• Aucun résultat trouvé

Hydrogen production by hydrothermal oxidation of FeO under acidic conditions

N/A
N/A
Protected

Academic year: 2021

Partager "Hydrogen production by hydrothermal oxidation of FeO under acidic conditions"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-01468080

https://hal.archives-ouvertes.fr/hal-01468080

Submitted on 11 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hydrogen production by hydrothermal oxidation of FeO under acidic conditions

Camille Crouzet, Fabrice Brunet, Nadir Recham, N. Findling, M Lanson, François Guyot, Jean-Henry Ferrasse, Bruno Goffé

To cite this version:

Camille Crouzet, Fabrice Brunet, Nadir Recham, N. Findling, M Lanson, et al.. Hydrogen production

by hydrothermal oxidation of FeO under acidic conditions . International Journal of Hydrogen Energy,

Elsevier, 2016, 42 (2), pp.795-806. �10.1016/j.ijhydene.2016.10.019�. �hal-01468080�

(2)

^

^

H y d r o g e n p r o d u c t i o n b y h y d r o t h e r m a l o x i d a t i o n of FeO u n d e r acidic c o n d i t i o n s

C. Crouzet

a , b , d ,*

, F. Brunet

a

, N. Recham

b

, N. Findling

a

, M. Lanson

a

, F. Guyot

c

, J.-H. Ferrasse

d

, B. Goffe

e

a Universite Grenoble Alpes, CNRS, ISTerre, Maison des Geosciences, F-38000 Grenoble, France

b Laboratoire de Reactivite et Chimie des Solides (LRCS), Universite de Picardie Jules Verne, CNRS UMR 7314, 80039 Amiens Cedex, France

c Institut de mineralogie, de physique des materiaux et de cosmochimie, Sorbonne Universite, Museum National d'Histoire Naturelle, UMR 7590, CNRS, UPMC, MNHN, IRD, F-75005 Paris, France

d Mecanique, Modelisation & Procedes Propres (M2P2), Aix-Marseille Universite, Centrale Marseille, CNRS, M2P2 UMR 7340, Europole de l'Arbois, 13545 Aix-en-Provence Cedex 4, France

e CEREGE, Aix-Marseille Universite, CNRS UMR 7330, Europole de l'Arbois, 13545 Aix-en-Provence, France

Keywords:

Hyd r o ge n p r o d u c t i o n FeO o x i d a t i o n Steel slags

H y d r o t h e r m a l c o n d i t i o n s Acet ic a c i d

I n t r o d u c t i o n

T h e p r o d u c t i o n of H2 by o x i d a t i o n of FeO, t a k e n h e r e a s m o d e l c o m p o u n d for s t e e l slags, h a s b e e n i n ve s t i g a t e d b o t h i n p u r e w a t e r a n d u n d e r acidi c a q u e o u s c on d i t i o n s i n t h e 373 e573 K t e m p e r a t u r e r a n ge . W h e r e a s a ft e r 65 h , H2 yield w a s negligible i n p u r e w a t e r a t 423 K, t h e r e a c t i o n 3 FeO(s) þ H2O(l) / Fe3O4 ( s) þ H2 ( a q ) r e a c h e d n e a r c o m p l e t i o n a t t h e s a m e t e m p e r a t u r e w i t h i n 10 h i n a s o l u t i on c on t a i n i n g 0.05 m ol / l a c e t i c acid. I n c r e a s i n g a c e t i c a c i d c o n c e n t r a t i o n by o n e o r d e r of m a g n i t u d e d i d n o t yield significant ly m o r e H2. At i d ent i c a l initial pH, a c e t i c a c i d w a s f o u n d t o b e m o r e effic ie nt t h a n oxalic a c i d a n d h y- d r oc h l or i c a c i d a t e n h a n c i n g H2 p r o d u c t i o n . Acidic c o n d i t i o n s i n c r e a s e d FeO d i s s o l u t i on ki n e t i c s a n d , c o n s e q u e n t l y , i m p r o v e d H2 yield. T h e specific efficiency of a c e t i c a c i d r e s i d e s i n its t h e r m a l stab ility a s well a s i n t h e p o t e n t i a l of l i g a n d - p r o m o t e d Fe(II) d i s s ol u t i on . We s h o w t h a t t h e positi ve k i n e t i c s effect of m i l d a c et i c a c i d s o l u t i o n s ove r H2 yield e v i d e n c e d o n FeO d o e s n o t ap p l y directly t o s t e e l slags w h i c h bu ffe r t h e pH t o h i gh va l u e s d u e t o t h e p r e s e n c e of large a m o u n t s of CaO.

el ec troly sis. H o wev er , w i t h t h e a i m of d ev e lop in g n e w s u s - t a i n a b l e h y d r o g e n p r o d u c t i o n m e t h o d s , a l t e r n a t i v e w a y s a r e A m o n g a l t e r n a t i v e en er g y s o u r c e s , d i h y d r o g e n (H2) h a s a n

i m p o r t a n t ro le t o play, espec ia l ly w i t h t h e d e v e l o p m e n t of fu el cell t e c h n o l o g i e s . N o wa d a y s , t w o m a i n p r o c e s s e s a r e u s e d t o p r o d u c e H2 w i t h t h e r e q u i r e d pu rity , s t e a m m e t h a n e r e f o r m i n g w i t h a n a d d i t i o n a l p u r i fi c a t i o n s t e p a n d w a t e r

a l s o b ei n g in v est i ga t ed . For e x a m p l e , e x t e n s i v e r e s e a r c h is b ei n g c a r r i e d o u t o n h y d r o g e n p r o d u c t i o n f r o m b i o m a s s a n d p r o c e s s e s b a s e d o n t h e u s e of r e n e w a b l e e n e r g y s o u r c e s for el ec tr oly sis o r t h e r m o c h e m i c a l cycle p a t h s [1e3]. T h e H2

p r o d u c t i o n m e t h o d p r e s e n t e d h e r e is i n s p i r e d f r o m a n

* Corresponding author. P r e s e nt ad d r e ss : ISTerre, Maison d e s Geosciences, BP 35, F-38041 Grenoble Cedex 9, France.

E-mail a d d r e s s : camille.crouzet@univ-grenoble-alpes.fr (C. Crouzet).

(3)

¨

¨

¨

€ abiogenic geo chemical pro ce ss wh i ch co rre spo n ds to t h e format i on of nat i ve dih ydrogen by i nt era cti on b e t we e n rock a n d h o t s e a w a t e r a t mi d-ocean ic ridges. U n d er t h e s e n a t u r a l h yd r o t h e r ma l conditions, H2 is a by-product of t h e h y d rat i on of olivine (Mg, Fe)2SiO4, t h e m a i n mi n e r a l co n st i tu e n t of t h e E a rt h's u p p e r - m a n t l e . F errou s iron co n ta in ed i n olivine is partl y inco rporated a s F ein ma g n e t i t e i n t h e co urse of t h e s e hy drat i on reactio ns (serp ent i ni za tio n ) wh i ch ta ke place in t h e oceanic cr u st [4e6]. Malvoisin e t al. (2013, [7]) s h o we d t h a t h igh-pu rity h ydr o g en ca n be p rod u ce d f rom st eel slag, a ma s si v e st eel i n du st ry by-product, u n d e r t h e p r e s s u r e a n d t e m p e r a t u r e conditions of serp e n t in i za ti o n , i.e., 350 C a n d 50 MPa, by oxidation of t h e iron (II) co n t a i n e d by wu s t i t e (Fe, Mg)O, i n st eel slags a n d by t h e s u b s e q u e n t red uct i on of w a t e r [7]. This m e t h o d of geo-in spired H2 p roduct ion from st eel slags, is also re mi n i sc e n t of t h e H2 p ro du ction m e t h o d u s e d a t t h e beginning of t h e 20th century. Hydrogen w a s p ro d u ce d from 823 to 1173 K according to t h e so-called s t e a m -i r o n process b a s ed o n t h e s a m e iron-oxidation principle, th ro u g h cycles of iron m e t a l oxidation i n t h e p r e s e n c e of s t e a m a n d iron oxide redu cti on by gasified coal [8e11]. More recently, several s t u d i e s h a v e focused on ch emi ca l looping combu s- tio n (CLC). CLC is a cyclic ro u t e w h e r e m e t a l oxide particles, s u c h a s iron oxides, a r e r e d u c e d du rin g t h e combu st ion in a fuel reacto r a n d t h e n re-oxidized in a se co nd ai r reactor. If t h i s m e t h o d w a s first devel ope d to ca p t u r e t h e CO2 p rod u ce d by t h e fuel combustion, th i s process ca n also be u s e d to prod uce H2 by p erf o rmi n g t h e oxidation s t e p i n t h e p r e s e n c e of s t e a m [12e15].

Following t h e work by Malvoisin e t al. (2013, [7]) o n st e e l slags, w e i n ve st i g a t ed h e r e t h e role of acidic conditions o n h yd ro ge n yield a n d p ro d u cti o n kinetics f ro m p u r e FeO oxidation. Du e to t h e complex c h e m i st r y of slags, w e fo cus ed h e r e o n t h e beha vior of p u r e FeO i n o rd e r to u n - ra v e l t h e ch emi ca l p ro c es se s wh i c h l e a d to H2 producti on.

