• Aucun résultat trouvé

Numerical simulation of the conducting surface of high-voltage insulating systems in 3D

N/A
N/A
Protected

Academic year: 2022

Partager "Numerical simulation of the conducting surface of high-voltage insulating systems in 3D"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: hal-00359866

https://hal.archives-ouvertes.fr/hal-00359866

Submitted on 9 Feb 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Numerical simulation of the conducting surface of high-voltage insulating systems in 3D

Philippe Auriol, Qi Huang, Laurent Krähenbühl

To cite this version:

Philippe Auriol, Qi Huang, Laurent Krähenbühl. Numerical simulation of the conducting surface of

high-voltage insulating systems in 3D. IEEE Transactions on Magnetics, Institute of Electrical and

Electronics Engineers, 1988, 24 (1), pp.43-46. �10.1109/20.43852�. �hal-00359866�

(2)

IEEE TRANSACTIONS ON MAGNETICS. VOL. 24, NO. 1. JANUARY 1988

NUMERICAL SIMULFITION OF THE CONDUCTING SURFACE OF HIGH-VOLTfGE INSUL9TING SYSTEMS I N 3D

P h . liuria!, 0.S. t!u-.ng, L . Srshsribuhl Depart enen? d ' Elec t r o t e c hnique I?ri+C Associle j u C . N . R . S . No e 2 S

Ecole Centr??r de L.yon EP 153

-

69131 ECVLLY CEDE:<

-

FRAFlCE

43

M S T R A C T as shown in the previcus publrcdticns L o ] , where' T h e numerical simulation described in this paper

is based upon the boundary element method. The effects of the surface conductinp film on the potential distribution of insulating systems are considered. A particular interface condition is used for the resistive surface o f insulators. This approach allows fast subsequent analysis for different positions and resistances of the surface layers.

1. INTRODUCTION

f i s the boundary of V

r i s tbe distance between the point P and t h r

Cp is the solid angle viswing from the pzirt F

4

1 5 the potential

E, is the relati**e permitivit;.

B y choosing a set cf pcints P on arid U--!?,

the classical finite element technique, the equaticr

( 1 ) c a n b e wr:tten as:

1 8 the normal vector of current p c i n t of integrsticn

'palp' =

1

( a i l

All

-

&YJ,, EL, ) For the design of high-voltage insulating

systems, i t is very important to andlyse the

conductinp f i l m effects over the surface o f Aharc:

insulators (poilution. semi-conducting glaze for

1. I

anti-pollution).

The presence of the surface current tnrouyhout the insulating system distorts the capacitive potential distribution. There are many published papers presenting a numerical analysis of this effect. in which t h e finite difference method, the finite element method and the charge simulation method are used t 1 1 , C Z I .

These methods, however, suffer from some inconveniencas: the charge simulation method i s very sensitive to the number of charges chosen for a particular problem; the suggestion that the solution quality increases with the number of charge 1 3 not necessarily true [31. For the finite element or' finite difference method, the entire volume o f the problem must be subdivided, making i t difficult t 2 -

treat arbitrarily thin conducting film.

Since the phenomenon can be considered a n interfacial o n e , it is lopica1 t o use the boundary element method (EEM) for the simulation o f this problem. In this paper we present a numerical method based o n RFH for t h e simulation of conducting f i l m

k is the suberript of the boundary e l e m e ~ t

I is the subscript of the diszrete ixds c c g n

$k, y,,

ALi,3nd &de;i.nd only v n t h e ;ecme?r, 2nd - 3 -

e 1 eme? t

:s the value o f

$

at the d i s c r p t e n c d r i o the value cf Y at the discrete PO&

cslculated.

To sol\.? ( Z ! three types o f b o u n d a r y -or;d:t.rsn:

+ "richlet: @ =

v

tn?wn f o r B c.;.nduct.or

* 3r.d

Y

w e 0 C t . k f;r:tncur! f.:r .?fi i.-!,?r

l n e equation i 2 i : 5 estaolianed sn edch cJi~,c:.e:e point of the baundary with the first two types s.P boundary conditions.

On interfaces. equation ( 2 ) is established twice on each discrete point for the two concerned regions.

So we c a n establish equation ( 2 ) a5 many as the number of unlinowns for a problem with several have to be considered:

cftects. different dielectric mediums. After resolutron, G n c

obtains the distributions o f

4

and

y

o n L a n d il

, 7 n ~ ~ h e r e by rsusing ( 2 ) .

The field 1 5 obtained in the same mdnrler n,!

T F : , : ~ ~ ~ 9 - ~ ~ r ~ : . I F r j l e ~ t ~ i c t i e l < = - e q ~ i * - e s i r e usin:! the gradients of the two weiyhtinp fLflciAc-t- sclution o f the Laplace's equatro? in one o r savers! I G , o 6 / b n ) .

region's' 0 with the boundary c a d i t r c n s . The , is continuous through the interface o f tbc

eguivslert f c r w l a cc th.r Laplace's equation 1:. dia!ectrics, o n condition that there i s no conouctinq f i l m on this interface, otherwise a particular 2. BOUNDHRV INTEGRAL EQUATION

c p @ l P j = - & I ? = bG

-

Z y G I d s I ( 1 ' interface condition should be used.

