethecrystallatticeofthesamplesandtheresultofallthiswasthestress reducedincrystalstructure,thislateristheresultsofinternalstrains.Rahuletal.[27]havereportedincreasesthegrain sizebetween36.12–43.82nmanddislocationdensitydecreasesbetween7.6×1014–5.2×1014line/m2forZnSthinfilms bythermalevaporationtechnique.

3.2. Opticalproperties

Thethicknessofthefilmswascalculatedbyweightingdifferencemethodusingasensitivemicrobalanceaccordingto relation(Eq.(4)):

thickness(t)= m

×a (4)

Wherem=massofthedepositedfilm,␳=densityofZnS,equal4.1g/cm3forbulkZnScubicstructureanda=areaoffilm [28].

Thegrowthrateisestimatedbydivisionthicknessfilmsonthetimeofdeposition.Thevariationsofthefilmthickness andgrowthrateasafunctionofdepositiontimearerepresentedinFig.4.ItcanbeobservedinFig.4thatthefilmthickness andthegrowthratearechangingalmostlinearlywithdepositiontime.Thefilmgrowthiscontrolledbykinetics[29]of thereactionbetweenthehotsurfacesubstrateandtheamountofsolution.Whenthedepositiontimeincreases,themass transfertothesubstratesurfaceincreasesaswellandthatmeanstheincreasingthemobilityofthedropletsreachingthe substratesurfaceathightemperature(450C)andincreasingthenumberofionizedparticles.Therefore,thisisduetothe increasesofboth;thereactionspeedsandthekineticsofthereactionbetweenthesubstratesurfaceandthequantityof dropletssprayedontosubstratesurfaceandbecauseofthatitincreasesthegrowthratewhichincreasesthethicknessofZnS thinfilms.Thesameincreasinginfilmsthicknesshavebeenreportedbyotherauthors[15,16]atdepositiontimebetween 10and25min.Whileindepositiontimeequalto10min,wehavenoticedadecreaseinthegrowthrate.Thisindicatesthat thedepositedfilmsbecomesapproximatelyinsaturationcasewithincreasingthedepositiontimesandthisisnotallowed

(5)

2 4 6 8 10 0

500

Fig.4.Filmthicknessandgrowthrateasafunctionofdepositiontime.

300 400 500 600 700 800 900 1000 1100 0

10 20 30 40 50 60 70 80

2 min 4 min 6 min

8 min 10 min

Fig.5.TransmissionofZnSfilmsdepositedatvariousdepositiontimes.

toincomingspeciesonsurfacesubstratewhichhaveenoughappropriateplacestoformsmorematerials,whichcausethe decreaseofthegrowthrate.

Thehightransmittanceofthefilmsinthevisiblerangeisveryimportantforopticalapplications.TheFig.5,showsthe opticaltransmittanceofZnSfilmsdepositedatdifferentdepositiontimes,forincidentlightatwavelengthsfrom300to 1100nm.

Thewholeofthespectraoftransmissionobtainedinoursamplesarecomposedoftworegions:a regionofstrong absorption(␭<400nm),correspondingtofundamentalabsorptioninthinfilmsofZnS.Thisabsorptionisduetotheelectronic transitioninterband(thevalencebandandthebandofconduction).Thevariationofthetransmissioninthisregionis exploitedforthedeterminationoftheopticalbandgapenergyandthedisorder.Itwasalsoobservedthatdepositiontime hasaffectedthepositionofabsorptionedgewhichshiftedslightlytolongerwavelength.

Thesecondregionofstrongtransparency(␭>400nm):thevalueofthetransmissionisabout35%to75%,inthewavelength rangeof400–800nm.Thischangingintransmissionvaluesisingoodagreementwiththatobtainedvalues(40–70%)by Daranfedetal.[30]onZnSthinfilmspreparedbyultrasonicspraymethod.Itisnoticedthatthetransmittancedecreasewith theincreasingdepositiontime,canbeexplainedbythefilmthicknessincrease.Wenoticedthattransmittancespectrahave nointerferencefringeduetotheincidentlightscatteringinthematerialbecauseofinterfaceair/filmroughness.

TheopticalbandgapofZnSfilmscanbeobtainedbytheabsorptionrangeinthetransmittancecurveandtheTauc relationship[31](Eq.(5)):

˛h=K

h−Eg

n

(5) Where␣istheabsorptioncoefficient,Kisaconstant,Egistheopticalbandgapandnis½foradirect-bandgapsemiconductor.

