• Aucun résultat trouvé

Selected titles in This Series

N/A
N/A
Protected

Academic year: 2022

Partager "Selected titles in This Series"

Copied!
235
0
0

Texte intégral

(1)
(2)
(3)

Selected titles in This Series

Volume

8 José Bertin, Jean-Pierre Demailly, Luc Illusie, and Chris Peters Introduction to Hodge theory (2002)

7 Jean-Pierre Otal

The hyperbolization theorem for fibered 3-manifolds (2001)

6 Laurent Manivel

Symmetric functions. Schubert polynomials and degeneracy loci (2001) 5 Daniel Alpay

The Schur algorithm, reproducing kernel spaces and system theory (2001) 4 Patrick le Calvez

Dynamical properties of diffeomorphisms of the annulus and of the torus (2000) 3 Bernadette Perrin-Riou

p-adic functions and p-adic representations (2000) 2 Michel Zinsmeister

Thermodynamic formalism and holomorphic dynamical systems (2000) 1 Claire Voisin

Mirror symmetry (1999)

(4)
(5)

Introduction to Hodge Theory

(6)
(7)

SMF/AMS TEXTS and MONOGRAPHS • Volume 8 Panoramas et Synthèses • Numéro 3 • 1996

Introduction to Hodge Theory

Jose Bertin, Jean-Pierre Demailly, Luc Illusie, and Chris Peters

Translated by

James Lewis Chris Peters

American Mathematical Society

Société Mathématique de France

(8)

(Introduction to Hodge Theory)

by José Bertin, Jean-Pierre Demailly, Luc Illusie, and Chris Peters Originally published in French by Société Mathématique de France.

Copyright @ 1996 Societe Mathematique de France

L 2 Hodge theory and vanishing theorems by Jean-Pierre Demailly and Frobenius and Hodge degeneration by Luc Illusie were translated from the French by James Lewis.

Variations of Hodge structure. Calabi- Yau manifolds and, mirror symmetry by José Bertin and Chris Peters was translated from the French by Chris Peters.

2000 Mathematics Subject Classification. Primary 14C30, 14D07, 14F17, 13A35, 58A14, 14-02, 32-02; Secondary 81-02.

A BSTRACT . Hodge theory is a powerful tool in analytic and algebraic geometry. This book consists of expositions of aspects of modern Hodge theory, with the purpose of providing the nonexpert reader with a clear idea of the current state of the subject. The three main topics are: L 2 Hodge theory and vanishing theorems; Hodge theory in characteristic p; and variations of Hodge structures and mirror symmetry. Each section has a detailed introduction and numerous references. Many open problems are also included. The reader should have some familiarity with differential and algebraic geometry, with other prerequisites varying by chapter. The book is suitable as an accompaniment to a second course in algebraic geometry. This is the English translation of a volume previously published as volume 3 in the Panoramas et Synthèses series.

Library of Congress Cataloging-in-Publication Data [Introduction à la théorie de Hodge. English.]

Introduction to Hodge theory / Jose Bertin ... [et ah] ; translated by James Lewis, Chris Peters.

p. cm. — (SMF/AMS texts and monographs, ISSN 1525-2302 ; 8) (Panoramas et synthèses ; n. 3, 1996) Includes bibliographical references.

ISBN 0-8218-2040-0

1. Hodge theory. I. Bertin, Jose. II. Series. III. Panoramas et syntheses ; 3.

QA564.15913 2002

516.3'5 — dc21 2002019611

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248.

Requests can also be made by e-mail to reprint-permission@ams.org.

© 2002 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.

@ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Visit the AMS home page at URL: http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 0 7 0 6 0 5 0 4 0 3 0 2

(9)

vii CONTENTS

Foreword ix

L² Hodge Theory and Vanishing Theorems 1

J EAN -P IERRE D EMAILLY

0. Introduction 5

Part I. L² Hodge Theory 9

1. Vector bundles, connections and curvature 9

2. Differential operators on vector bundles 12

3. Fundamental results on elliptic operators 14

4. Hodge theory of compact Riemannian manifolds 19

5. Hermitian and Kähler manifolds 24

6. Fundamental identities of Kählerian geometry 27

7. The groups H  p,q (X,E) and Serre duality 35

8. Cohomology of compact Kähler manifolds 36

9. The Hodge-Frölicher spectral sequence 42

10. deformations and the semi-continuity theorem 47

Part II. L² estimates and vanishing theorems 53

11. Concepts of pseudoconvexity and of positivity 53

12. Hodge theory of complete Kähler manifolds 60

13. Bochner techniques and vanishing theorems 70

14. L² estimates and existence theorems 73

15. Vanishing theorems of Nadel and Kawamata-Viehweg 75

16. On the conjecture of Fujita 82

17. An effective version of Matsusaka's big theorem 89

Bibliography 95

vii

(10)

Frobenius and Hodge Degeneration 99 Luc I LLUSIE

0. Introduction 101

1. Schemes: differentials, the de Rham complex 103

2. Smoothness and liftings 107

3. Frobenius and Cartier isomorphism 113

4. Derived categories and spectral sequences 119

5. Decomposition, degeneration and vanishing theorems in characteristic p > 0 124

6. From characteristic p > 0 to characteristic zero 130

7. Recent developments and open problems 137

8. Appendix: parallelizability and ordinarity 143

Bibliography 147

Variations of Hodge Structure, Calabi-Yau Manifolds and Mirror Symmetry 151 J OSÉ B ERTIN AND C HRIS P ETERS

0. Introduction 155

Part I. Variations of Hodge structures 161

1. Hodge bundles 161

2. Gauss-Manin connection 163

3. Variation of Hodge structures 172

4. Degenerations 179

5. Higgs bundles 187

6. Hodge modules 188

Part II. Mirror symmetry and Calabi-Yau manifolds 193

7. Introduction to mirror symmetry 193

8. Cohomology of hypersurfaces 199

9. Picard-Fuchs equations 205

10. Calabi-Yau threefolds and mirror symmetry 210

11. Relation with mixed Hodge theory 222

Bibliography 229

viii

(11)

Foreword

Each of the three chapters collected in this book is concerned with various aspects – important ones in several respects – of Hodge theory. The text is an expanded version, including substantial additions, of lectures presented on the occasion of the meeting “l'Etat de la Recherche” devoted to Hodge theory, that has been held at Université Joseph Fourier in Grenoble from Friday November 25, 1994 till Sunday November 27, under the auspices of the SMF (Société Mathématique de France). The authors wishes would be fulfilled if, in accordance with the general goals of sessions

“l'Etat de la Recherche”, this book could help the nonexpert reader to get a precise idea of the current status of Hodge theory.

The three main subjects developed here (L² Hodge theory and vanishing theorems, Frobenius and Hodge degeneration, Variations of Hodge structures and mirror symmetry) cover a wide range of techniques: elliptic PDE theory, complex differential geometry, algebraic geometry in characteristic p, cohomological and sheaf-theoretic methods, deformation theory of complex varieties, Calabi-Yau manifolds, a few aspects of singularity theory ... This accumulation of tools arising from various fields probably makes the access to the theory rather uneasy for newcomers.

We hope that the present book will greatly facilitate this access: a special effort has been made to approach various themes by their most natural starting point, each of the three chapters being supplemented with a detailed introduction and numerous references. The reader will find precise statements of quite a number of open problems which have been the subject of active research in the last years.

The authors are grateful to SMF and MESR (Ministère de l'Enseignement Supérieur et de la Recherche) for their decisive action – both psychological and financial – without which the Grenoble session “Hodge theory” would probably never have taken place. They address special thanks to the Scientific Committee of Sessions l'Etat de la Recherche, in behalf of its two successive directors Pierre Schapira and Colette Mœglin, as well as to Michèle Audin, Editor in Chief of the Journal “Panoramas et Synthèses”, for her strong encouragement to publish the present manuscript. Finally, they express their gratitude to the referee for his careful reading of the manuscript and a large number of invaluable suggestions.

November 27, 1995

José Bertin*, Jean-Pierre Demailly*. Luc Illusie**, Chris Peters*

* Université de Grenoble I, Institut Fourier, BP 74, 38402 Saint-Martin d'Heres. France

** Université de Paris-Sud, Département de Mathématiques, Bâtiment 425, 91405 Orsay. France

ix

(12)
(13)

L Hodge Theory and Vanishing Theorems

Jean-PierreDemailly

UniversitedeGrenobleI,

InstitutFourier,BP74,38402

Saint-Martind'Heres,Frane

(14)

0. Introdution

TheaimofthesenotesistodesribetwofundamentalappliationsofL 2

Hilbert

spaetehniquestoanalyti oralgebraigeometry: Hodgetheory,and thetheory

of L 2

estimatesfor the operator. Thepointof viewadopted here isessentially

analyti.

