• Aucun résultat trouvé

Note on the Chen-Lin result with Li-Zhang method

N/A
N/A
Protected

Academic year: 2021

Partager "Note on the Chen-Lin result with Li-Zhang method"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-00465213

https://hal.archives-ouvertes.fr/hal-00465213

Preprint submitted on 23 Mar 2010

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Note on the Chen-Lin result with Li-Zhang method

Samy Skander Bahoura

To cite this version:

Samy Skander Bahoura. Note on the Chen-Lin result with Li-Zhang method. 2010. �hal-00465213�

(2)

NOTE ON THE CHEN-LIN RESULT WITH LI-ZHANG METHOD.

SAMY SKANDER BAHOURA

Abstract: We give a new proof of Chen-Lin result with Li-Zhang method.

1. INTRODUCTION AND RESULTS.

We set∆ =−∂11−∂22the geometric Laplacian onR2.

On an open setΩofR2, with a smooth boundary, we consider the following problem:

(P)

(∆u=V eu in Ω.

0< a≤V ≤b <+∞

The previous equation is called, the Prescribed Scalar Curvature, in relation with conformal change of metrics. The functionV is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem.

Equations of the previous type were studied by many authors. We can see in [B-M], different results for the solutions of those type of equations with or without boundaries conditions and, with minimal conditions onV, for example we supposeV ≥0andV ∈Lp(Ω)orV eu∈Lp(Ω) withp∈[1,+∞].

We can see in [B-M] the following important Theorem,

Theorem A(Brezis-Merle).If(ui)iand(Vi)i are two sequences of functions relatively to the problem(P)with,0< a≤Vi≤b <+∞, then, for all compact setKofΩ,

sup

K

ui≤c=c(a, b, m, K,Ω) if inf

ui≥m.

A simple consequence of this theorem is that, if we assumeui= 0on∂Ωthen, the sequence (ui)iis locally uniformly bounded.

If, we assumeV with more regularity, we can have another type of estimates, sup + inf. It was proved, by Shafrir, see [S], that, if(ui)i,(Vi)iare two sequences of functions solutions of the previous equation without assumption on the boundary and,0 < a≤Vi ≤b <+∞, then we have the following interior estimate:

C(a/b) sup

K

ui+ inf

ui≤c=c(a, b, K,Ω).

We can see in [C-L], an explicit value ofC(a/b) = ra

b.

Now, if we suppose(Vi)iuniformly Lipschitzian withAthe Lipschitz constant, then,C(a/b) = 1andc=c(a, b, A, K,Ω), see Br´ezis-Li-Shafrir [B-L-S]. This result was extended for H¨olderian sequences(Vi)i by Chen-Lin, see [C-L]. Also, we can see in [L], an extension of the Brezis- Li-Shafrir to compact Riemann surface without boundary. We can see in [L-S] explicit form, (8πm, m∈Nexactly), for the numbers in front of the Dirac masses, when the solutions blow- up.

On open setΩofR2we consider the following equation:

∆ui=Vieui on Ω.

0< a≤Vi≤b <+∞, |Vi(x)−Vi(y)| ≤A|x−y|s, 0< s <1, x, y∈Ω.

1

(3)

Theorem B((Chen-Lin). For all compactK ⊂ Ωand alls ∈]0,1[there is a constantc = c(a, b, A, s, K,Ω)such that,

sup

K

ui+ inf

ui≤c, ∀i.

Here we try to prove the previous theorem by the moving-plane method and Li-Zhang method.

We argue by contradiction, and we want to proof that:

∃R >0, such that 4 logR+ sup

BR(0)

u+ inf

B2R(0)u≤c=c(a, b, A), Thus, by contardition we can assume:

∃(Ri)i, (ui)i Ri→0, 4 logRi+ sup

BRi(0)

ui+ inf

B2Ri(0)ui→+∞, The blow-up analysis

Letx0 ∈ Ω, we want to prove the theorem locally aroundx0, we use the previous assertion withx0 = 0. The classical blow-up analysis gives the existence of the sequence(xi)i and a sequence of functions(vi)isuch that:

We set,

sup

BRi(0)

ui=ui(¯xi),

si(x) = 2 log(Ri− |x−¯xi|) +ui(x), andsi(xi) = sup

BRi(¯xi)

si, li=1

2(Ri− |xi−x¯i|).

Also, we set:

vi(x) =ui[xi+xe−ui(xi)/2]−ui(xi), V¯i(x) =Vi[xi+xe−ui(xi)/2], Then,

∆vi= ¯Vievi, vi≤2 log 2, vi(0) = 0,

vi→v= log 1

(1 + [V(0)/8]|x|2)2 converge uniformly on each compact set of R2 withV(0) = limi→+∞Vi(xi).

The classical elliptic estimates and the classical Harnack inequality, we can prove the previous uniform convergence on each compact ofR2.

The Kelvin transform and the moving-plane method: Li-Zhang method.

For0< λ < λ1, we define:

Σλ=B(0, liMi)−B(0, λ).

First, we set :

¯

viλ=vλi −4 log|x|+ 4 logλ=vi

λ2x

|x|2

+ 4 log λ

|x|, V¯iλ= ¯Vi

λ2x

|x|2

, Mi=eui(xi)/2,

2

(4)

and,

wλ= ¯vi−v¯λi. Then,

∆¯vλi = ¯Viλe¯vλi,

|y|=RminiMi

¯

vλi =ui(xi+rθ)−ui(xi) + 2ui(xi)≥inf

ui+ui(xi)→+∞, and,

∆(vi−vλi) = ¯Vi(evi−evλi) + ( ¯Vi−V¯iλ)eviλ, We have the following estimate:

|V¯i−V¯iλ| ≤AMi−s|x|s|1− λ2

|x|2|s, We take an auxiliary functionhλ:

Because,vi(xλ)≤C(λ1)<+∞, we have,

hλ=C1Mi−sλ2(log(λ/|x|)) +C2Mi−sλ2+s[1−( λ

|x|)2−s], |x|> λ, withC1, C2=C1, C2(s, λ1)>0,

hλ=Mi−sλ2(1−λ/|x|)(C1

log(λ/|x|) 1−λ/|x| +C2), with,C2 =C2(s, λ1)>0. We can chooseC1big enough to havehλ<0.

Lemma 1: There is anλk,0>0small enough, such that, for0< λ < λk,0, we have:

wλ+hλ>0.

We have,

f(r, θ) =vi(rθ) + 2 logr, then,

∂f

∂r(r, θ) =<∇vi(rθ)|θ >+2 r, According to the blow-up analysis,

∃ r0>0, C >0, |∇vi(rθ)|θ >| ≤C, for 0≤r < r0, Then,

∃r0>0, C>0, ∂f

∂r(r, θ)> C

r , 0< r < r0, if0< λ <|y|< r0,

wλ(y) +hλ(y) =vi(y)−vλi(y) +hλ(y)> C(log|y| −log|yλ|) +hλ(y), by the definition ofhλ, we have, forC, C0>0and0< λ≤ |y|< r0,

wλ(y) +hλ(y)>(|y| −λ)[Clog|y| −log|yλ|

|y| −λ −λ1+sC0Mis], but,

|y| − |yλ|>|y| −λ >0, and|yλ|= λ2

|y|, thus,

3

(5)

In the first step of the lemma 2, we have,

vi≥minvi=Ci1, viλ(y)≤C11, r0), if r0≤ |y| ≤RiMi, Thus, inr0≤ |y| ≤RiMiandλ≤λ1, we have,

wλ+hλ≥Ci−4 logλ+ 4 logr0−Cλ12+s

then, ifλ→0,−logλ→+∞, and,

wλ+hλ>0, if λ < λi0, λi0 (small), andr0<|y| ≤RiMi, By the maximum princple and the Hopf boundary lemma, we have:

Lemma 2: Letλ˜kbe a positive number such that:

λ˜k = sup{λ < λ1, wλ+hλ>0 in Σλ.}.

Then,

λ˜k1.

The blow-up analysis gives the follwing inequality for the boundary condition, Fory=|y|θ=RiMiθ, we have,

wλi(|y|=RiMi) +hλi(|y|=RiMi) =

=ui(xi+Riθ)−ui(xi)−vi(yλi,|y|=RiMi)−4 logλ+4 log(RiMi)+C(s, λ1)Mi−sλ2+s[1−( λ RiMi

)2−s], 4 log ¯Ri+ui(xi) + inf

ui →+∞, which we can write,

wλi(|y|=RiMi) +hλi(|y|=RiMi)≥min

ui+ui(xi) + 4 logRi−C(s, λ1)→+∞, because,0< λ≤λ1,

4

(6)

References.

[B-G] L. Boccardo, T. Gallouet. Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1), (1989), 149-169.

[B-L-S] H. Brezis, YY. Li and I. Shafrir. A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities. J.Funct.Anal.115 (1993) 344-358.

[B-M] H. Brezis, F. Merle. Uniform estimates and Blow-up Behavior for Solutions of−∆u= V(x)eu in two dimension. Commun. in Partial Differential Equations, 16 (8 and 9), 1223- 1253(1991).

[C-Li] W. Chen, C. Li. A priori Estimates for solutions to Nonlinear Elliptic Equations. Arch.

Rational. Mech. Anal. 122 (1993) 145-157.

[C-L] C-C. Chen, C-S. Lin. A sharp sup+inf inequality for a nonlinear elliptic equation inR2. Commun. Anal. Geom. 6, No.1, 1-19 (1998).

[L] YY. Li, Harnack type Inequality, the Methode of Moving Planes. Commun. Math. Phys.

200 421-444.(1999).

[L-S] YY. Li, I. Shafrir. Blow-up Analysis for Solutions of−∆u=V euin Dimension Two.

Indiana. Math. J. Vol 3, no 4. (1994). 1255-1270.

[M-W] L. Ma, J-C. Wei. Convergence for a Liouville equation. Comment. Math. Helv. 76 (2001) 506-514.

[R] W. Rudin. Real and Complex Analysis.

[S] I. Shafrir. A sup+inf inequality for the equation−∆u=V eu. C. R. Acad.Sci. Paris S´er. I Math. 315 (1992), no. 2, 159-164.

E-mail address:samybahoura@yahoo.fr

5

Références

Documents relatifs

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion