• Aucun résultat trouvé

Isotropic springs based on parallel flexure stages

N/A
N/A
Protected

Academic year: 2021

Partager "Isotropic springs based on parallel flexure stages"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-02293605

https://hal.archives-ouvertes.fr/hal-02293605

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Lennart Rubbert, R. Bitterli, N. Ferrier, S. Fifanski, I. Vardi, et al..

Isotropic springs

based on parallel flexure stages.

Precision Engineering, Elsevier, 2015, 43, pp.132-145.

(2)

ContentslistsavailableatScienceDirect

Precision

Engineering

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / p r e c i s i o n

Isotropic

springs

based

on

parallel

flexure

stages

L.

Rubbert

,

R.

Bitterli,

N.

Ferrier,

S.

Fifanski,

I.

Vardi,

S.

Henein

Instant-Lab,ÉcolePolytechniqueFédéraledeLausanne,Neuchâtel,Switzerland

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28January2015

Receivedinrevisedform6May2015 Accepted2July2015

Availableonline17July2015 Keywords: Centralspring Flexure Compliantmechanism Stiffness Isotropydefect

a

b

s

t

r

a

c

t

Wedefineisotropicspringstobecentralspringshavingthesamerestoringforceinalldirections.In pre-viouswork,weshowedthatisotropicspringscanbeadvantageouslyappliedtohorologicaltimebases sincetheycanbeusedtoeliminatetheescapementmechanism[7].Thispaperpresentsourdesignsbased onplanarserial2-DOFlinearisotropicsprings.Weproposetwoarchitectures,bothbasedonparallelleaf springs,thenevaluatetheirisotropydefectusingfirstlyananalyticmodel,secondlyfiniteelement anal-ysisandthirdlyexperimentaldatameasuredfromphysicalprototypes.Usingtheseresults,weanalyze theisotropydefectintermsofdisplacement,radialdistance,angularseparation,stiffnessandlinearity. Basedonthisanalysis,weproposeimprovedarchitecturesstackinginparallelorinseriesduplicatecopies oftheoriginalmechanismsrotatedatspecificanglestocancelisotropydefect.Weshowthatusingthe mechanismsinpairsreducesisotropydefectbyonetotwoordersofmagnitude.

©2015TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thebiggestimprovementintimekeeperaccuracywasdueto

theintroductionoftheoscillatorasatimebase,firstthependulum

byChristiaanHuygensin1656[10],thenthebalancewheel–spiral

springbyHuygensandHookeinabout1675,andthetuningforkby

NiaudetandBreguetin1866[14].Sincethattime,thesehavebeen

theonlymechanicaloscillatorsusedinmechanicalclocksandinall

watches.

In[7],wepresentednewtimebasesformechanicaltimekeepers

which,intheirsimplestform,werebasedonaharmonicoscillator

firstdescribedin1687byIsaacNewtoninPrincipiaMathematica

[13,BookI,PropositionX].Thisoscillatoristheisotropicharmonic

oscillator,whereamassmatpositionrissubjecttoacentrallinear

(Hooke)force.

Sincetheresultingtrajectorieshaveunidirectionalrotation,this

oscillatorhastheadvantageofsolvingtheproblemofinefficiency

oftheescapementbyeliminatingitor,alternatively,simplifyingit

[7].Isochronismisthekeyfeatureofagoodtimebase,andinthis

case,thespringofthespring–masssystemmustbeasisotropicas

possible,meaningthatineverydirection,thespringstiffnessand

massmustremainthesame.Inaddition,itshouldbeplanarinorder

tobeeasytomanufactureatanyscale(notethatNewton’smodel

impliesplanarmotion,bypreservationofangularmomentum).

∗ Correspondingauthor.

E-mailaddress:lennart.rubbert@insa-strasbourg.fr(L.Rubbert).

Inthispaper,wemechanizeNewton’smodelbydesigningnew

planarisotropicsprings.Ourdesignsarebased ontheprinciple

ofcompliantXY-stages[1,3,11,12]whicharemechanismwithtwo

degreesoffreedom(2-DOF)bothofwhicharetranslations.Asthese

mechanismsare composedof compliant joints [9] theyexhibit

planarrestoringforcessocanbeconsideredasplanarsprings.In

theliterature,manyplanarflexibleXY-stageshavebeenproposed

and ifsomemay beimplicitly isotropic,nonehasbeen

explic-itlydeclaredtobeisotropic.Thiscouldbeexplainedbythefact

that,ingeneral,XY-stagesarecontrolledinclosed-loops[17]and

isotropy stiffnessdefectsare thereforenot necessarily amatter

ofconcern.Moreover,weuseaserialarchitectureinsteadofthe

parallelonegenerallyseeninXY-stagesusedactuatorintegration

applications.

SimonHenein[6,p.156,158]proposedtwonon-planar

archi-tectureXY-stagesexhibitingplanarisotropy.Thefirstiscomposed

oftwoserialcompliantfour-barmechanisms,alsocalledparallel

armlinkage,whichproduce,forsmalldisplacements,translations

inXandY(seealso[5]).Thesecondiscomposedoffourparallel

armslinkedbyeightsphericaljointsandabellowconnectingthe

mobileplatformtotheground.

Inthispaperthedesignsoftwocentralspringsbasedonparallel

leafspringsarepresentedafterabriefpresentationofthecontext.

Foreachofbothdesigns,theiranalyticalmodelispresentedand

comparedtotheperformancebasedonfiniteelementanalysisand

onexperimentaldataofphysicallyconstructedprototypes.

Someimagesofthesedesignshaveappearedin[7]andsome

appearinrecentpatentapplications.

http://dx.doi.org/10.1016/j.precisioneng.2015.07.003

0141-6359/©2015TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense( http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

Fig.1. EllipticalorbitundercentralHookeLaw.

2. Context

Inordertounderstandtheellipticaltrajectoriesofplanets

pre-dicted by Kepler’sLaws, Isaac Newton considered thepossible

centrallawsproducingellipticalorbitsandheshowedthatapart

fromtheinversesquarelaw,alinearHooke’slawwouldalso

pro-duceellipticalorbits,1seeFig.1.

Newton’sresultis veryeasily shown.Consider apoint mass

movingintwodimensionssubjecttoacentralforce

F(r)=−Kr,

whereristhedistanceofthemasstothecenter.ApplyingNewton’s

secondlawF=ma,wheremisthemassoftheparticleandaits

acceleration,givesthegeneralsolution

r=(A1sin(ω0t+ϕ1),A2sin(ω0t+ϕ2)), (1)

forinitialconditionsA1,A2,ϕ1,ϕ2andfrequency

ω0=



K

m.

Thisshowsthatorbitsareelliptical,butalsothattheperiodonly

dependsonthemassmandthestiffnessKofthecentralforce,and

notontheenergyofthesystem,whatisgenerallycalled

isochro-nism.Thislastpropertyisthekeyfeatureofhorologicaltimebases

inwhichtheregulationmustbekeptindependentoftheenergy

source.Itfollowsthatthisoscillatorisagoodcandidatetobeatime

baseforatimekeeper,anobservationfirstmadeinourprevious

article[7].