A f e w a dd i ti o na l e x p e r i m e n t s w e r e h o w e v e r p e r f o r m e d by a d d i n g CaO, t h e m a i n c o n s t i t u e n t of s t e e l slags, i n o rd er to a p p r o a c h FeO beha vior i n steel-slag-li ke compositions.

Initially p r e s e n t i n t h e f o rm of l i me i n f r e s h slags, CaO t r a n s f o r m s into Ca -hydro xi de a n d c a r b o n a t e by aging i n air. Therefo re, t h e CaO c o m p o n e n t w a s i n t r o d u c ed e i t h e r i n

p erf o rm ed a t a m b i e n t conditions, a n d little is k n o wn about Fe(II) a q u e o u s oxidation a t h i gh er t e m p e r a t u r e a n d p r e ssu r e .

M aterials a n d m e t h o d s

Starting materials

R ea gen t gra d e wu st it e, FeO (99.9%, ALDRICH®), w a s c r u s h e d a n d sieved to a particle size of 50e100 mm wi t h a specific surfa ce a r e a of 0.70 m2/ g a s m e a s u r e d by N2-BET. Th e oxida- tion s t a t e of iron in t h e sta rtin g m a t e ri a l w a s q u a n t ifi ed by Mossbauer spectroscopy to be 91.6% F e, 5.6% F ea n d 2.8%

Fe0. Average iron oxidation s t a t e corresponds to p u r e Fe(II), co n si st ent wi t h t h e FeO r e a g e n t grade. Both ferric iron a n d m e t a l iron a r e r e s i d u es of indu st ri al FeO syn t h es i s wh i ch consists in a high t e m p e r a t u r e reaction b e t w e e n iron m e t a l a n d h e m a t i t e (Fe2O3).

Sealed gold capsules

A s e t of e x p e ri me n t s w a s p erf o rm ed in cold-seal vessels. Th e st a rt in g ma t e r i a l (80 mg) w a s load ed in a gold tu b e (4.0 m m o u t er d i a m e t e r a n d 3.6 m m i n n e r d i a met er) wi t h de-i oni zed w a t e r in a co n st a n t m a s s ratio of 1:1. Th e t wo e n d s of t h e t u b e w e r e we l d e d s h u t to form a cap sul e wh i ch w a s placed in t h e p r e s s u r e vessel, itself int rodu ced i n a horizontal furnace.

T e m p e r a t u r e s in t h e 373e473 K r a n g e w e r e investigated a t 30 MPa argon p r e s su r e. Since gold is ductile, t h e w a t e r p r e s - s u r e in both t h e autoclave a n d t h e i n n e r ca psu l e p r e s s u r e a r e t h e s a m e (see B ru n et a n d Chopin (1996, [21]) for e x p e ri m en t a l details); t h i s p r e s s u r e is kept co n st a n t all along t h e ex p eri - men t s . At t h e e n d of ex p er i men t , t h e p r e s s u r e vessel w a s q u e n c h e d u n d e r a c o mp r e sse d air s t r e a m . This t yp e of ex p eri m en t i s ea s y to s e t - u p a n d s e v e r a l sa mp l e s c a n b e r u n in a ra w. It is th eref o re con veni ent to investigate t h e effect of t e m p e r a t u r e or acid concentrat ion on H2 yield in a m i n i m u m a m o u n t of ti me. On t h e o t h er h a n d , c o mp a r ed to t h e sa mp l i n g autoclave, (1) only large st a rting ma t eria l : w a t e r ratio c a n be investigated (typically 1:1), (2) fluids ca n n o t be s a m p l e d in-situ a n d ca n only be an a l yz ed a t t h e e n d of t h e ru n . Th e gas pro-

t h e f o rm of Ca(OH)2 or CaCO3 in t h e s e add it i o n al d u c e d by t h e s a m p l e a n d enclosed in t h e gold ca psu l e is e x p e r i m en t s .

Th e role of pH on H2 production kinetics is s o m e h o w difficult to predict. H2 production from FeO interaction wi t h w a t e r is t h e resu l t of a t l ea st t wo st ep s , wu st i t e dissolution a n d ma gn e t it e precipitation. B e t w e e n t h e s e two st ep s , ferrous iron m u s t be partly oxidized into ferric iron. Potentially, e a c h of t h e s e t h r e e s t e p s (FeO dissolution, F eoxidation a n d Fe3O4

precipitation) ca n be r a t e limiting. In d eed , low pH h a s b een s h o w n to favor Fe solubilization [16] wh i ch m a y h a v e a posi- tive effect on H2 yield. Precipitation of iron oxides ( a n d hy- droxides) by oxidation of a q u e o u s ferrous sa lt s h a s b e en extensively s t u d i e d [17]. Pro perties of t h e solvent (ionic st ren gt h) a n d t h e n a t u r e of t h e ion p ai r h a v e a clear i n fl u en ce on t h e kinetics of a q u e o u s Fe(II) oxidation. It h a s also b e en s h o w n t h a t Fe(II) a q u e o u s oxidation kinetics by O2 is positively correlated to pH for 4 < pH < 8 [18]. F u rt h erm o re, surfa ce of h yd rou s oxides ca n catalyze t h e redox process (auto-oxida-

tion process, [19,20]). All t h e s e st udi es, however, w e r e

(4)

recovered following t h e m e t h o d described i n Malvoisin (2013, [7]) a n d injected wi t h a syringe t h ro u gh t h e s e p t u m of a gas ch ro ma t o g ra p h for analysis.

Sampling autoclave

An o t h er s e t of e x p e ri me n t s w a s carried out wi t h a sa mp l i n g autoclave in ord er to allow time-resol ved monitoring of t h e H2 production. A 500 m L autoclave m a d e of hastelloy™ (nickel b a sed alloy) is e q u i p p e d wi t h a s e t of h i g h -p re s su r e connec-tions for gas a n d solution sa mp l in g (Fig. 1). Th e autoclave is h e a t e d by t wo tight resistive collars ( u p p e r a n d lower). Both gas a n d a q u e o u s solutions a r e st i rred a t a s p e e d of 800 r p m . Th e e x p e r i m en t s w e r e carried out wi t h a solid: solution m a s s ratio of 1:200.

HP-HT ga s is s a m p l e d in a water-co oled co n d en s er prior to its injection in t h e gas ch r o m a t o gra p h (GC) for analysis.

Th e

a q u e o u s solution is s a m p l e d thro u gh a plunging capillary a n d

(5)

prior to carbon coating, t h e s a m p l e w a s ei t h e r m o u n t e d on a double-sided carbon t a p e or e m b e d d e d in epoxy a n d polished.

For TEM, a d rop of t h e p o wd er s a m p l e d i sp e r s ed in et h an o l w a s d ep o sit ed on a Lacey carbon-coated grid.

Derivation of total H2 production from the experimental data

Fig. 1 e 500 m L s t i r r ed aut ocl av e w i t h a q u e o u s a n d g a s s a m p l in g directly plugg ed t o t h e g a s c h r o m a t o g r a p h (GC).

filtered at high p r essu r e a n d high t em p er a t u r e by a titan iu m frit wi t h 0.2 mm pores. S a mp l ed solutions w e r e st o red in a fridge until th ey w e r e a n a l yz ed using ICP.

In t h e ca se of t h e e x p e r i me n t s p erf o rm ed in sea l ed gold cap- sules, t h e s a m p l e is q u e n c h e d before t h e cap su l e is pierced a n d t h e gas is s a m p l e d a n d analyzed. Owing to t h e limited solubility of H2 in w a t e r a t a m b i en t conditions, it ca n be considered t h a t all t h e H2 p ro du ced i n t h e e x p e r i m en t s is con centrated, a t a m b i en t conditions, in t h e gas p h a s e. Th e situation is totally different in t h e ca se of sa mp l i n g autoclave e x p e r i men t s w h e r e t h e g a s p h a s e i s s a m p l e d a t high T and P. A significant a m o u n t of H2 m a y be c o n c en t ra t ed in t h e solution.

Th e H2 distribution b e t w e e n gas a n d solution ca n be e s t i - m a t e d by using t h e Henry's l aw c o n st a n t a n d its t e m p e r a t u r e d ep e n d en c y a s calculated using t h e SUPCRT92 d a t a b a s e [22].

F u rt h erm o r e, mul ti pl e sa mp l ing of t h e ga s p h a s e l ea d s to a progressive extraction of H2 from t h e s yst em , wh i ch m u s t also be t a k en into account.