L t t P .

od18-9464/88/0loooo43Wl .WO1988 IEEE

(3)

44

3. INTERFACE CONDITION FOR THE CONDUCTING SURFACE L e t S be a p i l l b o n - s h a p e d c l c s e d s u r f a c e ( f i g u r e 1

'

c.f end a r e a $ F . o i e r t h e s w - * 3 c e , whose h i g h + c!! i c e q u a l t c t h e c o n d u c t r q a film's t h i c k n e s s .

Figure 1: The p i l l b o x c o n s t r u c - t e d f o r d e r i v i n g t h e b o u n d a r y c o n d i t i o n of t h e c o n d u c t i n g s u r f a c e

The c h a r g e c o n s e r v a t i o n g i v e s t h e r e 1 s t i 2 3 :

J is t h e c u r r e n t d e n s i t y P is t h e d i s p l a c e m e n t k? i s t h e f r e q u e n c y

zu

f o l lo w I nS

( 3 )

Assuming d l 1 5 n e p l i g i b l e i n c o m p a r i s o n w i t h t h e A F r a d i u s a n d A F i s a l s o v e r y s m a l l , ( 3 ) c a n b e h r i + t e n a5 f e l l c w s :

jSj..n

= I W C ~ ( Y , + K I A F ( 4 )

u h e r e m d a r c t h e va!uas sr

y

on ~ b u t

d e f L n e d i n G f f e r e n t media.

L e t s 5 = d 1 . f b e t h e s u r f a c e c u r r e n t d e n s i t , , we have:

d 1 - C

L l s i r q t h e Ohm's l a w , one o b t a i n s t h e bcaJ,rdary c n n d i d i o n f o r c o n d u c t i n g s u r f a c e :

whcr.-:

E s i s -. t h e t a n p e n t l a 1 f l e l d o n t h e i n t e r f a c 5 cr 1 5 t h e s u r f a c e c o n d u c t i v i t y .

A s we have d e f i n e d t h e i n t e r p o l a t i o n e - p r e s s i o n c f y c n t h e b o u n d a r y ,

2

can be c a l c u l a t e d .

4 . CFILCULFITION OF v . E s

Or! t h e b o u n d a r y e l e n e n ? ( S O ! , nne h a s :

@ = P ; I U , Y I

ai

i ? )

where P i I C t h e i n t e r p c l a t i n p f u n c ? i c n ; U and 'v a r e t h e l o c a l r u r v i l i n e d r c o o r d i n a t e s .

Ey u s i n g d i f f e r e n t i a ! o p e r a t o r s I P 2d .curvilinear s p a c e , snz Q b t e i n s :

3 i s t h e d e t e r n i n a n t o f t h e c c v a r i s n t m e t r i c i ! 3"' , g u y and gvv a r e t h e e l e m e n t s o f t h e

m a t r i x

c c 2 r t - a v a r i x q t m e t r i c a l m a t r i x :

- -

a , , = e , . e , [ 9U"I = [ g""]"

F o r t h e o r t h o g o n a l l o c a l c o o r d i n a t e s :

i . ! ! ! wbere g u u , gur arid 3," a r e t h e e l e m e n t s o f t h e

; c v a r i a n t m e t r i c a l m a t r i y .

F c r t h e a l i s y m m e t r i c c a s e , t h e e q r e s s : o r ' I C mere k i ~ p l e :

5. CONDUCTING FILM WITH FLOATING POTENTIFlL Wheri t h e c o n d u c t i n g f i l m i s not ccnnecte!! h;

e i e c t r c d e s , t h e r e 1 5 no s u r f j c e c u r r e n t ( f n r e.crmp!e t h e s v r f a c e p o l l I J t i o n f i l m I C i n t e r r u p t e d b y t h e d r y b a n d s ! , i n t h i s c a s e , t h e c o n d u c t i n g f i l m b e h s \ , e 5 i t s e l f liCe z good c o n d u c t o r w i t h f l s s t l n g p o t e , ? i i a ! .

! ? \ c j n De w r i t t e n a s :

(4)

Numerically, we double the discrete elements o f conducting part of insulator’s surface (these elements constitute a closed surface), so that ( 1 4 ) can be imposed over these elements. Figure 2 shows an example in the axisymmetric case.

Figure 2: AB-conducting film with floating potential on which the discrete elements are doubled

The integration of equation ( 1 ) established at the point C’ is over the boundary o f the medium I;

t h e integration of this equatidn established at C is over the boundary O P the medium 11.

Although C and C ’ are peometrically t h e sane point, w e can obtain two different equations because the boundaries o f the two media a r e not the same. The points A , B become the geometrical singular points and

Y

has not a unique value on these points.

The numerical method proposed in 2 4 1 is very convenient for treating these points.

It is obvious that this technique can be u s e d Cor treating metallic filmr.If the metallic f i l m I >

i n a medium. not over the surface of insulator, we

can add an artificial interface i n order that the metallic film becomes a part of t h i s interface

( Pisure 3 ) .

{.

- ‘ \ \ ,

/ ’

conductive film

F i g u r e 3: h-tificial interface

The metallic film can also be treated a s source.

I C :u:b r e g l e n , 1 becomes:

< ! 5 ’

-

7 j%rG

c p + i w =

- & f * z

b G

-

GYGlds I

.

wnere:

r

is the surface CharQe density Sc is the surface of the metallic film.

This treatement can reduce the number \ c f unknowns, but complicates programming.

6 . SONE EXAMPLES

The above developrent is now applied i n PHI32 prograr 1 4 1 for the simulation in 30 space aqd 11-

& H I A X program 151 for a*iayrvetric cases.

. Tbe illustrating results of bone eramples ace Given hers.

Figure 4 shows the potential distributiop 13ver the surfaces of an insulator between tuo elactrcdes.

O f 4 surfsces, only one is conductive. I ? can be $per that the presence o f ths surface currevt distc-ts t h = poteqtia! distributi2n:

/

\

\ ,d

Figure 4: Potential distribu- tion over the surfaces of an insulat or

Figure 5 gives an e.zsmp case. I ? shows t h e effect of f i l m on the potential dis?ribu 10v:

5’

9

I

i i I

I

I

I

I

I

I I i I

I I

I

Figure 5 : Pctential d i s t r i t u -

? i o n for an a ~ i s y m n e t - ~ c ~ R E ~ I -

lator where A6 is the resistance surface and the dark-line segment the floating pctential film

(5)

46

7. CONCLUSlON

Conducting f i l m e f f e c t s a r e v e r ) e a s y t 5 b e i m p l e m e n t e d w i t h t h e b o u n d a r y i n t e g r a l e q u a t i o n method u s i n g a p a r t i c u l a r b o u n d a r y condition.

T h i s a p p r o a c h a l l o w s f a s t s u b s e q u e n t a n a l y s i s t o r d l f f e r e r i t p o s i t i o n s a n d r e s i s t d n c e s of t h e L J n d u c t i n g f i l m s . I n a d d i t i o n , t h e i n f l u e n c e o f t h e m,etallic t o i l s w i t h floating p o t e n t i a l c a n b e easily , L m u l a t e d .

REFERENCES

[ ! ! ?!.!.!?i!iing s n d J.T.Stcre: " C o n s i d e r s t i c n zf t h e e f f e c t of po!!uticn on % h a p o t e n t i a l d i s t r i - b u t i o n of i n ~ u l % t i n g s y s t e m s " - I E E P r c c Vol. 1 1 5 , 1561-1665 - 1968 -

C21 5.M. S a d o ~ i c : " M 2 c r o E l e m e n t s 1'1 !he F i n i t e E l e m i n t M e t h o d - s p p l i c s t i o n ti. t h e h i g h - v c ! t = . p p

i n s u ! ~ t i r ! g a y s t e m " - IEEE ?-MAC- l8!2, 519-523 - M a r c h 1 9 8 2 -

[:I M . J . Fh?n a n d P . H . Pla,?ander: "Charge s i m u l a t l n n r! c d e 1 I ng o f p r a c t 2 c 5 ! 2 n s u 1 a t o r ge cm e t r 1 e E " - lEEE ?-E1 ! 7 / 1 , 325-352 - f!u,~ust 19512 -

[ 4 1 L . FliccIa5 and L. K r a h e n b u h l : "PHI30: 3 g r z p h i c i n ? r r a c ! i v e p a c k a g e f o r 3D fields c a m p u t d t i c n " -

P r c c . of t h e 2 n d n c u n d a r y E!emen? Teihnc!cp;

C o n f e r e n c e I K . 1 . T . V S A ! p p 33-44 - Ccmp:??ticn3!

A e c h s n i c s P u b l i c a t i c n s , June 1986 -

1 5 1 L . Y r a h e n b u h l s n d A . N i c o l a s : " A ' i 4 y w e t r i c S c r m u l * ? i o n for E I E m e t h c d in s c a 1 . r p c t e n ? i e ! pr-cblens" - IEEE T-MFlE 518/8, 2361-2365 -

N o v e m b e r 1935 -

Références

Documents relatifs

The aim of this paper is to stress the importance of correlations between bound carriers -polariza- tion - which induce an instability of the insulating state

This should provide a simple model of the dynamical behavior of the two hemispheres coupled (2) through meridional energy transfer or even of two zones of the

Abstract : The aim of our work is the study by numerical simulation of the efficiency ofthe insulating barrier according to its geometrical dimensions and position by

Résumé: The aim of our work is the study by numerical simulation of the efficiency of the insulating barrier according to its geometrical dimensions and position

That is, we show how the presence of surface energies — super-exchange and surface anisotropy — at the interface between the different ferromagnetic layers can add enough rigidity to

The averaged winter snow cover depth and its variation between the CTRL and VARIED simulations are illustrated in Figure 2 (middle and bottom); CTRL and VARIED simu- lations

i-s The potential was calculated from the values of the equilibrium concentrations in mixtures of NAD+, NADH and, for example, ethanol and acetaldehyde in the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des