Inordertoexploitthisoscillatorasamechanicaltimebase,

New-ton’smodelmustbefollowedascloselyaspossible.Inparticular,

themechanism’scentrallinearrestoringforcemustbeasisotropic

aspossible.Expressedquantitatively,theisotropydefectmustbe

minimized.

3. Definitionofisotropydefect

Thefirststepinanalyzingtheisotropydefectofacentralspring

istogiveaprecisedefinitionofwhatismeantbyisotropydefect.

Inparticular,sinceisotropydefectonlyappliestocentralsprings,

theterm“central”willbesuppressedwithoutambiguity.Thebasic

contextofourisotropydefectcomputationsisgiveninFig.2.

3.1. Baselinebehavior

Inordertoevaluateisotropydefect,abaselineisrequiredfor

comparison.WeassumethatourspringhasidealstiffnessK.Aforce

F ofmagnitudeFanddirection isapplied,where willvary

between0◦ and360◦ and themagnitudeFwillbeconstant(i.e.

1Theoccurrenceofellipsesinbothlawsisnowunderstoodtobeduetoarelatively

simplemathematicallyequivalence[4]anditisalsowell-knownthatthesetwo casesaretheonlycentralforcelawsleadingtoclosedorbits[2,15].

Fig.2.Basicmodelofisotropydefect.

independentof).Underthisforce,thepointOonthespringmoves

totheidealpositionP,andbyHooke’sLaw, OPhasmagnitudeF/K

anddirection,seeFig.2.Therefore,asvariesbetween0◦and

360◦,theidealpointPdescribesaperfectcircleofradiusF/K,and

therestoringforceislinearandisotropic.

3.2. Definitions

The previous example illustrates ideal behavior with zero

isotropydefect.Divergencefromthisexamplewillbeusedto

mea-suretheisotropydefect.Thus,whenisotropydefectdoesoccur,the

forceFwillmovethepointOtoapointQgenerallydistinctfrom

P,seeFig.2.Theisotropydefectvectorinthedirectionisdefined

tobePQ.

In ordertoevaluateand comparetheisotropy defectof our

mechanisms, it is more convenient tohave scalar measuresof

isotropy defect. We thereforedefine thesimplerradial isotropy

defectgivenby

= OQ− OP.

Notethatthismeasureofisotropydefectconsidersthediscrepancy

betweenthemagnitudesoftheactualdisplacementandtheideal

displacementforanglewhich isdifferentfromthemagnitude

 PQoftheisotropydefectvector,seeFig.2.

Theangularisotropydefectϕisdefinedastheanglebetween



OPandOQ,asmeasuredinthecounterclockwisedirection,see

Fig.2.

Inordertodefinestiffnessisotropydefect,wefirstintroducethe

notionofstiffnessinagivendirectionby

k= F

 OP+

= F

 OQ

.

Thestiffnessisotropydefectinthedirectionisthen

k=K−k,

whereKistheidealstiffnessdefinedasthemaximumofkforall

angles.Notethatkisnon-negative,bydefinitionofK.

Therelativestiffnessisotropydefectinthedirectionisdefined

as =kk   =   OP ,

(4)

Fig.3. Conceptualdesignofourisotropicsprings.

wheretherighthandexpressionfollowsbyapplyingK=F/ OP.

Wefinallydefinethestiffnessisotropydefecttobemax,the

max-imumofoverall0◦≤<360◦.ThiswillbeusedinSection 7to

evaluateisotropyperformance.

Inaddition,weneedourcentralspringstobelinear,i.e.,the

relationbetweenforceanddisplacementshouldbelinear.Inorder

toevaluatethisquantitatively,foreachmechanismandforeach

forcedirection,asecondorderpolynomialfitisappliedtothe

dis-placementversustheforce.Formally,thismeansthattheforceis

writteninpolarcoordinatesrandasF=(A+Br+Cr2)u

,with

uaunitvectorinthedirection.ForalinearspringA=C=0and

Bdefinestheconstantspringstiffnessinthedirection.Thus,C

quantifiesthestiffnesslinearitydefect.

Remark3.2. Inordertosimplifynotation,thesubscriptinthese

quantitiesmaybesuppressedinthefollowing.

4. Isotropicspringdesign

Formula(1)ofSection2showsthatharmonicisotropic

oscilla-torsolutionscanbeconsideredassumsoftwoindependentlinear

1-DOFoscillators,oneinthexdirectionandtheotherinthey

direc-tion.Forthisreason,wehavechosentoconsiderplanarisotropic

springsfollowingtheconceptualconfigurationshowninFig.3.This

configurationconsistsoftwolinearspringsoflengthL0(inneutral

position)placedorthogonallyinserialconfiguration.Thegeometry

ischosensuchthatbothspringsareintheirneutralpositionswhen

pointsPandOarecoincident.

4.1. The1-DOFparallelspringstage

Thebasicbuildingblockofourdesignisthelinearspring,and

thiscanberefinedbyreplacinglinearspringswith1-DOFparallel

springstages,asshowninFig.4.Thepointisthatparallelspring

Fig.4. 1-DOFparallelspringstage.

stageshavetheadvantageofhavingasimplecompactarchitecture

soareeasytomanufactureanddownscale[16].

Asitconstitutesthemainbuildingblockofourcentralspring

designs,wepresentanextensiveanalysisofthis architecturein

ordertofullydescribeitsstiffnessandkinematicproperties.

Fig.4consistsoftwoparallelleafsprings(blades)attachedto

thegroundandtoamobilerigidbodywhosepositionisuniquely

determinedbytheimageofthepointO=(0,0).NotethatthepointO

liesexactlyhalfwayalongtheverticalleafsprings,thatis,atheight

L/2fromtheground(thissatisfiesoneofthemainconditionsof

Appendix).Asdefinedpreviously,whenaforceFisappliedatpoint

O=(0,0)itmovestoQ=(x,y),asillustratedinFig.4.TheforceFcan

bedecomposedintohorizontalandverticalcomponents

F=(Fx,Fy)=(Fcos,Fsin),

where  is theangle betweenthe horizontalx-axis and F. We

assumethatdeformationsaresufficientlysmallsothatbeam

short-eningtheory,asdescribedin[8,Section8.7],canbeapplied.Asa

consequence,andasshowninAppendixA,theeffectivestiffness

kx=Fx/xalongthex-axisisverywellapproximatedbythelinearized

approximationtotheanalyticmodel

kx= 24EI

L3 +

6Fy

5L, (2)

whereI=bh3/12,EistheYoungmodulusofthematerialandh,b,

Larethethickness,thewidthandthelengthofthebeam,

respec-tively.

Remark4.1.1. Strictlyspeaking,formula(2)isanabuseof

nota-tionsinceitreferstoanapproximationofthehorizontalstiffness

kx.InAppendix,wemakethisdifferenceexplicitbyreferringtokx

astheactualstiffness,kcom

x thecompleteanalyticstiffnessandklinx

asthelinearizedanalyticstiffnessgiveninformula(2).