Finally, it is con venient to ex p ress t h e total H2 production a s H2 p rodu ced p e r kg of initial FeO according to reaction:

Analysis of the fluids

3FeO(s) þ H2O(l) / Fe3O4 ( s) þ H2 ( a q ) (1) Gas c o mp o n en t s (H2, CO2, N2, O2, CO, CH4) w e r e an al yzed wi t h

a Cla rus 500 gas ch r o ma t o g r a p h (Perkin Elmer®) e q u i p p e d wi t h a polymer filled co l umn (Restek ShinCarbon®) a n d a t h e r m a l conductivity detecto r (TCD). Th e t e m p e r a t u r e of t h e detector, t h e injection s y s t e m a n d t h e oven w e r e respectively s e t to 523, 373 a n d 353 K. Argon w a s u s e d a s gas carrier. Each gas s a m p l e w a s an a l yz ed a t l ea st t h r e e t i m e s consecutively.

Iron c o n t en t in t h e solution w a s d e t e r m i n e d right af t er samplin g, on 2 m L aliquots, by UV-spectroscopy a f t er complexation by o rt h op hen antr o l in e. This m e t h o d allowed a f a st quantification, compatible wi t h t h e sa mp l i n g frequency, wi t h a det ection limit of 0.1 p p m . K ept in t h e fridge, all solu- tions w e r e m e a s u r e d a t a n o t h er t i m e for total iron co n t en t by ICP-OES.

Solid characterization

T h e recovered solid p rod uct s w e r e first w a s h e d t h ro u gh r e p e a t e d w a t e r rinsing a n d t h e n c r u s h e d for X-ray p o wd e r diffraction (XRPD). XRPD p a t t e r n s w e r e collected wi t h a D8 diffractometer (Bruker, CuKa radiation) o p e ra t e d wi t h a 2q s t e p size of 0.026a n d a counting t i m e of 8 s.

Reaction progresses a r e t h eref o re cal culat ed as t h e a m o u n t of H2 p rod uced per kg of FeO in the starting material divided by 9.28 g of H2 p e r kg of FeO. However, in t h e ca se of e x p e ri me n t s p erf o rm ed a t low pH, p a r t of t h e iron int ro d uced in t h e s y s t e m is s e q u e s t e r e d a s a q u e o u s F ed u e to t h e reaction:

FeOðsÞ þ2HþðaqÞ%FeðaqÞ þH2OðlÞ (2)

a n d will n ot be available for H2 production or ma g n et i t e.

Consequently, in order to co m p a re a t various pH valu es t h e e x t e n t of Reaction (1) deri ved from H2 c o n t en t in t h e gas p h a s e , a correction for F e2þ h a s b e en applied.

Thermodynamic background

Stability of iron oxides in w a t e r h a s b e en calculated a t 423 K a n d 20 MPa, in t h e absence of a gas p h a s e ; using t h e SUPCRT92 t h e r m o d yn a mi c d a ta b a se. Two t yp es of reactions h a v e b e en considered, redox reactions a mo n g iron oxides, e.g., Reaction (1) a n d oxide e w a t e r equilibria, e.g., Reaction (2). Aq u eo u s F ew a s n egl ect ed since it is far less a b u n d a n t t h a n F e. Consequently, oxide e w a t e r equilibria involving iron oxides Pa rt of t h e recovered solid s a m p l e w a s k ept u n g r o u n d for containing ferric iron a r e also redox reactions, e.g., f u r t h e r electron microscopy characterization, Field Emission

Scanning Electron Microscopy (FE-SEM) a n d Tra n sm i ssi o n Electronic Microscopy (TEM). FE-SEM chara cteri zati on w a s p er f o rm ed wi t h a ZEISS Ultra 55 using both secondary a n d back-scattered electrons. TEM w a s p erf o r med on a Jeol FEG

2100F o p e r a t e d a t 200 kV. Both FE-SEM a n d TEM w e r e e q u i p - p ed wi t h a n Energy-Dispersive X-ray spectroscopy (EDS) d e - tector for chemical analysis. For FE-SEM characterization,

(6)

Fe3O4ðsÞ þH2ðaqÞ þ 6HþðaqÞ%3FeðaqÞ þ4H2OðlÞ: Th e s y s t e m is d efi n e d by t h r e e activity variables, aHþ , aH2;aq a n d aFe. All equilibria ca n be plott ed in a logaFe2þ=a2 log aH2a q d i a g ra m (Fig. 2). In t h i s d ia gra m, t h e H2 ( a q ) % H2(g) equilibrium boundary falls in a r a n g e of H2 ( a q ) activity w h e r e Fe3O4

is stable m e a n i n g t h a t t h e triple point FeO( s )eFe3O4 ( s )eFe( a q ) will n ev er be r e a c h e d w h e n reacting FeO wi t h w a t e r (see so-

lution reaction p a t h , Fig. 2). In o t h e r words, a t co n st a n t

(7)

Fig. 3 e C o m p a r i s o n of h y d r o g e n p r o d u ct i o n b e t w e e n t h r e e d ifferen t a cid s a ft er 11 d a y s of rea ct i on (423 K e 30 MPa).

Fig. 2 e Stability d i a g r a m of ir on o x i d e s in w a t e r a s a fu n ct ion of t h e activity of d issol v ed F e2þ activity divided b y s q u a r e d Hþ activity a n d t h e activity of d issol v ed H2. T h e d o t t e d line c o r r e s p o n d s t o t h e s o l u t i on rea ct ion p a t h fol l owed b y a n “o x i d i z e d”s o l u t i o n t o w h i c h FeO is a d d e d a s calculat ed w i t h PHREEQC [32]. H e m a t it e (Fe2O3) s a t u r a t i o n will fi rst b e r e a ch ed . T h e n , a s s u m i n g t h a t h e m a t i t e n u cl e a ti on a n d g r o w t h kinetics a r e n o t limiting, FeO d i s s ol u t i on will b e a c c o m p a n i e d b y Fe2O3 p recip it at ion a n d H2 p rod u ct ion . T h e s o l u t i on will get e n r i c h e d in H2 ( a q ) a n d will evolve on the Fe2O3 s a t u r a t i o n l in e u p t o t h e t r i p l e p o i n t , Fe2O3 e Fe3O4 e a q u e o u s sp ecies . At t h i s p oin t , h e m a t i t e s h o u l d b e totally c o n v e r t ed in t o m a g n e t i t e b ef or e FeO d i s s ol u t i on a l l o ws t h e s ol u t i on t o get f u r t h e r e n r i c h e d in H2 ( a q ). M a g n et it e a n d H2 , a q a re prod u ced u n t il H2 ( g ) s a t u r a t i o n is achiev ed . At H2 s a t u r a t i o n , f u r t h e r Fe3O4 f o r m a t i o n is a cc omp a n ied b y H2 ( g ) p r o d u ct i on . I f P a n d T a r e k ep t c on s t a nt t h e n aH2;aq in t h e a q u e o u s s o l u t i on is fixed. N ote t h a t t h e triple p o i n t Fe OeF e3O4- a q u e o u s sp e c i e s is n e v e r r e a ch e d , m e a n i n g t h a t FeO s a t u r a t i o n will n o t b e achiev ed .

p r e s s u r e a n d t e m p e r a t u r e , FeO will n ev e r be stable wi t h w a t e r a n d sh o uld th eref o re rea ct until d i sa p p ea r a n ce.

R e s u l t s

Sealed gold capsules

Acetic, oxalic a n d hydrochloric acid solutions w e r e p r e p a r e d a t con centration s of 0.05, 0.001 a n d 0.001 mol/L respectively, corresponding to a sta rtin g pH of 3. Th e s e solutions w e r e sea l ed t o get h er wi t h u n si ev e d FeO p o wd e r from t h e s a m e st a rt in g m a t e ri a l in gold cap sul es a n d rea ct ed for 10 d a ys a t 423 K a n d 30 MPa. After q u enc h in g, t h e ca p sul e containing acetic acid w a s significantly m o r e i n fl at ed t h a n t h e others . Th e a m o u n t of H2 recovered from acetic acid e x p e ri m en t s w a s about 10 t i m e s h i gh er t h a n in e x p e r i men t s wi t h hydrochloric a n d oxalic acids (Fig. 3).

Th re e e x p e r i m en t s w e r e p r e p a r e d wi t h t h e s a m e protocol but wi t h acetic acid concentrations of 0.005, 0.05 a n d 0.5 mol

p e r liter corresponding to sta rti n g pH of 3.5, 3.0, 2.5, respec- tively. After t h r e e d a y s a t 423 Ke30 MPa, only 0.074 g H2/kg FeO w a s p rodu ced for t h e 0.005 mol/L e x p e r i men t w h e r e a s 2.58 a n d 1.91 g H2/kg FeO w e r e recovered for initial acetic acid con centrations of 0.05 a n d 0.5 mol/L, respectively, i.e., about 25% of reaction. For t h e s e two e x p e ri m en t s , t h e final pH va lues a r e calculated to be 5.0, 4.7 a n d 4.5, respectively.

Three r u n t e mp er a t u r e s w e r e t e st ed a t 30 MPa, 373, 423 a n d 473 K wi t h capsules containing FeO a n d acetic acid a t a con- centration of 0.05 mol/L a n d for r u n durat i on s from 3 to 172 h (Table 1, Fig. 4). After 72 h, the amount of H2 produced at 373, 423 a n d 473 K resu lted, respectively, in 0.058, 2.58 a n d 5.34 g H2/kg FeO (Table 1). Data could not be successfully fitted to a first-order kinetic model, a sq u a re root function yielded better fits (Fig. 4) whi ch allowed to derive a n activation energy of 27 kJ/mol.

