• Aucun résultat trouvé

Détermination par spectrophotométrie par immersion des constantes optiques de films interférentiels d'oxyde anodique sur support en tantale

N/A
N/A
Protected

Academic year: 2021

Partager "Détermination par spectrophotométrie par immersion des constantes optiques de films interférentiels d'oxyde anodique sur support en tantale"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00205742

https://hal.archives-ouvertes.fr/jpa-00205742

Submitted on 1 Jan 1964

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Détermination par spectrophotométrie par immersion des constantes optiques de films interférentiels d’oxyde

anodique sur support en tantale

Walton P. Ellis

To cite this version:

Walton P. Ellis. Détermination par spectrophotométrie par immersion des constantes optiques de

films interférentiels d’oxyde anodique sur support en tantale. Journal de Physique, 1964, 25 (1-2),

pp.21-24. �10.1051/jphys:01964002501-202100�. �jpa-00205742�

(2)

21.

DÉTERMINATION PAR SPECTROPHOTOMÉTRIE

PAR IMMERSION DES CONSTANTES OPTIQUES

DE FILMS INTERFÉRENTIELS D’OXYDE ANODIQUE SUR SUPPORT EN TANTALE

By WALTON P. ELLIS,

Résumé.

2014

L’immersion d’un film interférentiel in situ dans un liquide modifie ses propriétés optiques par la diminution de l’amplitude du vecteur d onde réfléchi à l’interface milieu-couche.

Avec des couches interférentielles obtenues par oxydation anodique d’un support de tantale,

l’immersion dans des liquides d’indice de réfraction progressivement croissant diminue le con-

traste des interférence d’une manière régulière. On a obtenu, par une analyse des maximums d’interférences déterminés par une méthode spectrophotométrique, l’indice de réfraction d’un

oxyde de tantale anodique pour différents ordres d’interférence dans le domaine spectral

4 000

2014

6 100 Å.

Abstract.

2014

Immersion of an in situ interférence film into a liquid alters the optics by dimi- nishing the amplitude of the wave vector reflected at the medium film interface. With inter- ference layers of anodic oxide on tantalum, immersion into liquids of progressively higher refrac-

tive indices decreases the degree of interference in a regular fashion. From an analysis of the spectrophotometrically determined interférence peak heights, the refractive index of anodically

formed tantalum oxide was obtained for différent orders of interférence in the wavelength range 4 000

2014

6 100 Å.

PHYSIQUE 25, 1964,

.

Introduction.

-

Immersion of a solid inter- ference film into a liquid diminishes the amplitude

of the wave-vector reflected- at the medium-film interface. In a study of this effect, Mallemann

and Suhner [1] obtained the optical constants of

thin films by analyzing the change in reflection of

elliptically polarized light upon immersion. Simi-

larly, by observing the change in the interference

peak height with immersion, the optical constants

of an interference film can be obtained spectro- photometrically. In a previous report [2] the principles of. immersion spectrophotometry were

outlined. In this approach, the interference peak heights are measured with the specimen immersed

in various pure liquids. As the refractive index of the fluid approaches that of the film, interference is diminished and the peak height goes to zero at the index of refraction of the layer. This method

was used to determine the refractive index of inter- ference films of UF 4(s) on UO 2(s) and of anodic

oxide films on uranium metal. For the present report, the method was modified and extended to the study of anodic interference oxide films on

tantalum metal. With anodized Ta where the refractive index of the oxide is much larger than

that of the immersion media, direct extrapolation

of the peak heights to zero interference results in considerable uncertainty. Instead, a more precise approach was to determine graphically the set of parameters which gave the correct peak heights for

all media.

Materials and apparatus.

-

The tantalum speci-

mens were prepared from 99. 98 % pure, arc-melted

material. The major impurities after melting

were 29 ppm Nb, 40 ppm W, 24 ppm Si,

29 ppm 0,14 ppm N, 16 ppm C and 25 ppm Al.

The other detected impurities were less than

10 ppm. The Ta specimens were machined into buttons and lapped through 600A SiC,1/0, 2/0, 3/0 and 4/0 emery paper, and finally with 1 u

diamond paste on a silk-velvet cloth. The surface

was electropolished with a pulsed current at 15 V

in a stirred mixture of 1 part of 48 % HF to 9 parts of conc. H2SO4 at room temperature. Films of

oxide were formed anodically in 0.2 N H2S04

at 4.6 mA/cm2 in a manner described by Young [3].

The modified optical arrangement of the Cary

Model 14X spectrophotometer has been described previously [2]. Background spectra were taken

for each specimen in various media after electro-

polishing. Interference peak heights of the ano-

dized specimens immersed in the same media were

then measured.

Theory and results.

-

The theory has been pre-

sented in detail earlier [2] and is only briefly sum-

marized in the following treatment. The notation of Heavens [4] is followed. An interference system

is represented by a solid substrate of refractive

index YJ2, a thin film of index n1 and an immersion medium of index "fJo. The wave vector reflected at the medium-film interface is denoted by r1 and the

wave vector reflected at the film-substrate inter- face is r2. Both r, and r2 depend upon the refrac- tive indices of the -system. For a transparent

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01964002501-202100

(3)

22

film and normally incident light, the magnitude of r 1 is

With an instrument such as the Cary Model 14X

that -measures optical density versus wavelength,

the interference peak height, Amax, is given by

This expression holds exactly for a transparent

film. With this equation it is seen that Amax

=

0

if 71

=

0. But from eq. (1), ri

=

0 if n1 = n0.

Thus, if Amax is plotted versus n0, the extrapolation

to Amax

=

0 gives no

=

n 1 directly.

FIG. 1.

-

Optical density vs. wavelength for an anodic

oxide film on tantalum metal. The third-order inter- ference wavelength is 5 783 ± 15 A.

Figure 1 is a tracing of a typical interference

curve of an in situ film of anodically oxidized tan-

talum immersed in acetone. The third-order peak height is 0.88 + 0.01 optical density units.

Agreement between background and the minima

of the curve for the anodized specimen is approxi- mately 0.01 units. Figure 2 is a plot of Amax

versus no for the same specimen immersed in a

series of liquids. An extrapolation from the most highly refractive medium («-bromonaphtalene) is

seen to be somewhat arbitrary within ± 0.1 unit.

In this instance where n1 is so much greater than the rlo of the conveniently managed media, this

method of analysis is not exact enough.

In equations 1 and 2, the unknowns are r2 and n1.

For a given immersion medium, a curve can be drawn relating n1 to r2 for a given Amax. The

intersection of these curves for different refractive media gives the values of r2 and n1 which satisfy

the conditions for all liquids. Figure 3 is a plot of r2 vs. n1 calculated from the set of data shown

FIG. 2.

-

Peak height vs. n0 for the third-order (K

=

2) peak shown in figure 1.

FIG. 3.

-

Plot of r2 vs. 7]i to give correct åmax for different refractive media : 1 : air ; 2 : acetone ; 3 : n-heptane ;

4 : toluene ; 5 : ac-chloronaphtalene ; 6 : a-bromonaph-

thalene.

in figure 2. The intersection is, at n1 = 2.218 with a spread of 0.015. By this method, n1 of

anodically formed tantalum oxide was determined

as a function of wavelength for different orders of interference. Figure 4 summarizes the results.

The plot of n1 versus wavelength is seen to be a

smooth curve with a standard deviation of the fit’

of 0. 016.

These values differ greatly from those reported by Waber et al. [5] for macro-crystalline Ta2O5,

and the agreement with previously reported values

(4)

FIG. 4.

-

Refractive index vs. interference wavelength.

For second-order films K = 1, for third-order K

=

2, etc.

Standard deviation of the fit is 0.016.

of anodic oxide layers on tantalum is only fair [3, 6, 7, 8, 9].

The value at 5 900 A of 2.205 ± .016 is in

good agreement with 2. 20 + 0.02 reported by Young [3] for the same wavelength from the Becke immer’sion of a detached flake of anodic tantalum oxide prepared under similar conditions. Unfor-

tunately, this is the only wavelength for which he reports a value obtained by the Becke method, and

at shorter wavelengths agreement is within only

5’ %. At 4 358 A the value of n1 of the present

work is 2.35 + 0.02 in comparison with 2.281 ± . 001 which Masing, Orme and Young [6]

reported for anodic oxide prepared in the same

bath at 2 mA jcm2. Their analysis was the Abel6s

method of plotting the reflectivity in air versus angle of incidence of two or more films of critical

wavelengths.

The data represented by figure 4 were taken with unpolarized light and with no angle of incidence

correction in eq. (1). As a check, several measu-

rements were taken with p-light with an angle of

incidence correction. The values are within one

standard deviation of the curve in figure 4 :

and

Also, anodic oxide films prepared in aqueous 3 %

tartaric acid adjusted with NH40H to a pH

=

5.5,

gave values of 1)1 in agreement with figure 4.

Apparently there are no available voids in the

film which become filled when the specimen is immersed, since if there were such pores, the inter-

ference wavelength would increase with immer- sion. Instead, the 3rd-order wavelength decreases approximately 1/2 % in going from air to chloro- naphtalene at 5 500 A, which indicates that the

film absorbs slightly with an extinction coefficient of approximately 0.005. The interference wave-

length does not change at all within the limits of

error of the determination at 4 000 A, which indi- cates that at this wavelength the film is transpa-

rent. Evacuating the spectrum to 10-5 torr with gentle heating prior to flooding with liquid- does

not alter either the interference wavelengthlor Amax...

neither does boiling in liquid, nor shaking ultra- sonically nor soaking a week at room temperature.

Figure 5 is a plot of interference peak height in

air versus interference wavelength for different

FIG. 5.

-

Plot of Amax in air vs. interference wavelength.

Anodic oxide films on Ta..

orders. The shape of the curve is explained by

the minimum in reflectance at the film-metal inter- face at 5 350 + 100 A. The observation that Amax is approximately the same for different orders is in agreement with the findings of Masing et al. [6]

that to a first approximation the film can be consi-

dered to be transparent.

Acknowledgments.

-

The author wishes to express gratitude to R. J. Bard and R. D. Baker

for support and encouragement, and to Keith Davidson for supplying the tantalum.

Discussion

M. HEAVENS. - The spread of values obtained for the film index cannot evidently be accounted for by the assumption of accessibles voids, with variable accessibility to different liquids since the position

of the turning values does not change with filling

liquid. However the possibility of inaccessible

(5)

24

voids which may account for the gradient gra- dient of index observed in some tantalum oxide films.

R6ponse : 1) The definition of r2 is contained in the text ; as defined there, it is invarient with immersion.

2) With an inhomogeneous film the conclusion of plotting Amax versus YJo is unaffected since the

extrapolation to zero interference is to YJo

=

Y/l at the medium film interface. However the plot of r2

versus YJI is certainly affected by inhomogeneities

since r2 would have to be re-defined.

BIBLIOGRAPHY [1] DE MALLEMANN (R.) and SUHNER (F.), Rev. d’Optique,

1944, 23, 193.

[2] ELLIS (W. P.), J. Opt. Soc. Amer., 1963, 53, 613.

[3] YOUNG (L.), Proc. Roy. Soc., A, 1958, 244, 41.

[4] HEAVENS (O. S.), Optical Properties of Thin Solid

[5] Films, Academic Press Inc., New York, 1955, p. 56.

[5] WABER (J. T.), STURDY (G. E.), WISE (E. M.) and

TRIPTON (C. R., Jr.), J. Electrochem. Soc., 1952, 99,

121.

[6] MASING (L.), ORME (J. E.) and YOUNG (L.), J. Electro- chem. Soc., 1961, 108, 428.

[7] VERMILYEA (D. A.), Acta Met., 1953, 1, 282.

[8] HEAVENS (O. S.) and KELLY (J. C.), Proc. Phys. Soc., 1958, 72, 906.

[9] CHARLESBY (A.) and POLLING (J. J.), Proc. Roy. Soc., A, 1955, 227, 434.

DÉTERMINATION EXPÉRIMENTALE DE LA VARIATION DE PHASE 03C8T SUBIE

PAR LA LUMIÈRE A LA TRAVERSÉE DES COUCHES MÉTALLIQUES MINCES

EN VUE D’APPLICATIONS A L’APODISATION

Par H. FOUSSE et B. ROIZEN-DOSSIER,

Faculté des Sciences de Nancy.

Résumé. - Nous déterminons 03C8T par l’intermédiaire de la fonction de filtrage B(03BD) d’une lame

de verre carrée métallisée sur l’une de ses moitiés (épaisseur du métal e, transmission T). La com- posante imaginaire de B(03BD) nous fournit (T/2) sin (03C8T + 203C0e/03BB), la composante réelle (T/2) cos (03C8T + 203C0e/03BB). Le montage de Hacking que nous utilisons nous fournit B(03BD) sous la forme de la

transformée de Fourier de l’intensité diffractée. Un exemple simple montre que le terme de phase

~ = 03C8T + 203C0e/03BB a relativement peu d’influence sur la qualité d’un apodiseur.

Abstract.

2014

We determine 03C8T by the spatial frequency response function B(03BD) of a square glass plate metallised on half its width (thickness of the metal layer : e, transmission T). The imaginary part of B(03BD) gives us (T/2) sin (03C8T + 203C0e/03BB), its real part: (T/2) cos (03C8T + 203C0e/03BB). The device

proposed by Hacking is used for determining the Fourier transform of the diffraction function,

i.e B(03BD). We finally find that ~

=

03C8T + 203C0e/03BB has little effect on the quality of an apodiser.

LE JOURNAL DE PHYSIQUE TOME 25, JANVIER-FÉVRIER 1964,

Introduction.

-

La détermination expérimentale

de la variation de phase §T que la travers6e d’une couche metallique mince, d’épaisseur .e, impose à

un faisceau de lumi6re monochromatique en inci-

dence normale, est importante a connaitre a divers

egards ; elle constitue une donn6e utile pour la determination de l’indice complexe de la couche,

mais pour certains utilisateurs des couches, elle est

d’un int6rOt plus direct encore : pour nous, par

exemple, qui fabriquons des apodiseurs, constitués

on le sait, par des lames de verre ayant subi une

metallisation afin d’acquérir une transparence non

uniforme convenable, la connaissance de la varia- tion de phase §r a la travers6e du metal importe, puisqu’une distribution non uniforme des phases

sur l’objectif garni de son apodiseur et suppose

eclaire par un point a l’infini sur l’axe equivaut a

des aberrations qui peuvent contrecarrer dans

l’image 1’effet cherche, Rappelons que cet effet consiste dans I’att6nuation des pieds de la figure de diffraction., ou, par extension, dans I’am6lioration de l’une quelconque des autres caractéristiques de

cette figure. Un cas analogue est celui de la micro-

scopie par contraste de phase, lorsqu’on m6tallise

les lames de phase pour les rendre absorbantes et ameliorer le contraste de l’image finale. Cette

metallisation modifie quelque peu les caract6-

ristiques de phase de la lame et peut appeler une

correction.

Or, dans la litt6rature, les donn6es concernant §r

sont rares pour les couches absorbantes. Nous nous

proposons de d6crire la méthode que nous avons

Références

Documents relatifs

[r]

JAMES BOND IN SKYFALL Hello everybody , here your work about the film!. COMPLETE THE GRID WITH INFORMATION FROM

If the mean curvature radius of the surface is large compared to the size of the flattened drops, we assume that the motion of the liquid is approximately a motion in the

Our construction involves two tools : the augmentation of an injective immersion into a diffeomorphism through a Jacobian complementation and the extension of the image of the

specific immersion SAW sensor has been used for the liquid testing. The dependencies of the SAW attenuation as a function of : a) the viscosity ; b) the degree of the dissociation

The crystal wave is calculated in a thin film of rectangular form(Fig. 1) made, of a perfect silicon crystal by using the dynamical theory of diffraction developed by Takagi/1/.

Schematic representation of two extreme models for the triblock copolymer I : looping occurs only in the surface layer, bridging everywhere else ; II : looping occurs in all

A green laser (beam waist 360 lm, k ¼ 532 nm) impinges at nearly normal to the prism and then gets totally reflected on the glass/air interface, since the angle of incidence h