Remark4.1.2. ThenecessaryconditionthattheforceFbeapplied

atthemid-heightofthebeamlengthL/2willholdforallthe

mech-anismarchitecturespresentedinthispaper.

Remark4.1.3. Formula(2)showsthatforthisstructure,the

stiff-nesskxdependsonFywhichmeansthatthisspringissensitivetoa

forceappliedalongthey-axis.Formula(2)alsoshowsthatthe

influ-enceofFyonthehorizontalstiffnesskxcanbereducedbyincreasing

thebeamlengthL.

The other result we will useconcerning the 1-DOF parallel

springstageisthat,asshowninAppendixA.12,thetrajectoryof

therigidblockisparabolicsinceitsdefiningpointQ=(x,y)isvery

wellapproximatedby



x,−3x2 5L



. (3)

Remark4.1.4. Wenotethatourformula(2)forthehorizontal

stiffnessisderivedusingEuler–Bernoullitheory,soasisstandard

inthistheory,theverticaldisplacementofthemobileblockis

con-siderednegligible and takentobezero.The parabolic trajectory

computationincludedaboveisusedexclusivelyforthecomputation

ofthekinematics.

4.2. Thesimple2-DOFparallelspringstage

Inordertogeta2-DOFcentralspring,twoparallelspringstages

arethereforeplacedorthogonallyandinaserialconfiguration,as

showninFig.5.

ForaradialforceFactinginthex–yplaneandappliedatangle

(5)

Fig.5. Simple2-DOFparallelspringstage.

centerofthemechanismisobtainedbysummingthecontribution

ofthe1-DOFparallelspringstages and

x=x1+x2, y=y1+y2,

where,bytheresultsstatedintheprevioussection,

x1= Fx kx, y1= −3x2 1 5L , x2= −3y2 2 5L , y2= Fy ky. Moreover,asbefore kx= 24EI L3 + 6Fy 5L, ky= 24EI L3 + 6Fx 5L,

whereonceagain

F=(Fx,Fy)=(Fcos,Fsin).

Combiningtheseresultsisonceagainastraightforward

computa-tionwhichyieldsthefollowingexpressionforxandyintermsof

theforceangle

x= Fcos 2Ebh3 L3 +6F5Lsin − 3 5L



Fsin 2Ebh3 L3 +6Fcos5L 



2 , y= Fsin 2Ebh3 L3 +6F cos 5L − 3 5L



Fcos 2Ebh3 L3 +6F sin 5L



2 .

4.3. Compound2-DOFparallelspringstage

InSection4.1weshowedthattheparallelleafspringstagehas

parabolicdisplacement,however,aspointedout inSection 4.1,

isotropicharmonicoscillatorsolutionsarebuiltfromorthogonal

linearoscillators.Weremedythissituationbyusingthecompound

parallelspringstageshowninFig.6.Whenforceisappliedalong

thexdirectiononly,thesecondordertermsofeachstageexactly

cancelasFy=0,theirstiffnessalongthex-axisareequalandthe

sec-ondordertermyofeachstagesareofsameamplitude,resultingin

perfectrectilinearmotion.

Thesameholdsintheydirection,sothecompound2-DOF

par-allelstageyieldsafaithfulmechanizationoftheisotropicharmonic

oscillator’sxandycomponents,eachtakenseparately,andis

there-foreagoodcandidatefortheminimizationofisotropydefect.The

compound2-DOFparallelspringstageisillustratedinFig.7.

IfaconstantradialforceFisappliedatangle,thentheposition

ofthecenterOofthecompound2-DOFparallelspringstageis

dis-placedbytheactionofthefourparallelleafspringstages,theseare

Fig.6.Compoundparallelspringstage.

numbered to inFig.7.TheresultingpositionQ=(x,y)satisfies

x=x1+x2+x3+x4, y=y1+y2+y3+y4,

andwritingF=(Fx,Fy)asbeforeyields

x1= Fx kx1, x2= Fx kx2, y3= Fy ky3, y4= Fy ky4, y1= 3x2 1 5L, y2=− 3x2 2 5L, x3=− 3y2 3 5L , x4= 3y2 4 5L, where kx1=24EI L3 − 6Fy 5L, kx2= 24EI L3 + 6Fy 5L, ky3= 24EI L3 + 6Fx 5L, ky4= 24EI L3 − 6Fx 5L.

Notethatthefirstexpressionmakesitclearthatthefourparallel

springscanbeassembledsequentiallyinanyorder.Thereforethe

compoundspringmechanismcanbeobtainedbycombiningtwo

simplespringmechanismswiththecorrectorientation.

4.4. Prototypedesign

Inordertoevaluatethesetwocentralsprings,wemanufactured

twoprototypesillustratedinFigs.8and9.Theprototypesare

com-posedofaluminumframesandspringsteel(X10CrNi18-8)blades

whosegeometricandmaterialYoungmodulusaregiveninTable1.

Thealuminum framesof theprototypesweremachinedwitha

numericallycontrolledmachiningtoolandtheflexiblebladeswere

lasercut.Theblade manufacturingandassemblytolerancesare

(6)

Fig. 8. Simple 2-DOF parallel spring stage prototype. Frame dimensions 220×220mm2.

Fig.9. Twostagesassembledforthe2-DOFcompoundplanarspringprototype. Framesdimensions150×150mm2.

Table1

Flexiblebeamgeometricandmaterialparametersforeachprototype.

b[mm] h[mm] L[mm] E[GPa]

Prototype1 20 0.2 50 200

Prototype2 20 0.3 50 200

±7␮mand±60␮mforthethicknesshandforthelengthL, respec-tively.Thecompound2-DOFparallelspringstageiscomposedof twolayers,asillustratedinFig.10.EachlayergivesoneDOFinthe

xandydirections,respectively.Thebottomlayerframeisrigidly

Fig.11.Experimentalsetupwithsimple2-DOFspringstageprototype.

fixedtothegroundandthetoplayerframeisthemobileplatform

marked .Thelayersareconnectedthoughthecenterelements

marked ,seeFig.10.

5. Experimentalevaluation

5.1. Experimentalsetup

TheexperimentalsetupisshowninFig.11.Theprototypeis

rigidlyfixedtotheground.Thecenterofthemovingplatformis

connectedtoaforcesensor(Kistler9207)byaflexiblebeamwhich

actsasaconnectingrod.Theforcesensorismountedonalinear

stagedrivenmanuallybyaVerniermicrometer(NewportSM-25)

whichhastheoreticaldisplacementresolutionof1␮m;itsroleis

toimposeadisplacementontheprototypecenter.

Thissystemisfixedonaturntable,thatistosay,atable

allow-ingthedisplacementdirectiontobevariedby15±0.04◦.Foreach

orientation,anincreasingdisplacementisappliedtotheprototype

centerbyactuatingthemicrometer.Theforcesensorhasan

abso-luteprecisionof0.8598mNwithadecreasingdriftof0.5mN/s.