Extrapolationofthelineportionofthecurveto(␣h␯)2=0givestheopticalbandgap.Thevariationofgapopticand extrapolationofthelineportionofthecurveto(␣h␯)2asafunctionofh␯wasshowninFig.6

MostofbandgapsenergyvaluesaresomewhatlowerthanthatofbulkvalueofZnS(3.7eV).AccordingtoFig.6,theband gapenergyofZnSthinfilmsincreasesfirstfrom3.48eVto3.92eVintherange2–6min.Thisresultisingoodagreement withthatobtainedbyElidrissietal.[32],thewidebandgapenergyisthereasonofwindowlayerabsorptiondecreasesloses andconsequentlythisyieldstothesolarcellshortcircuitcurrentimprovement.Theincreaseofbandgapenergyiscaused byfilmthicknessincreas[33]andBurnstein-Mosseffect[34].However,afterthat,thegapopticdecreasedfrom3.92eVto

(6)

Fig.6.BandgapenergyoftheZnSfilmsasafunctionofdepositiontime.

Table3

RefractiveindexofZnSthinfilmatdifferentdepositiontimecalculatedbyHerve-Vandammeequation.

Depositiontime(min) BandgapEg(eV) CrystallitesizeD(nm) Refractiveindexn

2 3.48 38 2.21

4 3.62 45.6 2.18

6 3.92 41 2.11

8 3.66 57 2.17

10 3.56 102 2.19

3.56eVwiththeincreasingdepositiontime,itcanbeexplainedthisdecreaseinthegapopticenergytoquantumsizeeffect [35]owingtoincreasedcrystallitesize.SimilarresultshavebeenobservedbyAbduljabbar(3.7–3.3eV)[36],Yildrimetal.

(3.73–3.57eV)[37]andNadeemetal.(3.84–3.51eV)[38].

Therefractiveindex(n)ofZnSthinfilmselaboratedatdifferentdepositiontimeiscalculatedusingthemodelofHerve- Vandamme.TheHerve-Vandammerelationship[39]is:

n2=1+

A

Eg+B

2

(6) WhereAandBareconstantsasA≈13.6eVandB≈3.4eVandEgistheexperimentalvaluesofgapopticenergy.

TherefractiveindexofZnSthinfilmselaboratedatdifferentvaluesofdepositiontimeisillustratedinTable3.

AsobservedinTable3therefractiveindexdecreasesbetween2.11and2.21intherange2–6min,thenincreasedwith theincreasethedepositiontime.Abduljabbar[40]hadreportedinearlierwork,thevalueoftherefractiveindexofZnSthin filmswasaround2.13–2.19atroomtemperatureandatdifferenttemperatures(200C,300Cand400C).Wecanattribute thisdecreaseasfollows:theincreaseofthegrainsizeduetodecreaseofgrainsboundaries,thismaybeduetoreducedofthe stressinthecrystallinenetworkoftheZnSthinfilms.Younghunetal.[41]havealsoreportedtheeffectsofbiaxialstresson therefractiveindexofZnO:Ga,sotheyhavefoundthattherefractiveindexdecreaseswithincreasingbiaxialtensilestress.

3.3. Electricalproperties

Forourstudytheresistivityiscalculatedbythefollowingequation[42]:

=Rd (7)

Whereistheresistivity,Risthesquareresistanceanddthesamplethickness.ThevariationsofZnSlayersresistivityand conductivityversusthedepositiontimearepresentedinFig.7.

Itcouldbeobservedthattheresistivityofthegrownfilmsincreasesfrom1.51×105cmto20.84×105cmwiththe increasingofthedepositiontime.TheseresultsarelowerthanTuranetal.ones[43],whostudiedtheelectricalpropertiesof ZnO/Au/ZnS/Aufilmsdepositedbyultrasonicspraypyrolysis.Hence,thegrainsizeenlargementleadstoadecreaseingrain boundaryeffects,becausetheboundaryhinderstheconductionmechanismofcarrierscharge,andthisisthereasonforan increaseinresistivity.

AsobservedthattheincreaseinthethicknessofthesamplesledalsototheincreaseoftheresistivityofZnSthinfilmsas showinginEq.(7).Therefore,theresistivitywasaffectedbycarrierconcentrationanddepositiontime.

4. Conclusion

Inthiswork,wehavebeenshownthatthedepositiontimeplaysafundamentalroleonthepropertiesofZnSthinfilms depositedbyultrasonicsprayontoglassat450Csubstratetemperature.TheXRDmeasurementsrevealthatthefilms

(7)

Fig.7.VariationoftheresistivityandconductivityofZnSthinfilmswithdifferentdepositiontime.

depositedat10minhaveastrongly(111)preferredorientationandareparalleltothesubstratesurface.ThesmallestFWHM valueof0.08hasbeenalsobeenobservedforthesefilms,indicatingthatthecrystallinityofthefilmscanbeimproved byincreasingthedepositiontime.ThegrainsizesofZnScalculatedbySchererrelationshipwerefoundbetween38and 102nm.Ithasbeenfoundthatthetransmittancedecreaseswiththeincreaseofdepositiontime.Thecalculatedbandgap energyofZnShasgiventhevaluesintherangeof3.48–3.92eV.Furthermore,theelectricalresistivity(␳)increasedwhen thedepositiontimeincreases.

ItcanbeconcludedthattheperfectconditionforthebestapplicationphotovoltaiccellefficiencyofZnSthinfilmsisto increasethedepositiontime,owingtobandgapenergywidening,whichcanbeusedasawindowlayerinheterojunction photovoltaicsolarcellorcanbeusedasareflectoranddielectricfilterbecauseofitshighrefractiveindex(2.2)anditshigh transmittanceinthevisiblerange

References

[1]ZhongChen,ShengZhou,YangLi,XiaoXiaLi,YangshengLi,WeiSun,GuihuaLiu,NanChen,GuopingDua,StrongblueluminescenceofO2−-doped ZnSnanoparticlessynthesizedbyalowtemperaturesolidstatereactionmethod,Mater.Sci.Semicond.Process.16(2013)833–837.

[2]AbdelhakJrad,WafaNaffouti,TarekBenNasr,NajouaTurki-Kamoun,ComprehensiveopticalstudiesonGa-dopedZnSthinfilmssynthesizedby chemicalbathdeposition,J.Lumin.173(2016)135–140.

[3]Yu-hongHuang,Wan-qiJie,YanZhou,Gang-qiangZha,Structuralstability,bandstructureandmagneticpropertiesofZnSandZn0.75Cr0.25Sunder pressure,J.AlloysCompd.549(2013)184–189.

[4]E.Mastio,E.Fogarassy,W.Cranton,C.Thomas,AblationstudyonpulsedKrFlaserannealedelectroluminescentZnS:Mn/Y2O3multilayersdeposited onSi,Appl.Surf.Sci.154(2000)35–39.

[5]D.Denzler,M.Olschewski,K.Sattler,LuminescencestudiesoflocalizedgapstatesincolloidalZnSnanocrystals,J.Appl.Phys.84(1998)2841–2845.

[6]D.R.Acosta,E.P.Zironi,E.Montoya,W.Estrada,Aboutthestructural,opticalandelectricalpropertiesofSnO2filmsproducedbyspraypyrolysisfrom solutionswithlowandhighcontentsoffluorine,ThinSolidFilms288(1996)1–7.

[7]D.Gal,G.Hodes,D.Lincot,H.W.Schock,Electrochemicaldepositionofzincoxidefilmsfromnon-aqueoussolution:anewbuffer/windowprocessfor thinfilmsolarcells,ThinSolidFilms361-362(2000)79–83.

[8]S.Yano,R.Schroeder,B.Ullrich,H.Sakai,AbsorptionandphotocurrentpropertiesofthinZnSfilmsformedbypulsed-laserdepositiononquartz,Thin SolidFilms423(2003)273–276.

[9]D.Barreca,G.Bruno,A.Gasparotto,M.Losurdo,E.Tondello,NanostructureandopticalpropertiesofCeO2thinfilmsobtainedbyplasma-enhanced chemicalvapordeposition,Mater.Sci.Eng.23(2003)1013–1016.

[10]Y.Kavanagh,D.C.Cameron,Zincsulfidethinfilmsproducedbysulfidationofsol-geldepositedzincoxide,ThinSolidFilms398-399(2001)24–28.

[11]M.A.Hernandez-Fenollosa,M.C.Lopez,V.Donderis,M.Gonzalez,B.Mari,J.R.Ramos-Barrado,Roleofprecursorsonmorphologyandoptical propertiesofZnSthinfilmspreparedbychemicalspraypyrolysis,ThinSolidFilms516(2008)1622–1625.

[12]JenifarSultana,SomdattaPaul,AnupamKarmakar,RenYi,GoutamKumarDalapati,SanatanChattopadhyay,Chemicalbathdeposited(CBD)CuO thinfilmsonn-siliconsubstrateforelectronicandopticalapplications:impactofgrowthtime,Appl.Surf.Sci.418(2017)380–387.

