• Aucun résultat trouvé

Observability of a Ring Shaped Membrane via Fourier Series

N/A
N/A
Protected

Academic year: 2021

Partager "Observability of a Ring Shaped Membrane via Fourier Series"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-01626896

https://hal.inria.fr/hal-01626896

Submitted on 31 Oct 2017

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons

Attribution| 4.0 International License

Observability of a Ring Shaped Membrane via Fourier Series

Vilmos Komornik, Paola Loreti, Michel Mehrenberger

To cite this version:

Vilmos Komornik, Paola Loreti, Michel Mehrenberger. Observability of a Ring Shaped Membrane

via Fourier Series. 27th IFIP Conference on System Modeling and Optimization (CSMO), Jun 2015,

Sophia Antipolis, France. pp.322-330, �10.1007/978-3-319-55795-3_30�. �hal-01626896�

(2)

Fourier series

Vilmos Komornik, Paola Loreti, and Michel Mehrenberger Universit´e de Strasbourg, 7 rue Ren´e Descartes, F-67084 Strasbourg

komornik@math.unistra.fr

Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Universit`a di Roma, Via A. Scarpa 16, I-00161 Roma

paola.loreti@sbai.uniroma1.it

Universit´e de Strasbourg, 7 rue Ren´e Descartes, F-67084 Strasbourg mehrenbe@math.unistra.fr

Abstract. We study the inverse Ingham type inequality for a wave equa- tion in a ring. This leads to a conjecture on the zeros of Bessel cross product functions. We motivate the validity of the conjecture through numerical results. We do a complete analysis in the particular case of radial initial data, where an improved time of observability is available.

1 Introduction

We study the solution u = u(t, r, θ) of the wave equation in an annulus Ω of small radiusaand big radiusb:

u00=∆u, 0< t < T, x∈Ω u= 0, 0< t < T, x∈Γ =∂Ω

u(0, x) =u0(x), ∂tu(0, x) =u1(x), x∈Ω.

(1)

a b

We have the following classical observability estimate (see [7] for example):

Proposition 1. There exists T0 > 0 such that for T > T0 the system (1) is observable: there exists a constant c >0 such that we have

ku0k2H1

0(Ω)+ku1k2L2(Ω)≤c Z T

0

Z

Γ

|∂νu(t, x)|2dΓdt, (2)

(3)

This proposition is a special case of a general result, which can be proved by micro-local analysis [2] with the critical time T0= 2√

b2−a2, according to the geometrical ray condition.

2√ b2−a2

Our aim here is to study this problem using a Fourier series approach [6,5]

Note that such an approach has been tackled for the whole disk (see [7]); the case of an annulus leads to new difficulties. In particular, we are not able to treat the general case, as it relies on very precise estimates of the location of the zeros of Bessel cross product functions, that we did not find in the literature.

Instead, we state a conjecture on these zeros and give some numerical results to support the conjecture. In the case of radial functions or more generally functions with a limited number of modes in the angle direction, we are able to get the observability estimates with this method, even for smaller timesT >2(b−a), using an asymptotic result of MacMahon (see [1], p. 374).

In Section 2, we give the expression of the solution. In Section 3, we formulate a theorem for the special case of radial functions. Section 4 is devoted to the statement of the conjecture and its numerical illustration. Finally, we prove in Section 5 the theorem of Section 3.

2 Expression of the solution

LetJν (resp.Yν) be the Bessel functions of first (resp. second) kind of orderν. We recall the following proposition (see [7,8])

Proposition 2. (i) Letν ∈R and0< α <1. The nonnegative zerosγν,k, k∈ N of the Bessel cross product function

Hν,α(x) =Yν(x)Jν(αx)−Jν(x)Yν(αx), form a strictly increasing sequence:

0< γν,α,1< γν,α,2< . . . γν,α,k< . . . , k∈N.

(ii) The eigenfunctions of the Laplacian corresponding to (1) are Rk,m(r)eimθ fork∈N andm∈N, where

Rk,m(r) =Ymm,α,k)Jm(r

m,α,k)−Jmm,α,k)Ym(r

m,α,k). (3)

(4)

(iii) For a dense set of initial data the solution of (1)is given by the formula u(t, r, θ) =

X

m=0

X

k=1

Rk,m(r)

c+k,meimθeiγm,α,kb t+ck,me−imθe−iγm,α,kb t (4) with complex coefficientsc±k,m, all but finitely of which vanish.