Thexandypositionsofthemovingplatformaremeasuredthanks

totwodisplacementsensors:KeyencelaserheadLK-H082having

measurementrangeof±18mmandabsoluteprecisionof±7.3␮m.

Dataisacquiredwithanacquisitioncard(NIPCI-6052E)and

asso-ciatedtothemeasuredforcethroughaLabviewsoftwareprogram,

wherea3.30GHzIntelCorei5-2500computerwith64-bit

archi-tectureisused.

(7)

Fig.12.Polarplotsofdisplacement,inmillimeters,ofthecenterofeachmechanism.(a)Centerdisplacement,simple2–DOFspringstage,5N.(b)Centerdisplacement, compound2–DOFspringstage,12N.

5.2. Loadcasedescription

Measurementsfrom1Nto5Nwith1Nstepsweremadeonthe

firstprototype.Measurementsfrom1Nto12Nwith1Nstepswere

madeonthesecondprototype.Bothprototypemeasurementswere

madewithforcedirectionsgoingfrom0◦to345◦in15◦steps.

Themeasurementofstiffnessinasingledirectiontakesabout

10sforeachforcelevel,whichmeansthatformeasurementsupto

5N,theforcesensorexhibitsadrifterrorof2.5mN(0.05%error)

andformeasurementsupto12N,theforcesensorexhibitsadrift

errorof6mN(0.05%error).

6. Results

6.1. Analyticalversusnumericalandexperimentaldata

Three different type of methods were used to create data

describingthemechanism.

6.1.1. Analyticalmodel

TheanalyticalmodelofSection 4wasimplementedusingthe

springparametersgiveninTable1.Theresultingdatawas

com-putedusingMatlab.Eachplotisgivenwithangular1◦steps.

6.1.2. Finiteelementmodel

Finiteelementanalysis(FEA)wasdoneusingComsol,with1N

forcesteps,5◦ orientationstepsanda0.001convergencefactor.

Thesimpleandcompound2-DOFparallelspringstagewere

com-putedupto5Nand12Nrespectively.Thesimulationswerebased

onnon-linearmodels.Totalcomputationtimeforthesimpleand

compound2-DOFparallelspringstagewasabout6daysand9days,

respectively,ona6cores(12threads)Xeonprocessorcadencedat

3.2GHzwith48GBofRAM.

6.1.3. Experimentalmeasurements

The displacement of each prototype’s center as a function

of forcedirectionwasacquired forall forcelevels.The Vernier

micrometerisactuatedmanuallyandthedataisacquired

automat-ically.Totalacquisitiontimeforthesimpleandcompound2-DOF

parallelspringstageswasapproximately1.5and2h,respectively.

6.2. Dataplots

6.2.1. Displacementpolarplots

Displacementpolarplotsdisplayinpolarcoordinatesthe

dis-placedpositionsQofthecenterofeachmechanismforarangeof

forceorientations,whereQreferstothenotationofSection 3.2.

Fig.13.Polarplotsofradialisotropydefect,analyticalmodel,FEMandprototype.(a)Radialisotropydefectinmillimetersforthesimple2-DOFparallelspringstagefor5N radialforce.(b)Radialisotropydefectinmillimetersforthecompound2-DOFparallelspringstagefor12N.

(8)

Fig.14.Angulardisplacementasafunctionofforcedirection,analyticalmodel,FEMandprototype.(a)Simple2-DOFparallelspringstageunder5Nload.(b)Compound 2-DOFparallelspringstageunder12Nload.

Fig.12(a)showsthedisplacedpositionsofthecenterofthesimple

2-DOFparallelspringstageaspredictedbytheanalyticalmodel,

computedbyFEAandmeasuredexperimentallywiththe

proto-typeundera5Nload.Fig.12(b)showsthedisplacedpositionsof

thecenterofthecompound2-DOFparallelspringstageaspredicted

bytheanalyticalmodel,computedbyFEAandmeasuredwiththe

prototypeundera12Nload.

Remark6.2.1. Thestiffnesspropertiesoftheprototypesarevery

sensitivetothelengthandthicknesstolerancesofthebladessince

theseparametersappeartothethirdpowerinthestiffness

formu-lation.Thus,manufacturingandassemblytolerancesaresufficient

toexplaindiscrepanciescomparedtothemodel,seeSection4.4.

6.2.2. Radialisotropydefect

RecallfromSection3.2thattheradialisotropydefectwas

quan-tifiedby.Inordertoplottheradialisotropy,foreachgivenforce,

aconstantindependentofissubtractedfromthemeasured

dis-tances,withtheforceanglevaryingfrom0◦to360◦.Thisconstant

valueischosenastheminimumofthemeasureddistancesforthat

givenforce.Thischoiceappearstogivethemostreadableplot.

Theresultingplotsforthesimple2-DOFparallelspringstageare

illustratedinFig.13(a).Here,themaximalradialisotropydefects

fortheanalyticalmodelandtheexperimentalmeasurementsare

65.36% and86.04%, respectively, oftheminimum displacement

distance.

Thesameplotforthecompound2-DOFparallelspringstage,

againwiththedisplacementdistanceoffsetequaltotheminimum

displacementdistance,isplottedinFig.13(b).Here,themaximal

radialisotropydefectfortheanalyticalmodelandtheprototype

areto2.92%and8.87%,respectively,oftheminimumdisplacement

distance.

6.2.3. Angularisotropydefect

RecallfromSection 3.2that theangular isotropydefect was

quantifiedbyϕ.Fig.14(a)and(b)plotstheangularisotropydefect

foreachspring.Recallthatthisquantifiestheangulardisplacement

ofthecenterofthemechanismwhenaradialforceisapplied.

Theseplotsshowthatforthesimple2-DOFparallelspringstage,

a0◦ angularisotropydefectisexpectedat45◦,116◦,164◦,225◦,

287◦and335◦andamaximumangularisotropydefectisexpected

at194◦.

For thecompound 2-DOF parallel springstage, a 0◦ angular

isotropydefectisexpectedat0◦,45◦,90◦,135◦,180◦,225◦,270◦and

315◦,andamaximumisotropydefectisexpectedatthemidpointof

theseangles,thatis,at22.5◦,22.5◦+45◦,22.5◦+90◦,...,22.5◦+315◦.

6.2.4. Stiffnessisotropy

RecallthedefinitionofkinSection3.2whichshowsthatthe

isotropydefectkcanrepresentedbyplottingstiffnesskasa

func-tionofforcedirection.Foraperfectlyisotropicspring,thisshould

beconstantandtheplotahorizontalline.Fig.15(a)and(b)

illus-tratesstiffnessasafunctionofforcedirectionforthesimpleand

compound2-DOFparallelspringstages.

Fig.15.Stiffnessasafunctionofforcedirectionforeachmechanism.(a)Simple2-DOFparallelspringstageupto5Nload.(b)Compound2-DOFparallelspringstageupto 12Nload.

(9)

Fig.16.Secondordertermofstiffnesspolynomialfitasafunctionofforcedirection.(a)Simple2-DOFparallelspringstageupto5Nload.(b)Compound2-DOFparallel springstageupto12Nload.

6.2.5. Stiffnesslinearity

Werecallthestiffnesslinearityassumptionsandnotationof

Sec-tion3.2.WefocushereonthesecondordertermCquantifyingthe

stiffnesslinearitydefect.InFig.16,apolynomialfitforCisgivenfor

eachcentralspring.Fig.16(a)showsthatthesimple2-DOFparallel

springstagehasanon-linearitydefecttentimesgreaterthanthe

compound2-DOFparallelspringstageshowninFig.16(b).

More-over,thesimple2-DOFparallelspringstagehasbothpositiveand

negativesecondordertermswhereasthecompound2-DOFparallel

springstagehasonlynegativeorderterms.

Thesimple2-DOFparallelspringstageisalsohighlynon-linear

inthe45◦and225◦directions.Therefore,thesimple2-DOFparallel

springstagehasbothnon-linearityandstiffnessisotropydefects.

7. Improvedmechanismarchitectures

Withthegoalofreducingisotropydefect,onecanimprovethe

performanceofthesimpleandcompoundmechanismsbyplacing

anadditionalcopyinparallel,atthecostofalossofsimplicityand

planarity.Thefollowingresultswereobtainedfromtheanalytical

model.

Forthesimplemechanism,oneplacesinparallelasecond

iden-ticalcopywhichisrotated180◦in-plane(Fig.18(a)).Thisisdonein

ordertocancelouttheminimalandmaximalstiffnessvaluesfound

inFig.15(a)andleadstoanisotropydefectmaxof6.77%instead

of65.36%,withmaxasdefinedinSection3.2.Inordertocompare

stiffnessisotropydefectsoftheoriginalversusthedouble

mecha-nism,thecompoundmechanismhasitsleafspringbeamsstiffness

dividedbytwo(e.g.,beamwidthhalved)andthecomparisonis

showninFig.17(a).Forthesamereason,whentheserial

arrange-mentisconsidered,theleafspringbeamsstiffnessismultipliedby

two(e.g.,beamwidthdoubled).

Aneven greater improvement is possiblefor thecompound

mechanismbyplacingaparallelcopyat45◦(Fig.18(b)).Thiscancels

outtheminimalandmaximalstiffnessvaluesshowninFig.15(b)

andyieldsanisotropydefectmaxofonly0.0262%insteadof2.92%.

Thispairofcompoundmechanismis111timesmoreisotropicthan

thesinglestructure.Onceagain,acomparisonofstiffnessforthe

singleversusthecompoundmechanismispossiblebyhalvingthe

leafspringstiffnessofthecompoundmechanismwiththeresults

showninFig.17(b).

Thisprocesscanbecontinuedbyfurthercombining22.5◦

par-allelin-planerotationsoffourcompoundmechanismstocancel

outminimalandmaximalstiffness.Theisotropydefectcouldthus

be reduced tomax=1.58e−6%by stacking together fourlayers

of compound mechanismswiththeabove orientation.Stacking

fourcompound mechanisms is 16,567times betterthan

stack-ingtwocompoundmechanismsand1,847,200timesbetterthan

Fig.17.Stiffnessofparallelcentralspringswithisotropydefectreduction.(a)Stiffnessof180◦parallelsimple2-DOFparallelspringstagesasafunctionofdirection.(b)

(10)

Fig.18.Possiblerealizationsofparallelcentralspringarrangementdecreasingisotropydefect.(a)Explodedviewofrealizationofthe180◦parallelarrangementofsimple

2-DOFparallelspringstages,topview.(b)Explodedviewofrealizationofthe45◦parallelarrangementofcompound2-DOFparallelspringstages,topview.(c)Realization

ofthe180◦parallelarrangementofsimple2-DOFparallelspringstages,topview.(d)Realizationofthe45parallelarrangementofcompound2-DOFparallelspringstages,

topview.

Table2

Stiffnessisotropydefectmaxcomparisonbetweenthesingleandmulti-layerparallelarrangementofthesimpleandcompound2-DOFspringstages.

#ofstages Simple Compound

max Defectreductionfactor #globalmax Stageoffset max Defectreductionfactor #globalmax Stageoffset

1 65.36% 1 1 – 2.92% 1 4 –

2 6.77% 9.66 2 180◦ 2.62e−2% 111.53 8 45

4 1.87% 35.02 4 90◦ 1.58e−6% 1.85e6 16 22.5

8 0.11% 578.26 8 45◦ 1.04e−13% 28e12 32 11.25◦

Table3

Stiffnessisotropydefectmaxcomparisonbetweenthesingleandmulti-layerserialarrangementofthesimpleandcompound2-DOFspringstages.

#ofstages Simple Compound

max Defectreductionfactor #globalmax Stageoffset max Defectreductionfactor #globalmax Stageoffset

1 65.36% 1 1 – 2.92% 1 4 –

2 5.41% 12.08 4 180◦ 5.46e−3% 535.60 8 45◦

4 5.16% 12.66 4 90◦ 3.81e−7% 1.40e9 16 22.5

(11)

Fig.19.Possiblerealizationsofserialcentralspringarrangementdecreasingisotropydefect.(a)Explodedviewofrealizationofthe180◦parallelarrangementofsimple 2-DOFparallelspringstages,topview.(b)Explodedviewofrealizationofthe45◦parallelarrangementofcompound2-DOFparallelspringstages,topview.(c)Realization ofthe180◦parallelarrangementofsimple2-DOFparallelspringstages,topview.(d)Realizationofthe45parallelarrangementofcompound2-DOFparallelspringstages, topview.

the single compound mechanism. For both architectures, the performances of parallel rotated arrangement are presented in

Table2.

Apossiblerealizationforeachcentralspringscombiningtwo

layers,180◦and45◦rotationrespectively,isillustratedinFig.19.

Inordertoavoidcontactbetweentheintermediateparts,shims

areplacedbetweenthetwolayersconnectedrigidlytotheframes

(ground)andmoving platforms (seeFigs.5and7).Notethat

the roles of the moving platform and of the ground can be

inverted.

Furtheriterationsreducetheisotropydefecttoarbitrarilysmall

values.

Remark7. Anothermethodforreducing theisotropydefectis

tostacktwostagesinseriesatspecificshiftangles.Theresulting

improvementisquantifiedinTable3.

8. Conclusion

Thenumber,positionandvalueoflocalmaximumsaspredicted

bytheanalyticalmodelandtheFEMmodelareconsistentandthey

matchtheexperimentalresults.Thisvalidatestheuseofthesimple

analyticalmodelestablishedinSection 4topredicttheisotropy

performanceofsuchstructures.

Tables2and3showthattheisotropydefectoftheoriginal

sim-plespringstagecanbedrasticallyreducedusingtwoapproaches

• Useofcompoundstagesinsteadofsimplestages.

• Parallelorserialstackingofidenticalstagesrotatedbyprecisely

chosenangles.

Fortheparallelarrangements,thequantitativeevaluationofthese

designsshowsthatstackingfoursimplestagesleadstoamaximum

relativestiffnessisotropydefectclosetothatofasinglecompound

stage(valuesshowninboldfaceinthetable).

Forexample,Fig.18showshowpairsofsimpleandcompound

stagehavingmaximumrelativestiffnessisotropydefects65.36%

and2.92%, respectively,canbestacked leadingtoadecreaseof

therelativestiffnessisotropydefectbyafactor9.66and111.53,

respectively, leading to relative residual defects of 6.77% and

(12)

AppendixA. Stiffnessandkinematicsofthe1-DOFparallel springstage

InthisAppendix,wegiveaformal,self-containedproofofthe

claimsofSection4.1.Inotherwords,wewillshowthatgiventhe

1-DOFparallelspringstageshowninFig.A.20,horizontalstiffness

kxisverywellapproximatedby

klin

x =24EI

L3 +

6Fy

5L,

andthattherigidblockhasaparabolictrajectorysincethe

coordi-natesofthedistinguishedpointQ=(x,y)isverywellapproximated

by



x,−3x2 5L



.

Note that, as stated in Remark 4.1.4, our formula for the

hor-izontal stiffness is derived using Euler–Bernoulli theory,sothe

verticaldisplacementofthemobileblockisconsidered

negligi-ble.Theparabolictrajectorycomputationincludedaboveisused

exclusivelyforthecomputationofthekinematics.

A.1. Planofproof

Theproofappliesstandardmethodsofmechanicsofmaterials,

e.g.,asfoundin[8].

WeexaminethesituationillustratedinFig.A.20,inwhicha

hor-izontalforceisappliedtoaparallelspringstagewhenaverticalload

ispresent.Clearlythisverticalloadaffectsthehorizontalstiffness,

andmakingthisexplicitwillbethefocusofourinvestigation.

Thegeneralideaoftheproofistoconsiderasinglebeam,use

Euler–Bernoullitheorytocomputethehorizontaldeformationat

thebeamextremityforagivenhorizontalforceandverticalload,

recoverthehorizontalstiffnessusingHooke’sLaw,thenmultiply

bytwotogetthetotalhorizontalstiffness.

Theverticaltensionandcompressioncasesleadtocompletely

differentanalyticsolutions,despitegivingthesameresultforthe

linearizedhorizontalstiffness,sowewilltakecaretodistinguish

thesecasesinthisAppendix.

OurcomputationsuptoandincludingAppendixA.9are

com-plete analytic expressions with linearization only occurring in

AppendixA.10toAppendixA.12.

WebegintheproofinAppendixA.2withanexplicit

descrip-tionoftheparametersinvolvedandnotethatthreeverticalload

situationsoccur.

InAppendixA.4,webeginthecomputationbyconsideringonly

asinglebeamof ourmodel. Wethen setuptheknown

gover-ningdifferentialequationsofdeformationforeachofthethreeload

situations.

InAppendixA.5,wegivetheknowngeneralanalyticsolutions

tothedifferentialequationsofAppendixA.4.

Fig.A.20.Parallelspringstageunderload.

InAppendixA.6,weapplytheboundaryconditionsinorderto

computethecompleteanalyticsolutionstoourthreeload

situa-tions.

InAppendixA.7,wecompute,forourthreeloadsituations,the

horizontalrestoringforceforagivenhorizontaldisplacementofa

singlebeamextremity(whichisexactlythedisplacementofthe

mobilerigidblock).

InAppendixA.8,weapplyHooke’slawtotheresultofAppendix

A.7toderivethecompleteanalyticexpressionforthehorizontal

stiffnessofasinglebeamatitsextremity,andthisforourthree

loadsituations.

InAppendixA.9,weapplytheresultofAppendixA.8tofindan

completeanalyticsolutiontothehorizontalstiffnessforthe1-DOF

parallelspringstagegivenourthreeverticalloadsituations.This

givesthecompleteanalyticsolutiontoourmainproblem.

InAppendixA.10,wegivethelinearizationoftheformulasof

AppendixA.9completingtheproofofthefirstmainresultofthis Appendix.

InAppendixA.11,wegiveanumericalestimateoftherelative

errorbetweenthecompleteanalyticexpressionandits

lineariza-tionusedinthepaperandshowthatitisboundedby404ppm.

AppendixA.12isindependentofthepreviousanalysisandis

basedonwell-knownresultsofbeamdeformationtheory.These

knownresultsyieldtheverticalandhorizontaldisplacementsof

thebeamextremitiesinourmodel,andapproximatingtosecond

orderyieldstheparabolictrajectory,thesecondmainresultofthis

Appendix.

A.2. Problemdescription

Thetwoverticalbeams inFig.A.20 areidenticalandhave a

momentofinertiaIaroundz,andYoung’smodulusE.The

hori-zontaldisplacementofthemobilerigidblockisgivenbyFandits

verticaldisplacementby.Notethat,byHooke’sLaw,the

horizon-talstiffnessofthemodelissimplykx=Fx/f,whereFx=Fxx.

Ourgoalistofindasimpleapproximationtothehorizontal

stiff-nesskx.OurapproachwillbetoapplyEuler–Bernoullitheoryto

findacompleteanalyticformulakcom

x forthishorizontalstiffness

anduseitslinearizedvalueklin

x asoursimpleapproximation.We

willkeepthesuperscriptsexplicitduringourentirecomputationin

ordertominimizeconfusionregardingthethreedifferentvaluesof

horizontalstiffness:exact,completeEuler–Bernoulliandlinearized

Euler–Bernoulli.

Sincethetechnicalevaluationoftotalhorizontalstiffnessis

car-riedoutforasinglebeam,wedenotethehorizontalstiffnessof

asinglebeamby x,itscompleteanalytic formula xcom andits

linearizedvalue lin

x .

Inthetechnicaldiscussionthatfollows,itisnecessaryto

dis-tinguishthreevertical(axial)loadsituations.WritingFy=Fyy,we

have

1.Noverticalload:Fy=0.

2.Verticaltensileload:Fy>0.

3.Verticalcompressionload:Fy<0.

Inordertodistinguishthesecasesinthecomputationsbelow,

itwillbeconvenienttoworkwiththemagnitudeFabs

y =|Fy|ofFy.

A.3. Reductiontosinglebeam

Thetechnicalpartoftheproofwillbeestablishedbyconsidering

asinglebeamonthestructureofFig.A.20.Thisreductionispossible

sincethehorizontalstiffnessesofthetwobeamsareidenticaland

thetotalhorizontalstiffnessofthestructureisexactlytwicethe

horizontalstiffnessofeachbeam.

Toshowthatthisis true,first notethat thehorizontalforce

isappliedtotherigidblockat verticalheightL/2,and thatthe

(13)

oftheloadcarriedbyonebeambecomesFabs y /2.

Itthenfollowsthatthetotalhorizontalstiffnessofthe1-DOF

parallelspringstageunderaverticalloadisrecoveredby

multiply-ingthesinglebeamhorizontalstiffnessbytwo,asclaimedatthe

beginningofthissection.

A.4. Settingupthedifferentialequation

Thegoverningdifferentialequationofthedeformationofan

Euler–Bernoullibeamunderloadanduptothefourthderivativeis

well-known[8,p.464,p.591]

EIx(4)−F2yx=0.

Forourthreeloadsituations,thisgives

1.Noverticalload:

EIx(4)=0.

2.Verticaltensileload:

EIx(4)F

abs y

2 x

=0.

3.Verticalcompressionload:

EIx(4)+F

abs y

2 x=0.

A.5. Generalbeamdeflectionsolution

Thebeamdeflectionsolutionsforthethreeverticalload

situa-tionsareasfollows,whereω=



Fabs

y /(2EI).

1.Noverticalload:

x0=a0+a1y+a2y2+a3y3. (A.1)

2.Verticaltensileload:

xt=b0+b1y+b2cosh(ωy)+b3sinh(ωy).

3.Verticalcompressionload:

xc=c0+c1y+c2cos(ωy)+c3sin(ωy).

A.6. Boundaryconditions

Thebeamextremitiesofourmodelsatisfythefollowing

bound-aryconditions.

x(0)=0, x(0)=0, x(L)=f, x(L)=0,

wherethelastboundaryconditionfollowsfromthefactthatthe

mobilemassdoesnotrotate,asshowninAppendixA.3.

Applyingtheseboundaryconditionsallowsustocomputethe

constantsinthegeneralsolutionsfoundintheprevioussection.

1.Noverticalload: a0=a1=0, a2= 3f L2, a3=− 2f L3. (A.2) c0=− C , c1=− C , c2= f (cos(Lω)− 1) C , c3= fsin(Lω) C ,

whereC=2 (1−cos(Lω)) −Lωsin(Lω).

A.7. Horizontalforceforgivenhorizontaldisplacement

Thedifferentialequationgoverningthehorizontalforceat

ver-ticalheightyis

Fx(y)=−EIx(3)(y)+F2yx(y).

WeareinterestedinthehorizontalforceFx=Fx(L)attheextremity

y=Lofthebeamsinceitisessentiallytherestoringforceappliedto

themobilerigidblock.Sincex(L)=0thisreducesto

Fx=−EIx(3)(L).

Theexplicitanalyticformulafoundintheprevioussectionscan

beappliedtofindthehorizontalforceFx atverticalheighty=L

whichproducesthehorizontaldisplacementf,andthisforthethree

verticalloadsituations.

1.Noverticalload:

Fx=12EI

L3 f.

2.Verticaltensileload:

Fx=EIω

3sinh(ωL)

B f.

3.Verticalcompressionload:

Fx=EIω

3sin(ωL)

C f.

A.8. Completehorizontalstiffnessofasinglebeam

ThecompleteEuler–Bernoullihorizontalstiffness com

x ofa

sin-glebeamisnowcomputedbysimplyapplyingHooke’sLaw

comx =Ffx,

totheformulasoftheprevioussectionforeachofthethreeload

casesandperformingsomeelementarytrigonometric

simplifica-tion.

1.Noverticalload:

comx =12EIL3 . (A.3)

2.Verticaltensileload:

comx = Fabs y /2 L− 2 ωtanh



2

. (A.4)

3.Verticalcompressionload:

comx = Fabs y /2 2 ωtan



2

−L. (A.5)

(14)

Weseefromformula(A.5)thatthereexistsaverticalload0

producingzerostiffnessexactlywhenωL= sothat0=

2EI L2 .

Wethen define =Fabs

y /(20)sothat ω= L√ . Thisallows

ustorewritethestiffnessasamultipleof 0,thestiffnessofone

beamwithoutaxialload.Notethatthesuperscript com

0 hasbeen

suppressed,sinceallvaluesofk0willbeidenticalinwhatfollows.

1.Noverticalload:

comx = 0. (A.6)

2.Verticaltensileload:

com x = 0 2 12

1− 2 √ tanh

√ 2

.

3.Verticalcompressionload:

com x = 0 2 12

2 √ tan

√ 2

−1

.

A.9. Completehorizontalstiffnessofthe1-DOFparallelspring

stage

AsshowninAppendixA.3,theparallelflexurestageiscomposed

oftwoidenticalbeamsthereforeitscompleteanalyticalhorizontal

stiffnessissimplykcom

x =2 xcom.

Itfollowsthattheverticalcompressionloadinducingzero

hor-izontalstiffnessissimplyN0=20sothat

N0=2

2EI

L2 .

Expressing in termsofN0 gives =Fyabs/(20)=Fyabs/N0.The

totalhorizontalstiffnessforthethreeloadcases,expressedasa

functionofthenoverticalloadcasek0,arefoundbysimply

multi-plyingtheexpressionsoftheprevioussectionbytwo.

1.Noverticalload:

kcomx =k0= 24EI

L3 .

2.Verticaltensileload:

kcom x =k0 2 12

1− 2 √ tanh

√ 2

. (A.7)

3.Verticalcompressionload:

kcom x =k0 2 12

2 √ tan

√ 2

−1

. (A.8)

A.10. Linearizedhorizontalstiffnessofthe1-DOFparallelspring

stage

Inthissection,weusetheTaylorseriesexpansionofthe

solu-tions found in the previous section to linearize the complete

analyticstiffnesskcom

x ofthe1-DOFparallelspringstage.

1.Noverticalload:

klinx =k0= 24EI

L3 .

2.Verticaltensileload:

TheTaylorexpansionoftanh (X) uptothirdordergives

tanh

2

= √2 − 324 √ + 5240 2√ sothat klinx = k 0 1− 2 10 .

ApplyingtheTaylorexpansionof1+X1 uptosecondordergives

klin x =k0



1+ 2 10



=k0+ 6 5LF abs y . (A.9)

3.Verticalcompressionload:

TheTaylorexpansionoftan(X)uptothirdordergives:

tan

√ 2

= √ 2 + 3 24 + 5 2√ 240 sothat klin x = k0 1+ 2 10 .

ApplyingtheTaylorexpansionfor 1

1+Xuptosecondordergives

klinx =k0



1− 102



=k0− 6 5LF abs y . (A.10)

Finally,onenotesthatinEq.(A.9)onehasFy=Fyabsandthatin

Eq.(A.10)onehasFy=−Fyabs,soapplyingthisandsubstitutingthe

explicitformulafork0foundincase1givesthemainresultofthis

Appendix klin x =24EI L3 + 6Fy 5L, aspromised.

A.11. Errorestimate

Inthissectionweinvestigatethediscrepancybetweenthe

com-pleteanalyticalstiffnesskcom

x andthelinearizedanalyticalstiffness

klin

x asafunctionof =Fyabs/N0.

LetusdefineZcom( )=kcom

x /k0.NotethatZcom( )expressesthe

relativediscrepancyfromthenominalstiffnessk0.Wehave

1.Noverticalload:

Zcom(0)=1.

2.Verticaltensileload:

Zcom( )= 2 12

1− 2 √ tanh

√ 2

.

3.Verticalcompressionload:

Zcom( )= 2 12

2 √ tan

√ 2

−1

.

WesimilarlydefineZlin( )=klin

x /k0,whichagainexpressesthe

relativediscrepancyfromthenominalstiffnessk0.

1.Noverticalload:

Zlin(0)=1.

2.Verticaltensileload:

Zlin( )=1+ 2

10 .

3.Verticalcompressionload:

(15)

Fig.A.21.Normalizedmodelscomparison.

InFig.A.21thetwonormalizedstiffnessmodelsZcom( )and

Zlin( )areplottedonthesamegraph.Notethat,bydefinition, 0.

Wedefinetherelativeerrorε betweenthecompleteand

lin-earizedmodeltobe ε =Z lin( )Zcom( ) Zlin( ) = klin x −kcomx klin x ,

sothattherelativeerrorε expressestherelativeerrorinZ( )as

wellasinkx.

For thefirstprototype’s beamdimensions(see Table1),the

loadwhichproduces azerostiffnessoftheparallelspringstage

isN0=21.05N.Themaximalappliedverticalloadweconsiderfor

thismechanismisFabs

y =5N,correspondingto =0.2375,which

givesamaximalrelativeerrorε =877ppm.

Forthesecondprototype’sbeamdimensions,seeTable1,the

loadwhichproducesazerostiffnessoftheparallelspringstageis

N0=71.06N.Themaximalappliedverticalloadweconsiderforthis

mechanismisFabs

y =12N,correspondingto =0.1689,whichgives

amaximalrelativeerrorε =404ppm.

Conclusion.The1-DOFparallelspringstagelinearized

analyt-icalhorizontalstiffness modelusedinthis paperisaverygood

approximationtothecompleteanalyticalmodel.

A.12. Parabolictrajectorywithnoverticalload

AsshowninAppendixA.3,themobilerigidblockmoves

trans-lationallysoitspositionisuniquelydescribedbythepositionQ=(x,

y)ofthetranslatedpointO=(0,0).Wenowshowthatthe

trajec-toryiswellapproximatedbyaparabola.Inordertodothis,we

Thisformulaisestablishedusingatruncatedpowerseries

devel-opment,soisvalidonlyforsmallbeamdeflectionangles.

Takingthederivativeofformula(A.1)withrespecttoyandusing

theconstantvaluesofformula(A.2)weget

x(y)=6f L2



y−y2 L



, (A.12)

Using(A.11)and(A.12),weobtaintheverticaldisplacementasa

functionofhorizontaltranslationf

 3f2

5L,

whichistheequationofaparabola.

References

[1]AwtarS.SynthesisandanalysisofparallelkinematicXYflexuremechanisms. Cambridge:MassachusettsInstituteofTechnology;2006[Ph.D.thesis].

[2]BertrandJ.Théorèmerelatifaumouvementd’unpointattiréversuncentre fixe.CRAcadSci1873;77:849–53.

[3]DineshM,AnanthasureshGK.Micro-mechanicalstageswithenhancedrange. IntJAdvEngSciApplMath2010;2:35–43.

[4]JosicK,HallRW.Planetarymotionandthedualityofforcelaws.SIAMRev 2000;42:114–25.

[5]HeneinS,KjelbergI,ZelenikaS.Flexiblebearingsforhigh-precision mech-anisms in accelerator facilities. In:26th advancedICFA beam dynamics workshoponnanometre-sizecollidingbeams.2002.

[6]Henein S. Conception des structures articulées á guidages flexibles de haute précision. Ecole polytechnique federale de Lausanne; 2000,

http://dx.doi.org/10.5075/epfl-thesis-2194[Ph.D.thesis].

[7]HeneinS,VardiI,RubbertL,BitterliR,FerrierN,FifanskiS,etal.IsoSpring:vers lamontresanséchappement.In:actesdelaJournéed’ÉtudedelaSSC2014. 2014.p.49–58.

[8]GereJM,TimoshenkoSP.Mechanicsofmaterials.3rded.Boston:PWS-KENT; 1990.

[9]HowellLL.Compliantmechanisms.Wiley;2001.

[10]HuygensC.,Horologiumoscillatorium[LatinwithEnglishtranslationbyIan Bruce],www.17centurymaths.com/contents/huygenscontents.html

[11]YangminLi,QingsongXu.DesignofanewdecoupledXYflexureparallel kine-maticmanipulatorwithactuatorisolation.IEEE;2008.

[12]YangminLi,JimingHuang,HuiTang.AcompliantparallelXYmicromotionstage withcompletekinematicdecoupling.IEEE;2012.

[13]NewtonI.Themathematicalprinciplesofnaturalphilosophy.GoogleeBook; 1729[AndrewMotte,Trans.].

[14]NiaudetN,BreguetLC.Applicationdudiapasonàl’horlogerie.ComptesRendus del’AcadémiedeSciences1866;63:991–2.

[15]SantosFC,SoaresV,TortAC.AnEnglishtranslationofBertrand’stheorem.Lat AmJPhysEduc2011;5:694–5.

[16]TreaseBP,MoonY-M,KotaS.Designoflarge-displacementcompliantjoints.J MechDes2004;127:788–98.

[17]QingsongXu,YangminLi,NingXi.Design,fabrication,andvisualservocontrol ofanXYparallelmicromanipulatorwithpiezo-actuation.IEEETrans Automa-tionSciEng2009;6(October(4)).

Figure

Fig. 1. Elliptical orbit under central Hooke Law.
Fig. 4. 1-DOF parallel spring stage.
Fig. 7. In plane orthogonal compound parallel spring stages invention, top view.
Fig. 10. Two layers of the compound 2-DOF parallel spring stage prototype. Frames dimensions 150 × 150 mm 2 .
+7

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Abstract—In this work, we show that the Chapel high- productivity language is suitable for the design and implemen- tation of all aspects involved in the conception of parallel

L’Association suisse romande de recherche en éducation musicale (ASRREM) organise chaque année des rencontres réunissant des étudiants et des chercheurs avancés dans le

Pipeline to analysis Acquire images Segment images Mesh Surfaces Mesh Volume Perform analysis Traditional NURBS/CAD Geometry data Loss of data.. Time consuming

In order to succeed however, we need to improve the semantic information the applications will be able to provide to the hardware; in this paper we present initial results based

On distributed memory parallel architectures or clusters, the coupling library must consider the data distribution on the processors of each parallel application and must take

The three-layer made of two identical aluminum plates, defined by the parameters mentioned in the previous paragraph, are investigated from the point of view of

Unit´e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex Unit´e de recherche INRIA Rhˆone-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST