• Aucun résultat trouvé

M1MI2016 Codes et Cryptologie

N/A
N/A
Protected

Academic year: 2022

Partager "M1MI2016 Codes et Cryptologie"

Copied!
2
0
0

Texte intégral

(1)

M1MI2016 Codes et Cryptologie

Feuille d’exercices n

8.

Codes correcteurs : Introduction

On rappelle qu’un message x = (x1, x2, x3, x4) est encodé par le code de Hamming en x0 = (x1, x2, x3, x4, p1, p2, p3), où p1, p2, p3 sont les bits de parités associés aux cercles de la figure suivante :

x1 x2x4x3 p3

p1 p2

1 Vous avez reçu des messages encodés par le code de Hamming. Malheureusement ces mes- sages ont été détériorés.

1. Ils ont été affectés par au plus deux effacements. Corrigez-les.

111111 000∗ ∗00 11011∗

00000 11010

2. Ils ont été affectés par au plus une erreur. Corrigez-les.

1100010 0011100 1111110 0001111 0000111

2 Les messages considérés sont toujours encodés par le code de Hamming, mais trois bits sont effaçés.

1. Pouvez-vous corriger∗ ∗0111? Et ∗ ∗ ∗1100? Est-ce que la réponse dépend de la valeur des autres bits ?

2. Montrez dans les deux cas précédents que corriger ces effacements revient à résoudre un système linéaire de trois équations à trois inconnues.

3. En vous appuyant sur les exemples précédents, déterminez quels sont les effacements de trois bits que l’on peut corriger.

(2)

3 On transmet des messages binaires par un canal qui envoie chaque bit indépendamment, avec une probabilité d’erreur p <0.5sur chacun d’entre eux. Les messages sont de longueur n.

1. Quelle est la probabilité qu’un message soit reçu sans erreurs ?

2. Quelle est la probabilité qu’un message soit reçu avec au moins une erreur ? 3. Quelle est la probabilité qu’un message soit reçu avec au plus une erreur ?

Maintenant on veut transmettre des messages de 4 bits mais on veut comparer les deux mé- thodes suivantes :

(1) On transmet le message x lui-même. On note x le message reçu.

(2) On utilise le code de Hamming pour transformer x enx0 puis on transmetx0 à travers le canal ; on reçoit y0, que l’on décode suivant la procédure suivante :

– Si les trois parités de y0 sont correctes, on pose y =y0.

– Sinon, on change un bit de y0, afin de les rendre correctes (comme vu en cours), et on note y le nouveau message.

– On note x le message constitué des quatre premiers bits de y. 4. Quelle est la probabilité P1(p)que x=x avec la procédure (1) ? 5. Quelle est la probabilité P2(p)que x=x avec la procédure (2) ? 6. Comparez ces probabilités pour p= 0.4,p= 0.01.

7. Donnez une expression de P1(p) et P2(p), puis montrez que P2(p) P1(p) pour tout p0.5. Conclure.

4 Dans cet exercice on considère le code carré vu en cours. On rappelle qu’un message x = (x1, x2, x3, x4) est encodé en x0 = (x1, x2, x3, x4, p1, p2, p3, p4) p1, p2, p3, p4 sont les parités associées aux lignes et colonnes du schéma :

x1 x2 p1 x3 x4 p2 p3 p4

1. Exprimez x0 comme le produit de x par une matrice binaire à déterminer.

2. Explicitez une procédure de correction de une erreur par un tableau comme dans le cours pour le code de Hamming.

3. Explicitez cette procédure en terme du produit d’une matriceH, à déterminer, par le mot reçu y.

4. Trouvez un exemple de trois effacements qui sont corrigeables et un exemple de trois effacements qui ne le sont pas.

5. Montrez que trois effacements sur x0 sont corrigeables si et seulement si les colonnes de la matriceH associées à ces positions forment une matrice de rang3. En déduire tous les effacements de trois bits non corrigeables.

Références

Documents relatifs

Explicitez la procédure de décodage par syndrome en construisant le tableau des (σ, e σ ) comme dans

Le sujet n’est pas long, et est proche de ce qui a été fait en TD.. En contrepartie on attend de vous une

[r]

Puis elle transforme son numéro de portable en une suite binaire x de longueur 40 obtenue en concaténant l’écriture binaire sur 4 bits de chacun des chiffres (par exemple un 3 de

Pour cela ils décident ensemble du système cryptographique suivant : les jours de l’année 2013 sont numérotés de 0 à 364 puis ils choisissent deux entiers a et b3. Dans le

Donc Bob peut déchiffrer correctement les messages d’Alice si a est inversible modulo 365, c’est-à-dire si a est premier

Alice et Bob communiquent en utilisant le

Au cours de cette même communication, Oscar a intercepté c et il a entendu Alice affirmer que x est de poids impair.. Il ne sait bien sûr rien de l’initialisation du LFSR, mais