Therstpartis foussedonHodgetheoryanditis intendedto berather in-

trodutory. Thusthereaderwillndhereonlythemostelementarytopis,mostly

those dueto W.V.D. Hodgehimself [Hod41℄orto A. Weil[Wei57℄. Hodgethe-

ory, as rst oneived by its reator, onsists of the study of the ohomology of

Riemannian orKahlerianmanifolds,bymeansof adesriptionof harmoniforms

andtheirproperties. Wereferto thetreatmentof J.Bertin-Ch. Peters[BePe95℄

and L.Illusie [Ill95℄for apresentation of moreadvaned topis and appliations

(variationofHodgestruture,appliationofperiods,Hodgetheoryinharateristi

p> 0 :::). Weonsider aRiemannianmanifoldX andaEulideanorHermitian

bundleE overX. Weassumethat E isequippedwithaonnetionD ompatible

withthemetri: Aonnetionis bydenitionadierentialoperatoranalogous to

exteriordierentiation, ating onforms ofarbitrarydegree withvaluesin E, and

satises Leibniz rule for the exterior produt. The Laplae-Beltrami operator is

theself-adjointdierentialoperatorofseondorder

E

=D

E D

E +D

E D

E ,where

D

E

is the Hilbert spae adjoint of D

E

. One easily shows that

E

is an ellipti

operator. The niteness theorem forellipti operators showsthen that the spae

H q

(X;E)ofharmoni q-formswith valuesin E is nite dimensional ifX is om-

pat(wesaythataformuisharmoniif

E

u=0). Ifweassumeinadditionthat

the onnetion satises D 2

E

=0, the operator D

E

ating on forms of alldegrees

denes aomplex alled thede Rham omplex with values in theloal systemof

oeÆientsdenedbyE. Theorrespondingohomologygroupswillbedenotedby

H q

DR

(X;E). ThefundamentalobservationofHodgetheoryisthatanyohomology

lassontainsauniqueharmonirepresentative,sineX isompat. It leadsthen

toanisomorphism,alledtheHodgeisomorphism

(0.1) H

q

DR

(X;E)'H q

DR (X;E):

When the manifold X and the bundle E are holomorphi, there exists aunique

onnetionD

E

alledtheChernonnetion,ompatiblewiththeHermitianmetri

on E and has the following properties: D

E

splits into a sum D

E

= D 0

E +D

00

E

of a onnetion D 0

E

of type (1;0) and a onnetion D 0 0

E

of type (0;1), suh that

D 02

E

= D 00 2

E

= 0 and D 0

E D

00

E +D

00

E D

0

E

= (E) (Chern urvature tensor of the

bundle). TheoperatorD 0 0

E

atingon theforms of bidegree (p;q)denes then for

xedp,aomplexalledtheDolbeaultomplex. WhenX isompat,theDolbeault

ohomology groupsH p;q

(X;E) satisfy a Hodge isomorphism analogous to (0:1),

namely

(0.2) H

p;q

(X;E)'H p;q

(X;E);

where H p;q

(X;E) denotes the spae of harmoni (p;q)-forms with values in E,

relativeto the anti-holomorphiLaplaian 0 0

E

=D 0 0

E D

00

E +D

00

E D

0 0

E

. Byutilizing

thislatterresult,oneeasilyprovestheSerre dualitytheorem

(0.3) H

p;q

(X;E)

'H n p;n q

(X;E

); n=dim X;

(15)

whihistheomplexversionofthePoinaredualitytheorem. Theentraltheorem

ofHodgetheoryonernsompatKahlermanifolds: AHermitianmanifold(X;!)

is alled Kahlerian if the Hermitian (1;1)-form ! = i P

j;k

!

jk dz

j

^dz

k

satises

d!=0. Afundamental exampleofaompatKahlerianmanifold isgivenbythe

projetivealgebraimanifolds. IfX isompatKahlerianandifEisaloalsystem

ofoeÆientsonX,theHodgedeompositiontheoremassertsthat

H k

DR

(X;E)= M

p+q=k H

p;q

(X;E) (Hodgedeomposition) (0.4)

H p;q

(X;E)'H q;p

(X;E

): (Hodgesymmetry) (0.5)