Sampling autoclave: effect of pH

Two e x p er i m en ts w e r e c onducted by introducing FeO i n distilled wa t e r a t 423 a n d 573 K in t h e samp li ng autoclave.

Hydrogen w a s p rodu ced a t both t e mp e ra t u re s following two different kinetic models. At 423 K, after a first period of hydrogen production in t h e first 10 h u p to a value of 0.14 g H2/kg FeO, H2

production cea sed (Fig. 5). Magnetite grains w er e identified t hrou gh XRPD. At 573 K, corrected H2 production i ncrea sed during t h e first 24 h a n d slowed d o wn progressively to rea ch 1.28 g H2/kg FeO after 144 h. M a x i mu m H2 production is equiv- alent to 23% of the reaction progress. H2 production at 573 K has b een fi tted to a p se ud o first-order kinetics (Fig. 5). In both ex- p eri ment s, iron (II) concentration w a s too low to be d et ect ed by UV-spectrophotometry. Calculations using PHREEQC predicted a concentration of a ro un d 107 mol p er liter a t 573 K, i.e., far below t h e detection limit of UV-spectrophotometry.

FeO dissolution in a qu eo u s solution containing 0.05 mol/L acetic acid was monitored in a sampling autoclave by analyzing a qu eo u s F ea n d H2 in t h e gas p ha se . FeO dissolution occurred according to a t wo -st ep process (Fig. 6a). Fast dissolution w a s e n c ou nt er ed during t h e first 10 h until a m a x i mu m [Fe] con- centration of about 0.02 mol/L w a s reach ed . At th is stage, m or e t h a n 10%w of t h e initial s am pl e h a d dissolved. Within t h e n ex t following 10 h [Fe] decreased to reach a plateau at 0.01 mol/L. It

(8)

Table 1 e E x p e r i m e n t a l cond ition s , H2 yield (GC) a n d p r e s e n c e of iron o x i d e s (b e s id e s FeO a n d Fe3O4) a s d e t e c t e d b y XRPD.

S a mp l e n a m e Method Solution C on centrati on T e m p e r a t u r e Pr e ssu r e E n d t i m e Starting Normalized hydro gen Go ethite (G) (mol/L) (K) (MPa) (hours) solution pHa production a t t h e e n d or Lepidocrocite (L)

of e x p e r i m e n tb FeO(OH) p r e s en c ec (g H2/kg FeO e g/kg)

CT-H2-Acd C aps ule Acetic acid 0.05 423 30 240 3 2.62 (28%) e

CT-H2-Oxd C aps ule Oxalic a cid 0.001 423 30 240 3 0.24 (3%) e

CT-H2-HCld C aps ule HCl 0.001 423 30 240 3 0.20 (2%) e

CAc-H2_01 C aps ule Acetic acid 0.005 423 30 72 3.5 0.074 (1%) e

CAc-H2_02 C aps ule Acetic acid 0.05 423 30 72 3 2.58 (28%) e

CAc-H2_03 C aps ule Acetic acid 0.5 423 30 72 2.5 1.91 (21%) G

CAc-H2_04 C aps ule Acetic acid 0.05 373 30 72 3 0.058 (<1%) G

CAc-H2_05 C aps ule Acetic acid 0.05 473 30 72 3 5.34 (58%) L

CAc-H2_06 C aps ule Acetic acid 0.05 423 30 24 3 1.34 (14%) G þ L

CAc-H2_07 C aps ule Acetic acid 0.05 423 30 3 3 0.068 (<1%) G

CAc-H2_08 C aps ule Acetic acid 0.05 423 30 168 3 4.08 (44%) e

CAc-H2_10 C aps ule Acetic acid 0.05 423 30 72 3 2.46 (27%) e

CAc-H2_12 C aps ule Acetic acid 0.05 423 30 8 3 0.30 (3%) G

CAc-H2_13 C aps ule Acetic acid 0.05 373 30 172 3 0.23 (2%) G

CAc-H2_14 C aps ule Acetic acid 0.05 473 30 24 3 3.74 (40%) L

CAc-H2_15 C aps ule Acetic acid 0.05 473 30 3 3 2.86 (31%) e

CAc-H2_16 C aps ule Acetic acid 0.05 473 30 48 3 3.26 (35%) e

CHCl-H2_11 C aps ule HCl 0.001 423 30 72 3 0.084 (<1%) e

CHCl-H2_17 C aps ule HCl 0.001 473 30 72 3 0.19 (2%) e

CAc-Ca(OH)2 C aps ule Acetic acid þ Ca(OH)2* 0.05 423 30 72 3 0.0005 (<1%) e

CAc-CaCO3 C aps ule Acetic a cid þ CaCO3* 0.05 423 30 72 3 0.05 (<1%) e APAc-H2-150 Sa mpl i ng Acetic acid 0.05 423 16 48 3 8.06e (87%) e

autoclave

APW-H2-150 Sa mpl i ng W a te r e 423 15 64.5 6 0.26e (3%) e

autoclave

APW-H2-300 Sa mpl i ng W a te r e 573 18 144 6 2.18e (23%) e

autoclave

* Additiona l solid u n u s e d for s tarti ng pH calculations.

a Start ing pH ca lc ulated fro m acidic solution initial concentration.

b M as s of H2 p rod uc e d d e d u c e d by ga s chro ma to g rap hy divided by initial m a s s of solid rea ge nt, ca lculated rea ction p ro g res s es a r e p r e s e n t e d i n brackets.

c Observation or not of goethite a n d / o r lepidocrocite by XRPD o n retri e ve d solid s a mp l e s .

d E xpe r i me nts co nd ucted o n uns i e ve d s tarti ng mater ia ls .

e Corre cted hydroge n production.

(9)

¨

can be s ee n on Fig. 6a t h a t [Fe] of 0.02 a n d 0.01 mol/L a re t h e expected concentrations a t FeO a n d Fe3O4 satu ra ti on, respec- tively, in t h e conditions of t h e exp eri ment.

Evolution of H2 production (Fig. 6b) is ch a ra ct eri zed by a first st ep of fast production, again within t h e 10 first hours.

About 8.06 g of H2 w e r e p ro du ced p e r kg of s a m p l e du rin g t h i s st ep, equi val en t to a reaction pro gress of 87%. After t h i s first st ep, dihydrogen w a s no longer p rod uced in t h e gas p h a s e . A smal l d ecrea s e w a s e v en observed wh i ch is a tt ri but ed to H2

remo val by gas samplin g. In d eed , for e a ch gas sampling, e s t i m a t e d to 27 mL, t h e total p r e s s u r e is lo wered a n d p a r t of hydro gen is rem o v ed from t h e ex p e ri men t a l syst em .

Fig. 4 e H yd r og en p r o d u c t i o n f r o m FeOeH2O in gold c a p s u l e s y s t e m a t 373 (sq u a re ), 423 (circle) a n d 473 K ( d i a m o n d ) e 30 MPa.

Fig. 5 e C orr ect ed H2 p r o d u c t io n k in et ics in p u r e w a t e r a t 423 K ( s q u a r e ) a n d 573 K (circle); D a s h e d lin e c o r r e s p o n d s t o a p s e u d o fi r st - o rd e r kinetic fit t o t h e 573 K d a t a , log k is e s t i m a t e d t o ¡3 .2 6 .

Hydrogen partial p r e s su r e, i.e., its concentration, r e m a i n s co n st a n t e v en t h o u gh its mo la r a m o u n t is redu ced. H2 pro- duction d a t a p r e s e n t e d on Fig. 6b a r e corrected accordingly.

Characterization of the solid products

XR PD on reco vered solid samples indicates, beside wustite and ma gn et i t e, t h e production of goethite, FeO(OH) a n d , possibly, lepidocrocite (Table 1). Inspection of t h e r u n p rodu ct s wi t h FE- SEM in back-scattered electro n m o d e allowed to distinguish b e t w e e n FeO a n d ma gn et i t e. FeO of hi gh er avera ge atomic number is bri ght er than ma gneti te (F i g. 7a). R esidual iron metal particles were found to occur as bright spots within FeO grains.