3 Observability estimates for radial solutions

We recall from [1] the following estimate of MacMahon (1894):

γν,α,k= πk

1−α+4ν2−1 8πα

1−α k +O

1−α k

3

. (5)

Thanks to this estimation, we can obtain the following theorem.

Theorem 1. Let T >2(b−a). For each positive integerM there exists a con- stant cM >0 such that

ku0k2H1

0(Ω)+ku1k2L2(Ω)≤cM Z T

0

Z

Γ

|∂νu(t, x)|2dΓdt, (6) for all solutions of (1)of the form (4)with c±k,m= 0whenever m≥M. Remark 1. – This theorem covers the case of radial initial data, corresponding

to the caseM = 1.

– If 2√

b2−a2> T >2(b−a), then the constantcM tends to zero asM → ∞ becauseT0 = 2√

b2−a2 is the critical observability time for general initial data.

– The theorem remains true if the integral in (6) is taken only over the outer boundary (the circle of radiusb): see the estimate (16)) below.

– We may obtain similar results by changing the boundary conditions. For ex- ample, we may take homogeneous Neumann condition on the inner bound- ary, and observe the solution only on the outer boundary (see [4] for the corresponding asymptotic gap estimate that is needed).

4 Conjecture and numerical illustration

We then state the following conjecture.

Conjecture 1 Let 0< α <1 andν >1/2.

– There exists a positive integerkν(α)such thatγν,α,k+1−γν,α,k is decreasing fork≤kν(α)and increasing for k≥kν(α).

– We haveγ −γ ≥π 1−α2−1/2

.

(5)

Using a Bessel Zeros Computer [3] we can evaluate the zeros γν,α,k for several parameters ν, αandk.

We plot on Figure1(top and bottom left) the valueskν(α) versusν for different values ofα. We observe thatkν(α) increases withνfor a fixedα. The dependance seems to be almost linear, except for small values of α where the dependence seems to be quadratic (see Figure1, bottom left). On Figure1 (bottom right), we see the relative difference with the gap π

1−α2 (corresponding to the optimal value of Proposition1). We observe that γν,α,kν(α)+1−γν,α,kν(α) decreases and approaches to this gap asν increases.

Fig. 1. Indexkν(α) where minimal gap occurs versus ν ≥1/2 (top left, logarithmic plot for α ∈ {0.001,0.1,0.2,0.3,0.5,0.8}; top right, standard plot for α = 0.1 and α = 0.2; bottom left, α = 0.001 and comparison with function 0.25ν2). Difference

γν,α,kν(α)+1−γν,α,kν(α) π/

1−α2 −1 versusνin logarithmic scale (bottom right).

5 Proof of Theorem 1

We first express the norm in terms of the Fourier coefficients. We have

u(t, r, θ) =

X

m=0

X

k=1

Rk,m(r)

c+k,meimθeiγm,α,kb t+ck,me−imθe−iγm,α,kb t with

Rk,m(r) =Ymm,α,k)Jm(r

m,α,k)−Jmm,α,k)Ym(r

m,α,k).

(6)

This leads to the equalities u0(r, θ) =u(0, r, θ) =

X

m=0

X

k=1

Rk,m(r)

c+k,meimθ+ck,me−imθ .

and

u1(r, θ) =∂tu(0, r, θ) =

X

m=0

X

k=1

m,α,k

b Rk,m(r)eimθ

c+k,meimθ−ck,me−imθ .

Now, using the orthogonality of the eigenvectors of the Laplacian operator we obtain

ku1k2L2(Ω)= Z b

r=a

Z θ=0

|u1(r, θ)|2rdrdθ

= 2π

X

m=1

X

k=1

γm,α,k b

2 c+k,m

2

+ ck,m

2 Z b a

|Rk,m(r)|2rdr

+ 2π

X

k=1

γ0,α,k b

2

c+k,0−ck,0

2Z b a

|Rk,0(r)|2rdr, and a similar computation gives

Z

|u0|2dΩ= 2π

X

m=1

X

k=1

c+k,m

2

+ ck,m

2 Z b a

|Rk,m(r)|2rdr

+ 2π

X

k=1

c+k,0+ck,0

2 Z b a

|Rk,0(r)|2rdr.

Since

ku0k2H1 0(Ω)=

Z

|∇u0|2dΩ+ Z

|u0|2dΩ,

we have to compute also the the first integral on the right side. We have Z

|∇u0|2dΩ= Z b

r=a

Z θ=0

|∂ru0|2rdrdθ+ Z b

r=a

Z θ=0

1

r|∂θu0|2drdθ.