[13]M.J.Alam,D.C.Cameron,Investigationofannealingeffectsonsol–geldepositedindiumtinoxidethinfilmsindifferentatmospheres,ThinSolid Films420–421(2002)76–82.

[14]H.Cachet,J.Bruneaux,G.Folcher,C.Le´ıvy-Cle´ıment,C.Vard,M.NeumannSpallart,n-Si/SnO2junctionsbasedonmacroporoussiliconfor photoconversion,Sol.EnergyMater.Sol.Cells46(1997)101–114.

[15]H.H.Afifi,S.A.Mahmoud,A.Ashour,StructuralstudyofZnSthinfilmspreparedbyspraypyrolysis,ThinSolidFilms263(1995)248–251.

[16]M.C.Lopez,J.P.Espinos,F.Martın,D.Leinen,J.R.Ramos-Barrado,GrowthofZnSthinfilmsobtainedbychemicalspraypyrolysis:theinfluenceof precursors,J.Cryst.Growth285(2005)66–75.

[17]DongHyunHwang,JungHoonAhn,KwunNamHui,KwanSanHui,YoungGukSon,StructuralandopticalpropertiesofZnSthinfilmsdepositedby RFmagnetronsputtering,NanoscaleRes.Lett.7(2012)26.

[18]M.Ashrat,M.Mehmood,A.Qayyum,Influenceofsource-to-substratedistanceonthepropertiesofZnSfilmsgrownbyclose-spacesublimation, Semiconductors46(10)(2012)1326–1330,ISSN1063–7826.

[19]K.Wright,G.W.Watson,S.C.Parker,D.J.Vaughan,Simulationofthestructureandstabilityofsphalerite(ZnS)surfaces,Am.Mineral.83(1998) 141–146.

[20]M.NadaSaeed,StructuralandopticalpropertiesofZnSthinfilmspreparedbyspraypyrolysistechnique,J.Al-NahrainUniv.Vol.14(June(2))(2011) 86–92.

[21]A.Djelloul,M.Adnane,Y.Larbah,T.Sahraoui,C.Zegadi,A.Maha,B.Rahal,PropertiesstudyofZnSthinfilmspreparedbyspraypyrolysismethod,J.

Nano-Electron.Phys.7(2015)04045(5pp).

[22]FatemehAbdi,HadiSavaloni,Investigationofthegrowthconditionsonthenano-structureandelectricalpropertiesofZnSchiralsculpturedthin films,Appl.Surf.Sci.330(2015)74–84.

[23]R.Touati,M.BenRabeh,M.Kanzari,StructuralandopticalpropertiesofthenewabsorberCu2ZnSnS4thinfilmsgrownbyvacuumevaporation method,EnergyProcedia44(2014)44–51.

(8)

[24]KirillBordo,Horst-GünterRubahn,EffectofdepositionrateonstructureandsurfacemorphologyofthinevaporatedAlfilmsondielectricsand semiconductors,Mater.Sci.(Medziagotyra)18(4)(2012)313–317,ISSN1392–1320.

[25]B.Kherchachi,A.Attaf,H.Saidi,A.Bouhdjer,H.Bendjedidi,Y.Benkhetta,R.Azizi,Structural,opticalandelectricalpropertiesofSnxSythinfilms grownbysprayultrasonic,J.Semicond.37(2)(2016).

[26]C.K.De,N.K.Misra,X-raydiffractionanalysisoflatticedefectsofZnSethinfilmsdepositedatdifferentsubstratetemperatures,IndianJ.Phys.A71 (535)(1997).

[27]RahulVishwakarma,EffectofsubstratetemperatureonZnSfilmspreparedbythermalevaporationtechnique,J.Theor.Appl.Phys.(2015), http://dx.doi.org/10.1007/s40094-015-0177-5.

[28]JyotiPBorah,J.Barman,K.C.Sarma,StructuralandopticalpropertiesofZnSnanoparticles,ChalcogenideLett.Vol.5(September(9))(2008)201–208.

[29]J.M.Blocher,Coatingofglassbychemicalvapordeposition,ThinSolidFilms77(1981)51–64.

[30]W.Daranfed,M.S.Aida,A.Hafdallah,H.Lekiket,SubstratetemperatureinfluenceonZnSthinfilmspreparedbyultrasonicspray,ThinSolidFilms518 (2009)1082–1084.

[31]C.Mehta,G.S.S.Saini,J.M.Abbas,S.K.Tripathi,Effectofdepositionparametersonstructural,opticalandelectricalpropertiesofnanocrystallineZnSe thinfilms,Appl.Surf.Sci.256(2009)608–614.

[32]B.Elidrissi,M.Addou,M.Regragui,A.Bougrine,A.Kachouane,J.C.Bernède,Structure,compositionandopticalpropertiesofZnSthinfilmsprepared byspraypyrolysis,Mater.Chem.Phys.68(2001)175–179.

[33]ClevaW.Ow-Yang,Hyo-youngYeom,DavidC.Paine,FabricationoftransparentconductingamorphousZn–Sn–In–Othinfilmsbydirectcurrent magnetronsputtering,ThinSolidFilms516(2008)3105–3111.

[34]R.Ayouchi,D.Leinen,F.Martin,M.Gabas,E.Dalchiele,J.R.Ramos-Barrado,PreparationandcharacterizationoftransparentZnOthinfilmsobtained byspraypyrolysis,ThinSolidFilms426(2003)68–77.

[35]N.Bouguila,D.Bchiri,M.Kraini,A.Timoumi,I.Halidou,K.Khirouni,S.Alaya,Structural,morphologicalandopticalpropertiesofannealedZnSthin filmsdepositedbyspraytechnique,J.Mater.Sci.Mater.Electron.(2015),http://dx.doi.org/10.1007/s10854-015-3659-y.

[36]LaythM.Abduljabbar,StudytheeffectofannealingonopticalandelectricalpropertiesofZnSthinfilmpreparedbyCO2laserdepositiontechnique, IraqiJ.LaserPart13(2014)29–35.

[37]A.Ates,M.A.Yıldırım,M.Kundakcı,A.Astam,AnnealingandlighteffectonopticalandelectricalpropertiesofZnSthinfilmsgrownwiththeSILAR method,Mater.Sci.Semicond.Process.10(2007)281–286.

[38]M.Nadeem,W.Ahmed,OpticalpropertiesofZnSthinfilms,Turk.J.Phys.24(2000)651–659.

[39]M.Mekhnache,A.Drici,L.SaadHamideche,H.Benzarouk,A.Amara,L.Cattin,J.C.Bernede,M.Guerioune,PropertiesofZnOthinfilmsdepositedon (glass,ITOandZnO:Al)substrates,SuperlatticesMicrostruct.49(2011)510–518.

[40]LaythM.Abduljabbar,StudytheeffectofannealingonopticalandelectricalpropertiesofZnSthinfilmpreparedbyCO2laserdepositiontechnique, IraqiJ.Laser13(2014)29–35.

[41]YounghunHwang,HeejinAhn,ManilKang,YounghoUma,HyoyeolPark,ElectronicandopticalpropertiesinZnO:Gathinfilmsinducedbysubstrate stress,J.Phys.Chem.Solids87(2015)122–127.

[42]Z.BenAchour,T.Ktari,B.Ouertani,O.Touayar,B.Bessais,J.BenBrahim,Effectofdopinglevelandspraytimeonzincoxidethinfilmsproducedby spraypyrolysisfortransparentelectrodesapplications,Sens.ActuatorsA134(2007)447–451.

[43]EvrenTuran,MuhsinZor,A.SenolAybek,MetinKul,ElectricalpropertiesofZnO/Au/ZnS/Aufilmsdepositedbyultrasonicspraypyrolysis,ThinSolid Films515(2007)8752–8755.

Références

Documents relatifs

As a principle, the thin film of specific material is an element of this material with reduced dimensions called thickness, it is expressed in Angstrom, and this small distance

Optical Absorbance of CuO Thin Films Deposed at Different volumes (S 1 or S 2 ) at T=500°C In order to appreciate the gap energy of CuO thin films, first, the experimental data

Abstract: In this work, thin films of nickel oxide (NiO) were deposited by a simple and inexpensive technique, which is spray pyrolysis on ordinary glass substrates heated to a

The X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectrophotometry were used to determinate the structural, morphological and optical properties

Therefore, if they are well prepared and electrodeposited they could lead to the fabrication of highly efficient devices.In this study, we investigate the effect of deposition time

Abstract: Tin Sulfide (SnS) thin films were deposited by ultrasonic spray pyrolysis technique, on glass substrate heated at 280 °C, with different deposition times.. The used

The measurement of the thickness (h) by the method of the interference fringes, [11] and from the Figure.1 transmittance curve, we derive the physical constants

The structural, Zinc oxide (ZnO) and ZnxCd1-xO thin films were deposited using a low cost spray pyrolysis morphological, and optical properties of ZnO and Cd:ZnO