FeO oxidation in acetic acid proceeded from FeO grain rim to core ei t h e r t h ro u gh progressive r e p l a c e m e n t of t h e FeO g rains without significant morphological change (Fig. 7a), this process will be called p seu d o mo rp h i c r e p l a c e m e n t in t h e following or by FeO dissolution (Fig. 7b) followed by t h e precipitation of coronae of m a gn et it e nan o pa rti cl es (Fig. 7c a n d d). Magnetit e precipitation w a s also observed wi t h t h e fo rmati on of nano- particle aggregates (Fig. 8a). Oxidation through dissolution and precipitation d o m i n a t e s in s a m p l e s p ro du ced in t h e sa mp l i n g autoclave. R esidual FeO recovered from cap su l e e x p e r i m en t s preferentially s h o ws p s eu d o mo rp h i c r e p l a c e m e n t pointing t h eref o re t o wa rd s a possible role of stirring on t h e oxidation reaction process. In p u r e wa t e r , oxidized p rod u ct s occurred a s a m u l t i t u d e of d e n d r i t e s growing pervasively wi t h i n t h e FeO grains (Fig. 7g a n d h). Compa ri son a t t h e s a m e magnification b e t w e e n res i du al FeO grains recovered from both acetic acid a n d distillated w a t e r e x p e r i men t s (APAc-H2-150 a n d APW-H2-

Fig. 6 e T im e- res ol v ed m o n it or i n g of of a q u e o u s Fe a n d H2 of t h e 423 Ke15 MPa e x p e r i m e n t w i t h a 0.05 mol / L acetic a cid s o l u t i on (a) a q u e o u s i r on (II þ III) c o n c en t ra t i on f r o m ICP d a t a (circle) a n d UV s p e c t r o p h o t o m e t r y (sq u a re ); (b) C orrect ed H2

p r o d u ct i o n a s m e a s u r e d b y GC.

(10)

Fig. 7 e FE-SEM b a c k - s c a t t e re d imaging of t h e e x p e r i m e n t a l p r od u ct s . a) a n d b) FeO o x i d a t i o n f e a t u r e s a t t h e g ra in sc al e in acetic acid in gold c a p s u l e (CAc-H2-2) a n d s a m p l i n g au t ocla v e (APAc-H2-150), respectivel y; c) a n d d) n a n o m a g n e t i t e covering r e s i d u a l FeO g ra in s (CAc-H2-14); e) a n d f) FeO o x i d a t i o n f e a t u r e s a t t h e s a m p l e sca l e in acetic acid (APAc-H2-150) a n d w a t e r (APW-H2-300), respectivel y; g) a n d h ) m ic r o t e xt u r a l d et a il s of t h e FeO (light grey) r e p l a c e m e n t b y Fe3O4 ( d a rk grey) i n w a t e r (APW-H2-300). E x p e r i m e n t a l c on d it i on s for e a c h s a m p l e a r e f o u n d in Table 1.

300 respectively, Table 1) are presented on Fig. 7e and f. Particle a t t h e interface b e t w e e n s a m p l e a n d gold-capsule wall. Lep- si zes close to initial (50e100 mm) a r e still p r e s e n t in both s a m - idocrocite w a s d et e ct ed using XRPD in s a m p l e s wi t h ples, however, w h e r e a s particles h a v e nicely k ept t h ei r s h a p e

in wa t e r, in acetic acid particles a r e split u p a n d n e w reactive surfa ce a r e a h a s b een creat ed.

Goethite, FeO(OH), w a s d et e ct e d by XRPD in about half of t h e e x p e r i m en t s p e r f o rm ed wi t h acetic acid (Table 1). Goethite g rains w e r e easily identified by FE-SEM d u e to th ei r lower avera ge atomic n u m b e r a n d t h ei r distinctive morphology ( n eedl es or very t h i n plates, Fig. 9). Goethite w a s ma i nl y f o und

comparatively hi gh er hydro gen yield.

In acetic acid ex p eri m en t s , na n opa rti cl es of ma g n e t i t e were o bserved in cluded in a carbon matrix (Fig. 8b), suggesting t h a t t h e carbon-rich co mp o u n d precipitated d u rin g or a ft er FeO oxidation. EDS d a t a a n d electron diffraction indicated t h a t t h i s solid is co mp o sed of a m o r p h o u s carbon. This lack of crystallinity explain s wh y t h i s solid w a s n o t identified by X- ray p o wd e r diffraction. To quantif y t h e a m o u n t of a m o r p h o u s

(11)

¨

Fig. 8 e TEM i m a g e s of s a m p l e APAc-H2-150. a) M a g n et it e n a n op a r t ic l e aggreg ates; b) in cl u s ion s of m a g n e t i t e n a n op a r t i c l e s in a n a m o r p h o u s c a r b on p h a s e .

Fig. 9 e FE-SEM i m a g e s of g o e t h it e (a) CAc-H2-14 in b a c k - s c a t t e r e d m o d e , (b) CAc-H2-12 i n s e c o n d a r y el e ct r on m o d e .

carbon, carbon e l e m e n t a r y analysis w a s conduct ed a n d r e t u r n e d a carbon m a s s proportion of 1e1.5%w. Solid carbon h a s b een d et e c t ed in both cap su l e a n d sa mp l in g autoclave r u n s (CAc-H2_03 a n d APAc-H2-150 sa mpl es) .

Effect of calcium addition

In order to simulate the oxidation behavior of FeO in steel slags, CaO, wh i ch is a maj o r c o mp o n e n t of st eel slag, w a s a d d e d to wu st it e. Two mi x t u re s of FeO e Ca(OH)2 (portlandite), a n d FeO e CaCO3 (calcite), in a m a s s ratio of 1:1 w e r e r u n in gold sea l ed capsules with 0.05 mol/L acetic acid at 423 Ke30 MPa for 3 days.

A t h i rd cap su l e containing FeO a n d p u r e w a t e r w a s also r u n in parallel a s a reference. Corresponding H2 yields a r e p r e s e n t e d in Fig. 10. Th e addition of calcium ei t h er a s hydroxide or car- bonat e clearly inhibited FeO oxidation, hydro gen production w a s very low, i.e., about two orders of m a g n i t u d e lower t h a n i n t h e Ca-free s y s t e m u n d e r t h e s a m e conditions (Fig. 10).

At 423 K, H2 is only p ro du c ed wi t h i n t h e fi rs t 10 h to a n a m o u n t wh i c h cor re sp o nd s to 3% rea ct io n progress. Minor m a g n e t i t e w a s i d en ti fi ed by XRPD a m o n g re si d u a l FeO. After t h i s first H2 prod u ct ion st a ge a n d u nt i l t h e e n d of t h e r u n (65 h), n o m o r e H2 is p ro d u ce d. This t y p e of H2 pro d u cti o n behavior is i n t e rp r e t e d a s e i t h e r d u e to (1) t h e dissoluti on/

oxidation of s ma l l FeO part icles wi t h h i gh su rf a ce a r e a

D is c u s s io n

Effect of acidic conditions and temperature on H2 yield

(12)

In p u r e wa t e r , hydro gen production th ro u gh FeO a q u e o u s oxidation h a s b een mo ni t o red in a sa mp l in g autoclave a t t wo t e m p e r a t u r e s , 423 a n d 573 K (Fig. 5), a t a pH of ca. 6 (Table 1).

Fig. 10 e Effect of t h e a d d it i on of calcium t o FeO a s e i t h e r p o r t l a n d i t e o r calcite o n t h e H2 yield in a 0.05 mol / L acetic acid s ol u t i on a t 423 K e 30 MPa for 3 d a y s .

(13)

¨ m i x ed wi t h t h e 50e100 mm fraction, (2) t h e react ion of re -

s i du a l gra i n s of Fe m e t a l or (3) t h e p re fe re nt i al dissolution ( a n d oxidation) of h i gh -e n erg y si t e s a t t h e su rf a ce of FeO grains. Co nseq u ent ly, it will be co ns i d ered h e r e t h a t FeO g ra i n s i n t h e 50e100 mm si ze r a n g e do n o t re a c t wi t h w a t e r to p ro d u ce H2 i n t h e p r e s en c e of p u r e w a t e r a t 423 K a t t h e t i mes ca l e of a day.

At 573 K, wi t h i n t h e first 10 h, dihydrogen production ki- netics is four t i m e s hi gh er t h a n a t 423 K. By co n t ra st to t h e 423 K ex p eri men t , H2 is still p rodu ced after 10 h a t a r a t e wh i ch d e c r e a s es progressively wi t h t i m e (Fig. 5). After 144 h , a re- action pro gress of 23% is at t ai n ed . At t h e micro-scale, FeO oxidation into m a g n e t i t e is mainly localized in c h a n n e l s ho- mogeneously dist ri buted i n t h e bulk of t h e grain (Fig. 7h).

Magn etite s e e m s to nu cl ea t e o n st ru ct u ra l def ects or cracks.

Magn etite f ormati on mi g h t be rel a t ed to a n auto-oxidation process a s alread y e m p h a s i z e d for Fe(II) a q u e o u s oxidation a t t h e surfa ce of h yd ro u s iron oxides [19]. Wh at ever t h e exact

sa t u ra t i o n is calculated, a t 423 K a n d 30 MPa, to be 4.7 a n d 5.2, respectively. Either t h i s H2 production difference is d u e to a prot on p ro mo t ed Fe(II) dissolution in relation to t h e 0.5 pH u n i t difference b e t w e e n t h e t wo solutions or it is d u e to a ligand -promot ed Fe(II) dissolution by acetic acid. W h e r e a s oxalate-ligand h a s b een s h o we d to e n h a n c e t h e dissolution of Fe(III) c o mp o u n d s [26], a cet a t e h a s a p ro n o u n ced affinity for Fe(II) to form a complex su c h a s FeCH3COOHþ wh i ch becomes t h e d o m i n a n t Fe(II) a q u e o u s form for pH > 5 (Fig. 11). Disso- lution of iron-bearing silicates in acetic acid solutions s e e m s to converge t o wa rd s a p rot on -p ro mo t ed r a t h e r t h a n a ligand- promot ed dissolution [27,28]. However, d u e t h e stability of a c et a t e e iron a q u e o u s complexes a t 423 K (Fig. 11) a n d above, ligand -promot ed Fe(II) dissolution in acetic acid solutions a t high p r e s s u r e a n d t e m p e r a t u r e ca n n o t be ru l ed out.

H2 production a n d Fe(II) dissolution in acetic acid a t 423 K h a v e both b een mo n it o red in t h e sa mp l i n g autoclave a t 150 MPa. Fe(II) con centrati on r e a c h ed a m a x i m u m af t er 10 h oxidation process, formati on of ma gn et i t e in t h e bulk of t h e wh i ch co rresponds to wu st i t e satu rat i on . Th en , Fe(II) FeO grains su ggests t h a t oxidation kinetics will n ot be directly

rel a t ed to t h e surface a r e a of t h e FeO sta rtin g mat eria l. In o t h er word s, t h e reducti on of t h e FeO grain size by grinding m i gh t n ot significantly e n h a n c e t h e reaction kinetics.

FeO oxidation w a s f o und to be strongly e n h a n c e d in t h e p r e s en c e of acetic acid (Fig. 6b). W h e r e a s w e s h o w e d t h a t FeO g rains i n t h e 50e100 mm size r a n g e do n ot rea ct wi t h p u r e w a t e r a t 423 K, t h e s a m e exp eri en ce p e rf o rm ed wi t h 0.05 mol/

L of acetic acid (starting pH of 3) r e a c h ed completion (or n e a r

d e c r e a s ed to r e a ch ma g n et it e sa t u ra t i o n in a t i m e interval of less t h a n 15 h (Fig. 6a). All t h e H2 is p rodu ced wi t h i n t h e s e first 10 h (Fig. 6b). XRPD anal ysis of p o s t - m o r t e m solid indicates full conversion of FeO into Fe3O4.

It ca n be concluded from t h e s e resu l t s t h a t (1) FeO h a s fully rea ct ed wi t h i n t h e first 10 h of ex p eri m ent s, (2) a s long a s FeO is p r e s ent , it controls t h e a q u e o u s Fe(II) content, (3) m o st , if n o t all, of both m a g n e t i t e a n d H2 is p ro du ced wi t h i n t h e first 10 h. C onsequ ently, FeO dissolution s t e p is fa st er t h a n Fe(II)

completion) wi t h i n 10 h. oxidation a n d / o r ma g n e t i t e precipitation step(s) wh i ch

For t e m p e r a t u r e s in t h e 293e303 K r a n g e in acidic solu- tions, dissolution rat es of simple oxide mi n e r a l s w e r e found to be proportional to ðaHþ Þ0:40:7 by Casey e t al. (1993, [23]) w h e r e ðaHþ Þ d en o t e s Hþ activity. This m e a n s t h a t , a t a m b i en t con- ditions, a pH d ecr ea s e by 3 u n i t s b e t w e e n p u r e w a t e r a n d acetic acid e x p e ri me n t s is expect ed to r esu l t in a h i gh er dissolution r a t e by 1e2 o rd ers of ma g n i t ud e . Th e effect of t e m p e r a t u r e a n d p r e s s u r e on t h e d e p e n d en cy of FeO disso - lution rate with pH is not kno wn but a difference by 1e2 ord ers of m a g n i t u d e for a difference of 3 pH u n i t s is co n sist ent wi t h w h a t is observed h e r e a t 423 Ke15 MPa. Preliminary t e s t s in sea l ed gold cap su l es containing t h e s a m e u n si ev ed FeO p o wd e r along wi t h t h r e e different acidic solutions, acetic, oxalic a n d hydrochloric a t pH ¼ 3 gave co n t ra st ed H2 yields a t 423 K a n d 30 MPa (Fig. 3). Actually, th i s resu l t is n o t incon- sist ent wi t h a first order pH effect on FeO dissolution ( a n d oxidation). First, a q u e o u s oxalic acid is th ermal l y unstable. A reaction c o n st a n t of 109 is calculated for oxalic acid decom- position into 2CO2(aq) a n d 1H2 (aq ) a t 423 K a n d 20 MPa. Crossey (1991, [24]) s h o we d t h a t a t 433 K, pH ¼3.6, about half t h e initial oxalate is d eco mp os ed a ft er 45 h . On t h e contrary, a q u e o u s acetic acid is stable a t high t e m p e r a t u r e wi t h a decompo- sition reaction co n st a n t of 1017 (C2H4O2( aq ) þ 2H2O(l) %

2CO2(aq) þ 4H2(aq)). In t h e a b senc e of a catalyst, Bell e t al. (1994,

[25]) s h o we d t h a t a t a t e m p e r a t u r e a s high a s 608 K, only 1% of t h e initial acetic acid solution (ca. 1 mol/L) d eco mp osed a f t er 10 days. It ca n t h eref o re be co nsidered acetic acid decompo- sition as negligible in our exper iment p erf o rmed at 423 K for 11 days. H2 production is h i gh er by 1.5 o rd er of m a g n i t u d e for acetic acid solution (initial pH ¼3) t h a n for HCl solution (initial

pH ¼ 3). Th e in -situ pH of t h e s e acidic solution a t m a g n et i t e

(14)

t h eref o re occur to be t h e rate-limiting step(s). This limitation is co nfi rmed by t h e formation of m a g n et i t e nanoparticl es. Th e quick dissolution s t e p p r e v e n t s ma g n e t i t e to grow leading to a q u e o u s iron oversaturati on a n d t h e forced precipitation of m a gn et i t e a s n an op a rti cl es (Fig. 8a). However, a t t h e resolu-tion of our sa mp l in g frequency, t h e ex p eri men t a l conditions a p p e a r to be close to optimal since all t h e s e reaction s t e p s s e e m to pro ceed a t similar r a t e s since FeO t ra n s f o rma t i o n into Fe3O4 is achieved w h e n a q u e o u s Fe(II) r e a c h e s FeO sa tu rati o n. If t h e kinetics of t h e s t e p s leading to t h e formati on of m a gn e t i t e would h a v e b e en lower t h e n H2 ( a n d ma gn et i t e)

Fig. 11 e Speciat ion of a q u e o u s i r on (II) a t 423 Ke15 MPa a s s u m i n g 0.01 mol / L of tot a l Fe ( n o m i n e r a l equilibria) in 0.05 mol / L of acetic acid.

(15)

¨ would h a v e still b een p ro du ced a ft er FeO sa t u ra t i o n h a d b een

achieved. E x p eri men t s p erf o rm ed in gold cap sul es wi t h acetic acid a t 0.005, 0.05 a n d 0.5 mol/L u n d e r identical condi- tions (423 K, 10 days, 30 MPa) co n fi rmed t h a t n e a r optimal conditions h a v e b e en r e a ch e d for a concentration of 0.05 mol/

L a t 423 K. As a m a t t e r of fact, w h e r e a s H2 yield i n crea s ed by about t wo o rd ers of m a g n i t u d e b e t w e e n 0.005 a n d 0.05 mol/L ex p eri m en t s , H2 yield b e t we e n 0.05 a n d 0.5 mol/L is n o t significantly different.

Iro n d i sso lu t i on flux h a s b e e n ca l c u l a t ed acco rding to m e t h o d d e t a i l ed by Jang e t al. (2009, [16]) f r o m iron (II) c o n c e n t r a t i o n d a t a (Fig. 6a). T h e slope, s, h a s b e e n e v a l u - a t e d f r o m t h e t wo fi r st di sso l u t i on p o i n t s , d r e p r e s e n t s t h e m a s s c o n c e n t r a t i o n of FeO a n d A t h e s u rf a c e a r e a m e a s u r e d by N2-BET.

F ¼ dA (3)

A log dissolution flux (mol/m2/s) of 3.3 h a s b een o btain ed for our ex p eri m en t a l conditions. At a m b i e n t conditions, for a n eq ui va len t pH of 4.7, a log flux (mol/m2/s) value of 8.0 is ex- pected. Such a difference m a y be r el a t ed to t h e t h ermal l y activated ch a ra ct er of t h e dissolution process. B a sed on t h e s e t wo dissolution fluxes a t t wo different t e m p e r a t u r e s , a n acti- vation en ergy of ca. 90 kJ/mol is calculated, wh i ch is in good agreement with values obtained for iron (III) oxides dissolution [29]. Moreover, iron solubility is largely i n c r ea s ed wi t h t h e addition of acetic acid at 423 K and 30 MPa from 2.2 106 mol/L in w a t e r to 9.1 103 mol/L in a 0.05 mol/L acetic acid solution.