Since

ru0(r, θ) =∂ru(0, r, θ) =

X

m=0

X

k=1

R0k,m(r)

c+k,meimθ+ck,me−imθ

and

∂ u (r, θ) =∂ u(0, r, θ) =

X

XimR (r)

c+ eimθ−c e−imθ ,

(7)

using the orthogonality of the eigenfunctions, we get

Z b r=a

Z θ=0

|∂ru0|2rdrdθ= 2π

X

m=1

X

k=1

c+k,m

2

+ ck,m

2 Z b a

R0k,m(r)

2rdr,

+ 2π

X

k=1

c+k,0+ck,0

2 Z b a

R0k,0(r)

2rdr

and Z b

r=a

Z θ=0

1

r|∂θu0|2drdθ= 2π

X

m=1

X

k=1

c+k,m

2

+ ck,m

2 m2

Z b a

1

r|Rk,m(r)|2dr Using all these results we obtain the equalities

E0:=ku0k2H1

0(Ω)+ku1k2L2(Ω)= 2π

X

m=1

X

k=1

c+k,m

2

+ ck,m

2

Z b a

1 +

γm,α,k b

2

+m2 r2

|Rk,m(r)|2rdr+ Z b

a

R0k,m(r)

2rdr

!

+ 2π

X

k=1

( Z b

a

c+k,0+ck,0

2

+

c+k,0−ck,0

2

γ0,α,k

b

2

|Rk,0(r)|2rdr

+

c+k,0+ck,0

2Z b a

R0k,0(r)

2rdr) (7) and

Z

Γ

|∂νu(t, x)|2dΓ = X

`∈{a,b}

Z 0

|∂ru(t, `, θ)|2

= 2π X

`∈{a,b}

X

m=1

X

k=1

c+k,mR0k,m(`)eiγm,α,kb t

2

+

X

k=1

ck,mR0k,m(`)e−iγm,α,kb t

2

+ 2π X

`∈{a,b}

X

k=1

c+k,0R0k,0(`)ei

γ0,α,k b t+

X

k=1

ck,0R0k,0(`)e−i

γ0,α,k b t

2

Since asymptotic gap is 1b1−απ = b−aπ by the formula (5), we may apply Ingham’s theorem (more precisely its version due to Haraux, see, e.g., [7]) to deduce from the last equality the existence ofC1,M >0 such that

Z

Γ

|∂νu(t, x)|2dΓ ≥C1,M

X

m=0

X

k=1

c+k,m

2

+ ck,m

2 X

`∈{a,b}

R0k,m(`)

2,

(8)

for all complex sequences (c±k,m) withc±k,m= 0 wheneverm≥M.

Now it remains to prove that there exists another constantC2,M >0 such that

X

`∈{a,b}

R0k,m(`)

2

≥C2,M Z b

a

1 +

γm,α,k

b

2

+m2 r2

|Rk,m(r)|2rdr+ Z b

a

R0k,m(r)

2rdr

! ,

(8) form≥1, and a similar inequality form= 0.

We adapt an argument used in [7], p. 107. Lety satisfy the Bessel equation x2y00+xy0+ (x2−m2)y= 0. (9) Letc >0. Multiplying the equation by 2y0 and integrating over (ca, cb) (instead of (0, c) as in [7]), we get

Z cb ca

(2x2y0y00+ 2x(y0)2+ 2(x2−m2)yy0)dx= 0.

Integrating by parts the first and third terms, we obtain Z cb

ca

(−2x(y0)2+ 2x(y0)2+ 2xy2)dx= [x2y02+ (x2−m2)y2]cbca, so that

2 Z cb

ca

xy2dx= [x2y02+ (x2−m2)y2]cbca. The change of variablex=crtransforms this into

2c2 Z b

a

ry2(cr)dr= [x2y02+ (x2−m2)y2]cbca. (10) Recall that

Rk,m(r) =Ymm,α,k)Jm(r

m,α,k)−Jmm,α,k)Ym(r

m,α,k).

Now, we define

yk,m(x) =Ymm,α,k)Jm(x)−Jmm,α,k)Ym(x)

which satisfies (9), and thus we have (10) withy=yk,m andc= γm,α,kb . We have

y(cr) =Rk,m(r), y(ca) =Rk,m(a) = 0, y(cb) =Rk,m(b) = 0,

(9)

and thus

2c2 Z b

a

rRk,m(r)2dr=b2R0k,m(b)2−a2R0k,m(a)2. (11)

From (3) we have the relation

r2Rk,m00 (r) +rRk,m0 (r)−m2Rk,m(r) =−c2r2Rk,m(r). (12) Integrating by parts and using the relations Rk,m(b) =Rk,m(a) = 0 we obtain that

Z b a

R0k,m(r)2rdr=− Z b

a

rRk,m(r)

R00k,m(r) +1

rRk,m0 (r)

dr.

Using the relation (12) hence we conclude that Z b

a

R0k,m(r)2rdr=− Z b

a

rRk,m(r)2

−c2+m2 r2

dr. (13)

Setting

A= Z b

a

1 +c2+m2 r2

|Rk,m(r)|2rdr+ Z b

a

R0k,m(r)

2rdr

we deduce from the above relations that A= (1 + 2c2)

Z b a

|Rk,m(r)|2rdr

=1 + 2c2

2c2 b2R0k,m(b)2−a2R0k,m(a)2

. (14)

Since

k,|m|≤Minf |γk,α,m|>0 (15)

by (5) and the inequalities γk,α,m>0, we conclude that

A≤C3,MR0k,m(b)2≤C3,M Rk,m0 (b)2+R0k,m(a)2

(16) for a suitable constantC3,M >0. This proves (8) form≥1.

Form= 0, using (13) we deduce from (7) that

(10)

X

k=1

( Z b

a

c+k,0+ck,0

2

+

c+k,0−ck,0

2

γ0,α,k b

2

|Rk,0(r)|2rdr

+

c+k,0+ck,0

2Z b a

R0k,0(r)

2rdr)

= 2π

X

k=1

( Z b

a

c+k,0+ck,0

2

+

c+k,0−ck,0

2

γ0,α,k

b

2

|Rk,0(r)|2rdr

+

c+k,0+ck,0

2

γ0,α,k b

2Z b a

|Rk,0(r)|2rdr)

X

k=1

c+k,0|2+|ck,0

2

γ0,α,k

b

2Z b a

|Rk,0(r)|2rdr, and we conclude as before.

References

1. M. Abramowitz, I.A. Stegun (eds.),Handbook of mathematical functions, Dover, New York, 1972.

2. C.Bardos, G. Lebeau, J. Rauch,Sharp suffcient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024–1065.

3. http://cose.math.bas.bg/webMathematica/webComputing/BesselZeros.jsp 4. H.P.W. Gottlieb, Eigenvalues of the Laplacian with Neumann boundary condi-

tions, J. Austral. Math.Soc. Ser. B 24 (1983), 435–438.

5. A. Haraux,S´eries lacunaires et contrˆole semi-interne des vibrations d’une plaque rectangulaire,J. Math. Pures Appl. 68 (1989), 457–465.

6. A. E. Ingham,Some trigonometrical inequalities with applications in the theory of series, Math. Z. 41 (1936), 367-379.

7. V. Komornik, P. Loreti,Fourier Series in Control Theory,2005, Springer.

8. Lebedev,Skalskaya,UflyandWorked problems in applied mathematics, Problem 121.

Références

Documents relatifs

I.R.M.A. — We introduce a hook length expansion technique and explain how to discover old and new hook length formulas for partitions and plane trees. The new hook length formulas

The purpose of this memoir is to give a basic description of the algebra of those series and describe the use that has been made of them in Combinatorics, in particular for

(avec C. Kassel) The Hall algebra of the category of coherent sheaves on the projective line, J. Tingley) Affine Mirković-Vilonen polytopes, Publ. Hautes Études Sci. Riche) Notes on

plete, et s’il reste plus long-temps dans le sein de sa mere, c’est pour se fortifier davantage, et se preparer a supporter sans in- conve'niens les impressions nouvelles des

En conformité avec le Code de conduite de l’International Plant Exchange Network (IPEN), dont le Jardin botanique de l’Université de Strasbourg est membre, les conditions

Membre de jury de soutenance de mémoire à Faculté de Sciences Humaines, Université de Grenoble Alpes Emera Segarra, « Le silence dans l’art contemporain » dirigé par Denis

(f) Si, en application des stipulations ci-dessus, aucun Taux Ecran ou taux EURIBOR de remplacement n’est disponible, EURIBOR sera le taux (exprimé en pourcentage par année), tel

Pression-Temps-Temp´ erature (pression en ordonn´ ee, temp´ erature en abs- cisse, les diff´ erents points sont espac´ es en temps de 1 million d’ann´ ees), 2) la Topographie