• Aucun résultat trouvé

A LOW TEMPERATURE COLD WORK INTERNAL-FRICTION PEAK IN Al-0.5 Wt % Ga

N/A
N/A
Protected

Academic year: 2021

Partager "A LOW TEMPERATURE COLD WORK INTERNAL-FRICTION PEAK IN Al-0.5 Wt % Ga"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00221080

https://hal.archives-ouvertes.fr/jpa-00221080

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

A LOW TEMPERATURE COLD WORK

INTERNAL-FRICTION PEAK IN Al-0.5 Wt % Ga

Q. Kong, G. Li, T. Kê

To cite this version:

(2)

A LOW T E M P E R A T U R E C O L D W O R K I N T E R N A L - F R I C T I O N P E A K IN

A 1 - 0 . 5 Wt % Ga

Q.H. Kong, G.Y. L i and T . S . K6

I n s t i t u t e o f Metal Research (Shenyang) and I n s t i t u t e of Solid S t a t e Physics (Hefeil, Academia Sinica, China

A b s t r a c t . - An i n t e r n a l f r i c t i o n p e a k ; a r o u n d -84"C, f = 0 . 8 h p ) w a s o b s e r v e d i n A1-0.5 w t % ( 0 . 1 9 a t % ) G a c a l d - d r a w n t o 1 2 % r e d u c - t i o n i n a r e a a t 2 0 ' ~ . T h i s p e a k w a s s t a b l e when m e a s u r e m e n t s w e r e t a k e n b e l o w 20°C w i t h d e c e n d i n a a n d a s c e n d i n g t e m p e r a t u r e s a n d t h e h e i g h t o f t h e p e a k d e c r e a s e d a f t e r a n a n n e a l a t e l e v a t e d t e m - p e r a t u r e s . I t d i s a p p e a r e d c o m p l e t e l y a f t e r a n a n n e a l a t 2 0 0 " ~ . T h e p e a k h e i g h t f i r s t i n c r e a s e d a n d t h e n d e c r e a s e d w i t h t h e a m o u n t o f c o l d - w o r k i n g a t 2 0 ' ~ a a d a

12%

r e d u c t i o n i n a r e a s e e m s t o b e c l o s e t o t h e o p t i m u m a m o u n t o f c o l d - w o r k i n g . T h e a c t i v a t i o n e n t h a l p y a s s o c i a t e d w i t h t h i s i n t e r n a l f r i c t i o n p e a k m e a s u r e d w i t h t h e m e t h o d o f c h a n g i n g o f f r e q u e n c y i s 0 . 85 2 0 . 0 5 e V . A d i s - l o c a t i o n - k i n k d r a g g i n g m o d e l i s s s g g e s t e d i n w h i c h t h e m o b i l e a g e n t s t h a t i n t e r a c t w i t h d i s l o c a t i o n k i n k s a r e Ga a t o m - v a c a n c y p a i r s . T h e e f f e c t o f t h e t e m p e r a t u r e o f p r e v i o u s d e f o r m a t i o n o n t h e b e h a v i o r o f t h e i n t e r n a l f r i c t i o n p e a k i s d i s c u s s e d . I t i s c o n - t e m p l a t e d t h a t t h e b r o a d e n i n g o f t h e p e a k when t h e p r e v i o u s p l a s - t i c d e f o r m a t i o n w a s made a t -196OC may b e d u e t o t h e f o r m a t i o n o f Ga a t o m - d i v a c a n c y p a i r s . I . E x p e r i m e n t . - I n t e r n a l f r i c t i o n m e a s u r e m e n t s w e r e made w i t h a n i n v e r - t e d p e n d u l u m b y f r e e d e c a y m e t h o d . I n - s i t u t e n s i l e d e f o r m a t i o n w a s c a r - r i e d o u t b y an e l e c t r o m a g n e t i c s e t u p a n d t h e t e n s i l e f o r c e a p p l i e d t o t h e s p e c i m e n c a n b e r e g u l a t e d c o n t i n u o u s l y b y c h a n g i n g t h e m a g n i t u d e of t h e e l e c t r i c c u r r e n t p a s s i n g t h r o u g h a n i n d u c t i o n c o i l . T h e e l o n g a t i o n o f t h e s p e c i m e n w a s m e a s u r e d b y a r e a d i n g t e l e s c o p e . T h e A I - 0 . 5 w t % ( 0 . 19 a t %) G a s p e c i m e n s w e r e p r e p a r e d b y m e l - t i n g 9 9 . 9 9 9 a l u m i n u m a n d 9 9 . 9 9 Ga C p r o d u c e d i n C h i n a ) i n a v a c u u m i n - d u c t i o n f u r n a c e . T h e i n g o t o b t a i n e d w a s r o l l e d a n d d r a w n i n t o w i r e s . T h e f i n a l c o l d - w o r k i n g w a s made b y c o l d - d r a w i n g a r o d o f d i a m e t e r 2.6rnm t o 0 . 8 5 mm. T h i s c o r r e s p o n d s t o a c o l d - w o r k i n g o f 8 9 % r e d u c t i o n i n a r e a . T h e w i r e w a s a n n e a l e d a t 4 0 0 ' ~ f o r o n e h o u r a n d w a s u s e d a s t h e i n i t i a l s t a t e o f t h e s p e c i m e n . 2 . R e s u l t s

.-

( a ) T e m p e r a t u r e i n t e r n a l - f r i c t i o n p e a k . An A I - 0 . 5 w t % Ga

(3)

C5-266 JOURNAL DE PHYSIQUE s p e c i m e n o f d i a m e t e r 0 . 8 4 m m w a s c o l d - d r a w n a t 2 0 ° C t o a d i a m e t e r o f 0 . 8 0 mm ( c o r r e s p o n d i n g t o

a

c o l d - w o r k i n g o f 1 2 % r e d u c t i o n i n a r e a ) a n d w a s t h e n m o u n t e d on t h e t o r s i o n p e n d u l u m . I n t e r n a l f r i c t i o n m e a s u r e - m e n t s w e r e t a k e n r e p e a t e d l y w i t h d e c e n d i n g a n d a s c e n d i n g t e m p e r a t u r e s a n d t h e Q - '

-

T ( t e m p e r a t u r e ) c u r v e o b t a i n e d i s shown i n F i g . l. A p e a k a p p e a r e d a t -8 4-C w i t h f = 0 . 8 Hz. T h e h e i g h t o f t h e p e a k w a s a b o u t I I O - ~ . C'.l0' n4 AI-OSwt%m 32 -

30 After 12% Extnrson at ZO'C

20 Aftat IW'C x 3Omln A n d i q

2.6 After 150t* 3 0 m ~ n A*Wr%

24 0 After mtx 3Omin Anreling

22 2 0 18 1.6 - 14 - 12 10 .8 6 4

-

1 F i g . 1 . Q -T c u r v e o f A 1 0 . 5

-

F i g . 2 . E f f e c t o f a n n e a l i n g w t % Ga d e f o r m e d 1 2 % r e d u c -

-

t e m p e r a t u r e o n t h e - 8 4 ' ~ t i o n i n a r e a a t 2 0 ° c ( f = 0 . 8

Bz).

i n t e r n a l f r i c t i o n p e a k . T h e i n t e r n a l f r i c t i o n of t h e a b o v e s p e c i m e n w a s m e a s u r e d a f t e r a n a n n e a l o f ha3.f a n h o u r a t s u c c e s s i v e l y h i g h e r t e m p e r a t u r e s a n d t h e c u r - v e s o b t a i n e d a r e shown o n F i g . 2 . I t i s s e e n t h a t t h e p e a k t e m p e r a t u r e d i d n o t c h a n g e n o t i c e a b l y a f t e r t h e s p e c i m e n h a d b e e n a n n e a l e d a t d i f - f e r e n t t e m p e r a t u r e s o n l y t h a t t h e h e i g h t o f t h e p e a k d e c r e a s e d s u c c e s - s i v e l y a n d d i s a p p e a r e d c o m p l e t e l y a f t e r a n a n n e a l a t 2 0 0 D C . T h e e f f e c t o f t h e a m o u n t o f c o l d - w o r k i n g a t r o o m t e m p e r a t u r e ( 5 , 1 2 a n d 3 6 % e x t e n s i o n ) on t h e t e m p e r a t u r e i n t e r n a l f r i c t i o n p e a k a t -84'C ( f = 0 . 8 Hz) i s s h o w n i n F i g . 3 . An o p t i m u m a m o u n t o f c o l d - w o r k i n g s e e m s t o b e 1 2 % e x t e n s i o n . %L. AI -0Swt2.G~ 3.2

30 *After l2% Extruvon ~ R a o m Temp

a ' A f t " 36% Extrur#on m! Rwm Temp.