In parallel to t h e effect of pH, w e co n fi rmed t h e resu l t of

i mp o rta ntl y (3), t h e lack of stirring. In d eed , stirring e n h a n c e s iron dissolution, identified a s limiting factor to dihydrogen production, t h ro u gh homo genizati on of t h e solution. Wha t - ev er t h e n a t u r e of t h e solvent, oxidation f e a t u r e s of iron oxide grains reco vered from gold ca p su l es also occurred to be different. In particular, oxidation is f ound to mainly pro ceed according to a progressive p seud o mo rp h i c r e p l a c e m e n t of t h e initial FeO gra ins (Fig. 7a). Stirring h a s also a mechan i cal effect wh i ch could account for t h e reaction t ex t u re differences observed b e t w e e n sti rred a n d static ex p e ri m en t s .

Goethite and solid carbon

Goethite, FeO(OH), w a s observed by XPRD in s o m e of t h e sa m- p l e s p rod uced in acetic acid solutions (Fig. 9). As a n Fe(III) hy- droxide, t h e precipitation of which, i nst e ad of magnetite, can potentially improve t h e H2 yield. However, goethite w a s only d et e ct ed in e xp er im en t s r u n in gold capsules, mainly a tt a ch ed to t h e cap su le walls. Its proportion w a s n ot q ua nt ifi ed but seemed l o w c ompa red to t ho se o f magn eti te a nd wu sti te. At t he e n d of ru n, gold cap su les we r e d ri ed a t 353 K wi th ou t was h i n g contrarily to t h e p owd er s a m pl es recovered from t h e sampl in g autoclave. As t h e rm od yn am ic s predicts t h a t ma gn et i t e sho uld be t h e only stable iron oxide/hydroxide p h a s e in t h e investi- gated h yd ro th er ma l conditions, goethite formation is likely to be t h e resu lt of evaporating Fe-rich acetic acid solution in air.

Nominally, t h e only source of carbon in our ex p eri m en t a l s y s t e m is acetic acid, t h ro u gh t h e reaction,

Malvoisin e t al. (2013, [7]) obtained on steel slags wh i ch is t h a t

h y d ro t h er ma l hydrogen production is a th ermal l y activated CH3COOH(aq) % 2C(s) þ 2H2O(l). (4) process. In wa t e r , e x p e ri me n t s p erf o rm ed in t h e sa mp l i n g

autoclave led to a m a x i m u m of p rod u ced hydro gen 9 t i m e s h i gh er a t 573 K t h a n a t 423 K (Fig. 5). T e m p e r a t u r e is expect ed to play a role o n both oxidation a n d dissolution ra t es, t wo

A possible ro ut e for t h e formation of solid carbon is t h e t h e r m a l decomposition of acetic acid

t h erma l ly activated processes. However, e ven by applying CH3COOH(aq) % 2CO2(g) þ 4H2(g) (5) t e m p e r a t u r e from 423 to 573 K in wa t e r, r a t e a n d m a x i m u m

h yd ro gen p rod u ct i on remain s fa r l o wer t h an o b served a t 423 K in acetic acid (Fig. 6b). In o t h e r word, i n order to a t t a i n sig- nificant kinetics i mp ro v em en t , t h e u s e of mil d acidic solvent is a far b ett er solution t h a n increasing t e m p e r a t u r e .

H2 yield difference between capsule a nd sampling autoclave H2 yield differences h a v e b e en e n c o u n t er e d b e t w e e n ca psu l e a n d sa mp l i n g autoclave ex p eri m en t s . U n d e r t h e s a m e condi- tions of t e m p e r a t u r e , p r e s s u r e a n d acetic acid concentration, total a m o u n t of dihydrogen pro d u ced a ft er 8 h is 27 t i m e s lower for e x p e r i m e n t s co n du cted in cap su l es (Fig. 4) t h a n for e x p e r i men t s in t h e sa mp l i n g autoclave (Fig. 6b). Th e overall s h a p e of t h e H2 production curves is also different wi t h a lower production r a t e a t t h e beginning of t h e r u n in t h e gold capsules. Th e reaction t ex t u res a r e also different a n d involve p seu d o mo rp h i c r e p l a c e m e n t of st a rt in g FeO grains. Th e dif- ferences in H2 yield b e t we e n t h e t wo ex p eri m en t a l m e t h o d s ca n be potentially account ed for by (1) a large difference in

t h ei r respective solid/solution m a s s ratio (1:200 in sa mp l in g autoclave a n d 1:1 in gold capsules), (2) t h e likely a b sen ce of a gas p h a s e in e x p e ri men t s p erf o rm ed in ca p sul es a n d , m o s t

(16)

followed by t h e reduct ion of CO2 into solid carbon.

Magne-tite surface h a s b een s h o w n to catalyze t h a t lat er s t e p u n d e r similar P-T conditions [30]. However, in co nt rast wi t h t h e re -su l t s of Milesi e t al. (2015, [30]), carbon h a s b e en only observed in ma gn et it e-ca rb o n agglomerates, a n d n o carbon coating on m a g n e t i t e grains h a s b e en observed in t h e s a mp l e . It sh ou ld be n o t e d t h a t t h e overall C forming Reaction (4) h a s no direct i mp ac t on t h e H2 budget. It ca n be calculated t h a t 4%m o l of acetic acid m u s t h a v e d eco mp o sed according to Reaction (4) in o rd er to account for t h e 1e2 wei gh t p e r c en t of carbon a n a l yz ed in s a m p l e (APAc-H2-150). This e s t i m a t e is signifi-cantly h i gh er t h a n t h e resu l t s by Bell e t al. (1994, [25]), alread y m e n t i o n e d , on t h e kinetics of acetic acid decomposition wi t h o u t catalyst. A possible catalytic effect of m a g n e t i t e n an opa rti cl es m a y be p u t forward in our ex p eri men t s .

From FeO to steel slag

Steel slags contain in a vera ge 46%w of CaO [31]. Initially p r e - s e n t in t h e fo rm of lime, CaO, in freshly p ro du ced slags, aging of t h e slag in air l ea d s to t h e formation of portlandite, Ca(OH)2

a n d calcium carbonate, CaCO3.

(17)

~

~

~

¨ Three experiments performed at 423 K and 30 MPa for 3 days

in gold capsules with pure FeO, FeOþCaCO3 and FeO þCa(OH)2

in a 0.05 mol/L acetic acid solution yielded co ntrast ed H2 pro- duction of 1.234, 0.025 a n d 0.0005 g H2/FeO kg, respectively (Fig. 10). The addition of a Ca-phase such as Ca(OH)2 or CaCO3, in t h e p re se nc e of acetic acid strongly modifies t h e speciation a n d pH of t h e a qu eo u s solution. In particular, w h e n portlandite is p re se nt , along wi t h Fe3O4, t h e pH of t h e solution is high (pH ¼ 9.1) d u e to t h e relatively high solubility of Ca(OH)2. In t h e case where calcite i s t he only Ca-bearing solid, pH is buffered to a value of 5.8, i.e., slightly above the measured final pH in the Ca- free Fe3O4 e acetic acid s ys t e m (pH ¼ 4.7). In addition to t h e increase of pH which will tend to slow do wn the FeO dissolution (see discussion above), t h e total a m o u n t of a qu eo u s Fe(II) in equilibrium with Fe3O4 is drastically lowered, from ca 102 mol/

L to 106 mol/L in the presence of CaC O3 a nd d own t o 101 1 mol/ L w h e n Ca(OH)2 is p re se nt .

C o n c lu s io n

For t h e sa k e of testin g factors t h a t could in crea se t h e kinetics of H2 production by h y d r o t h erm a l t r e a t m e n t of st eel slags according to t h e 3 FeO(s) þH2O( l) /F e3O4 ( s ) þH2 ( a q ) reaction[7], p u r e FeO w a s u s e d a s mod el co mp o u n d a n d t e s t e d in t h e 373e573 K r a n g e in t h e p r e s en c e of mi ld acidic solutions.

Th e effect on t h e kinetics of H2 production from FeO of acetic acid a t concent ration s far below t h a t of vinegar is remarkably strong. In 0.05 mol/L acetic acid a t 423 K, FeO oxidation r ea c h e s n e a r completion wi t h i n 10 h wh e r e a s , in p u r e wa t er, H2 yield is negligible, ev en a f t er 65 h. We identifi ed FeO dissolution a s t h e rate-limiting st ep; therefore, t h e ki- netics effect of acetic acid is primarily i n t e rp r e t ed a s rel a t ed to t h e d ep e n d en cy of FeO dissolution r a t e wi t h pH. A log disso- lution flux (mol/m2/s) a s hi gh a s 3.3 h a s b e en obtain ed a t 423 K wi t h a n acetic acid con c entrati on of 0.05 mol/L. At t h e microscale, fa st reaction kinetics is asso ciat ed wi t h a disso- lution/precipitation process wh i ch gives rise to a mu l t i t u d e of smal l m a g n e t i t e particles covering t h e f ast dissolving FeO grains. H yd rot h ermal H2 production from FeO oxidation is t h erma ll y activated; however, t h e kinetics e n h a n c e m e n t asso ciated wi t h t h e u s e of mi ld acidic solutions is f oun d to be e n o r m o u s in compari son to t h a t of t e m p e r a t u r e . Acetic acid being th erma l l y stable, it allows t h e combination of acidic conditions a t high t e m p e r a t u r e . In ord er to t a k e a d v a n t a g e of t h e positive effect of acetic acid on H2 yield, solutions a r e being explored to m a i n t a i n acidic conditions in t h e p r e s en c e of Ca-bearing p h a s e s wh i ch a r e ubiquitous in st eel slags. In particula r t h e p r e s e n c e Ca(OH)2 sh ou ld be avoided since it t e n d s to n eu t ra l i ze acetic acid a n d i mp o se basic conditions wh i ch h a v e a d ra m a t i c effect on H2 production.

A c k n o w l e d g e m e n t s

This work is su p p o rt ed by CNRS t h ro u gh t h e “Mission Inter- disciplinaire: Defi Transition Energetique: Ressources, Societe, E n v i r o n n em e n t e ENRS” pro g ram. This work is p a r t of t h e HyMag'In project f u n d e d by t h e SATT Link sium (Grenoble).

Labex OSUG@2020 is also t h a n k e d for financial supp o rt . Th e

a u t h o r s would like to t h a n k Moulay-Tahar Sougrati for Mossbauer spectroscopy. Valerie Magnin is t h a n k e d for t h e BET m e a s u r e m e n t a t ISTerre.

r e f e r e n c e s

[1] Ni M, Leung DY, Leung MK, S u m a t h y K. An overview of hydrogen production from biomass. Fuel Process Technol 2006;87(5):461e72.

[2] K od a m a T, Gokon N. The rm ochem i cal cycles for high- t e m p e r a t u r e solar hydrogen production. C h e m Rev 2007;107(10):4048e77.

[3] Tu r n e r J, Sverdrup G, M a n n MK, M a n e s s P-C, Kroposki B, Ghirardi M, e t al. Renewabl e hydroge n production. I n t J Energy Res 2008;32(5):379e407.

[4] Klein F, Bach W, McCollom TM. Compositional controls on hydrogen generat ion duri ng s e rpen t in i zat i on of u lt r am a fic rocks. Lithos 2013;178:55e69.

[5] Charlou J, Donval J, Fouquet Y, Jean -Baptiste P, Holm N.

Geochemistry of hig h H2 a n d CH4 v ent fluids issuing from u lt r am a fic rocks a t t h e Rainbow h y d r ot h e r m a l field (36140N, MAR). C h e m Geol 2002;191(4):345e59.

[6] Marcaillou C, M u n oz M, Vidal O, Parra T, Harfouche M.

Mineralogical evidence for H2 degassing during s e rpe nt in i zat i on a t 300C/300 bar. Ea r t h Plane t Sci Lett 2011;303(3e4):281e90.

[7] Malvoisin B, Br u n e t F, Carlut J, M on te s -H e r nan d ez G, Findling N, L a n s on M, e t al. High-purity hydrogen gas from t h e reaction b e t w e e n BOF steel slag a n d w a t e r in t h e 473e673 K range. I nt J Hydrogen Energy 2013;38(18):7382e93.

[8] Hacker V, F a n k h a u s e r R, Faleschini G, Fuchs H, Friedrich K, M u h r M, e t al. Hydrogen production by s t e a meiron process. J Power Sources 2000;86(1e2):531e5.

[9] L oren te E, Pe na JA, Herguido J. Cycle behaviour of iron ores in t h e st e a m -i r on process. I nt J Hydrogen Energy

2011;36(12):7043e50.

[10] L oren te E, Herguido J, P ena JA. Steam -ir on process: influen ce of s t e a m on t h e kinetics of iron oxide reduction. Int J Hydrogen Energy 2011;36(21):13425e34.

[11] Stehle RC, Bobek MM, Hooper R, H a h n DW. Oxidation reaction kinetics for t h e st e a m -i r on process in su pp or t of hydrogen production. Int J Hydrogen Energy

2011;36(23):15125e35.

[12] Ch iesa P, Lozza G, Malandrino A, Roman o M, Piccolo V.

Three -rea ct ors chemical looping process for hydrogen production. Int J Hydrogen Energy 2008;33(9):2233e45.

[13] C h e n S, Shi Q, Xue Z, Su n X, Xiang W. Expe rimental investigation of chemical-looping hydrogen genera tion using Al2O3 or TiO2-s u p p or t e d iron oxides in a batch fluidized bed.

Int J Hydrogen Energy 2011;36(15):8915e26.

[14] Kang K-S, Kim C-H, Bae K-K, Cho W-C, Kim S-H, Park C-S.

Oxygen-carrier selection a n d t h e r m a l ana lysis of t h e chemical-looping process for hydrogen production. Int J Hydrogen Energy 2010;35(22):12246e54.

[15] Ryden M, Ar j m a n d M. C ontinuous hydrogen production via t h e s t e a meiron reaction by chemical looping in a circulating fluidized-bed reactor. Int J Hydrogen Energy

2012;37(6):4843e54.

[16] Jang J-H, Brant ley SL. Investigation of wu s t i t e (FeO) dissolution: implications for reductive dissolution of ferric oxides. Environ Sci Technol 2009;43(4):1086e90.

[17] Blesa MA, Matijevic E. P h a s e tr ans for m at i o ns of iron oxides, oxohydroxides, a n d h ydrous oxides in a q u e ou s med i a . Adv Colloid Interface Sci 1989;29(3e4):173e221.

[18] Morgan B, Lahav O. Th e effect of pH on t h e kinetics of s p on t a n e o u s Fe(II) oxidation by O2 in a q u e ou s

(18)

solutionebasic principles a n d a si m p le heurist ic description.

C h e m os p h e r e 2007;68(11):2080e4.

[19] Wehrli B, Sulzberger B, S t u m m W. Redox processes catalyzed by h yd r ous oxide surfaces. C h e m Geol 1989;78(3e4):167e79.

[20] Domingo C, Rodrigu ez-Clem ent e R, Blesa M. N a t u r e a n d reactivity of i n t e r m e d i a t e s in t h e auto-oxidation of iron (II) in a q u e ou s acid m ed i a . Solid Sta t e Ionics

1993;59(3e4):187e95.

[21] Br u n e t F, Chopin C. Bearth ite, Ca2Al(PO4)2OH: stability, t h e r m od y n a m i c prope rties a n d p h a s e relations. Contrib Mineral Petrol 1995;121(3):258e66.

[22] Johnson JW, Oelkers EH, Helgeson HC. SUPCRT92: a softwa re package for calculating t h e s t a n d a r d molal t h e r m o d y n a m i c propert ies of m i ne r a ls , gases, a q u e o u s species, a n d react ions from 1 to 5000 bar a n d 0 to 1000C. C om p u t Geosci

1992;18(7):899e947.

[23] Casey WH, Banfield JF, Westrich HR, McLaughlin L. Wh a t do dissolution e xp e r i m e n t s tell u s about n a t u r a l we ath er i ng ? C h e m Geol 1993;105(1e3):1e15.

[24] Crossey LJ. Th e r m a l degradat i on of a q u e ou s oxalate species.

Geochim C osmochim Acta 1991;55(6):1515e27.

[25] Bell JL, P a l m er DA, Ba r n e s HL, D r u m m o n d SE. Th e r m a l decomposition of acetate : III. Catalysis by m i n e r a l surfaces.

Geochim C osmochim Acta 1994;58(19):4155e77.

[26] C h e n H, Gr a s s ian VH. Iron dissolution of d u s t source m a t e r i a l s duri ng s i mu l a t e d acidic processing: t h e effect of sulfuric, acetic, a n d oxalic acids. Environ Sci Technol 2013;47(18):10312e21.

[27] H a m e r M, G r a h a m RC, A m r h e i n C, Bozhilov KN. Dissolution of ripidolite (Mg, Fe-Chlorite) in organic a n d inorganic acid solutions. Soil Sci Soc A m J 2003;67(2):654.

[28] S t u m m W. Reactivity a t t h e m i n e r a l - w a t e r interface:

dissolution a n d inhibition. Colloids Surf A Physicochem Eng Asp 1997;120(1e3):143e66.

[29] S c h w e r t m a n n U. Solubility a n d dissolution of iron oxides.

Plant Soil 1991;130(1e2):1e25.

[30] Milesi V, Guyot F, Br u n e t F, Richard L, Re ch a m N, Be n ede tt i M, e t al. Format ion of CO2, H2 a n d con d e n s e d carbon fr om siderite dissolution in t h e 200e300C r a n g e a n d a t 50 MPa. Geochim Cosmochim Acta 2015;154:201e11.

[31] Yildirim IZ, Prezzi M. Chemical, mineralogical, a n d morphological pr opert ies of stee l slag. Adv Civil Eng 2011;2011(2):1e13.

[32] P a r khu rst DL, Appelo CAJ. User's Guide to Phreeq C (Version 2)dA com p u t e r pr og r a m for speciation, batch-reaction , one- d i mens i on a l tr ansp or t , a n d inverse geochemical

calculations. 1999. U.S. Geological Survey, Water-Resources Investigations Report 99-4259, Denver, CO.

Références

Documents relatifs

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,