(4)
(5)

C5-268 JOURNAL DE PHYSIQUE

internal friction measurements were taken with ascending temperatures.

3. ~ i s c u s s i o n s . - I n 1949, internal friction peak (as a function of

temperature of measurement) has been observed i n cold-worked AI-0.5 %

Cu with peak temperature in the range of 25OC to 5 0 ' ~ (f I 1 HZ). (1,2)

I n 1979, two temperature internal friction peakswere observed i n cold-

worked AI-0.03 wt % Mg around 60°c and - 3 0 " ~ . (3). The higher tempera-

ture peak has been attributed to the interaction of Mg atoms with dis- locations in aluminum similar to the peak previously observed i n

AI-0.5 % Cu specimens. A dislocation-kink atmosphere-dragging model has

been suggested for the relaxation mechanism of these peaks (4,2,5). The

lower temperature peak i n cold-worked AI-0.03 % Mg has been attributed

to the interaction of Mg atom-vacancy pairs with dislocations in alu- minum (3). We think that the lower-temperature internal-friction peak

observed in AI-0.5 % G a around -84-C may also be attributed to the in-

teraction of Ga atom-vacancy pairs with dislocations i n aluminum. Similar low-temperature peaks have been observed in cold-worked

dilute aluminum alloys (6) as well as i n cold-worked dilute copper

alloys

(7).

Such low-temperature peaks are different from the Hasiguti

peaks which are suppressed by the presence of solute atoms. The models proposed so far for such low-temperature peaks seem to be all based on the thermal depinning of dislocations. A possible reason for the prefe- rence of such an immobile-solute atom model may be due to the conside- ration that the migration rate of substitutional solute atoms in the lattice is too slow at such a low temperature at which the relaxation process was observed.

Now let us focus our attention to dilute aluminum alloys in which the dislocations are not extended. In proposing a dislocation-kink atmo- phere-dragging model for the explanation of the internal friction peaks

exhibiting an anomalous amplitude effect of AI-0.5 % Cu and AI-0.1

X

Mg,

we have emphasized the point that in order that the substitutional solu- te atom atmosphere can be dragged to move along with the dislocation, the solute atoms constituting the atmosphere must have a diffusion coef- ficient about ten orders of magnitude larger than the usual value. T h e

argument is as follows : (4,2) The average distance X that a diffusing

particle having a diffusion coefficient D can migrate in time

T is X g (DT) 112. Consider the case of the Q-1 peak observed in

AI-0.5% Ga (-84OC, f 0 . 8 HZ). We have T U 2 1 at the peak temperature

1 5 3 K , where w is the angular frequency, so that T l/w = 1 / 2 n f = 0.2

sec. Assuming the atmosphere be dragged along to move an average dis-

tance of b (~urger's vector) in time r during.the Q-i measurements, e.g.,

-

8

(6)
(7)

JOURNAL DE PHYSIQUE

REFERENCES

( 1 ) T . S . K B , P h y s . R e v . , 78 ( 1 9 5 0 ) 4 2 0 .

( 2 ) T. S . K;, i n " ~ n t e r n a l F r i c t i o n a n d U l t r a s o n i c A t t e n u a t i o n i n S o l i d s " ( e d i t o r : C . C . S m i t h , P e r g a m a n P r e s s , O c t . 1 9 8 O ) , p . 1 5 7 . ( 3 ) Z . L . P a n , Z . G . Wang, Q . H . Kong a n d T.S.

RE,

A c t a P h y s i c a S i n i c a ,

Références

Documents relatifs

At high temperatures, the model predicts a binomial-shaped composition distribution indicative of a random dispersion of solute, whereas at temperatures just above

FIG. Changing the measuring frequency between 0.5 and 1.8 Hz, shifted the position of the maximum, allowing for the determination of the associated activation

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The 360K peak is con- sidered to be a cold work peak which is caused by the inter- action between high density dislocations and solute carbon and nitrogen atoms in

T. THE INTERACTION BETWEEN 119Sn AND SOLUTE ATOMS IN DI- LUTE IRON ALLOYS.. In general, components are observed in the spectrawith fields greater and less than 82 kOe, the 1 1 9

Abstract - The high temperature internal friction spectrum of Ni-20 wt% Cr alloys is mainly characterized by a relevetion peak (at 1000 K for 1 Hz) superimposed to a

A comparison of the slopes reveals that during the first heating run after deformation (curve 1) the modulus defect is decreased by a continuously smeared out dislocation

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des