Theintrinsiharaterofthedeompositionwillbeshownhereinasomewhatorig-

inalway,viatheutilizationoftheBott-Chernohomologygroups(-ohomology

groups). It follows from these results that the Hodge numbers h p;q

=

dim

C H

p;q

(X;C)satisfythesymmetrypropertyh p;q

=h q;p

=h n p;n q

=h n q;n p

,

and that they are onneted to the Betti numbers b

k

= dim

C H

k

DR

(X;C) by the

relation b

k

= P

p+q=k h

p;q

. A ertain number of other remarkable ohomologial

properties of ompat Kahler manifolds are obtained by means of the primitive

deompositionandthehardLefshetztheorems(whihinturnisaresultoftheex-

isteneofansl(2;C) ationonharmoniforms). Theseresultsallowustodesribe

in a preise way the struture of the Piard group Pi(X) = H 1

(X;O

) in the

Kahlerianase. Inamoregeneralsetting,wedisusstheHodge-Froliherspetral

sequene(thespetralsequeneonnetingDolbeaulttodeRhamohomology),and

weshowhowoneanutilizethisspetralsequeneto obtainsomegeneralresults

on the Hodgenumbersh p;q

of ompat omplex manifolds. Finally, weestablish

thesemi-ontinuityofthedimensionoftheohomologygroupsH q

(X

t

;E

t

)ofbun-

dles arisingfrom a proper and smooth holomorphibration X ! S (result due

toKodaira-Spener),andwededuefrom itthattheHodgenumbersh p;q

(X

t )are

onstantifthebersX

t

areKahlerian(invarianeoftheh p;q

underdeformations);

theholomorphinatureoftheHodgeltrationF p

H k

(X

t

;C)=

rp H

r;k r

(X

t

;C)

relativeto theGauss-Maninonnetionisprovenbymeansofthetheoremonthe

ohereneofdiretimages,appliedtotherelativedeRhamomplex

X=S

ofX!S.

Intheseondpart,afterreallingsomeoftherelevantoneptsofpositivityand

pseudoonvexity,weestablishtheBohner-Kodaira-Nakanoidentityonnetingthe

Laplaians 0

E and

0 0

E

. Theidentity in questionfurnishesan expliitexpression

of thedierene 00

E

0

E

in termsof theurvature (E) of thebundle. Under

adequatehypothesis(weakpseudoonvexityofX,positivityoftheurvatureofE),

onearrivesaprioriattheestimate

jjD 00

E ujj

2

+jjD 0 0

E ujj

2

Z

X (z)juj

2

dV(z)

where is a positive funtion depending on the eigenvalues of urvature. The

inequalityisvalid hereforanyform uofbidegree (n;q); n=dimX; q1,with

values in E, u belonging to the Hilbert spae domains of D 00

E

and D 00

E

. By an

argumentofHilbertspaedualityonededuesfromthisthefollowingfundamental

theorem,essentiallyduetoHormander[Hor65℄and Andreotti-Vesentini [AV65℄:

0.6. Theorem. Let (X;!) be a Kahler manifold, dimX = n. Assume that

(16)

eigenvaluesof the urvatureformi(E)withrespettothe metri! ateahpoint

x2X,satisfy

1

(x)

n (x):

Further,suppose thatthe urvatureissemi-positive, i.e.

1

0everywhere. Then

for any formg2L 2

(X;

n;q

T

X

E)suhthat

D 00

E

g=0 and Z

X (

1

++

q )

1

jgj 2

dV

!

<+1;

thereexistsf 2L 2

(X;

n;q 1

T

X

E)suhthat

D 00

E

f =g and Z

X jfj

2

dV

!

Z

X (

1

++

q )

1

jgj 2

dV

! :

An importantobservation isthat the abovetheorem still remainsvalid when

themetrihof E aquiressingularities. Themetrihisthen givenin eahhart

by a weight e 2'

assoiated to a plurisubharmoni funtion ' (by denition '

ispsh ifthematrixof seondderivatives( 2

'=z

j z

k

), alulatedin thesense of

distributions,issemi-positiveateahpoint). TakingintoaountTheorem(0.6),it

isnaturaltointroduethemultiplieridealsheafJ(h)=J('),madeupofthegerms

ofholomorphifuntionsf 2O

X ;x

suhthat R

V jfj

2

e 2'

onvergesinasuÆiently

smallneighbourhoodV ofx. AreentresultofA.Nadel[Nad89℄guaranteesthat

J(') is alwaysaoherentanalyti sheaf, whatever thesingularities of '. In this

ontext, onededues from (0.6) the following qualitative version, onerning the

ohomology with valuesin theoherentsheaf O(K

X

E)J(h) (K

X

=

n

T

X

beingtheanonial bundleofX).

0.7. Nadel Vanishing Theorem ([Nad89℄, [Dem93b℄). Let (X;!) be a

weakly pseudoonvexKahlermanifold, andletE beaholomorphilinebundleover

X equipped with a singular Hermitian metri h of weight '. Suppose that there

exists a ontinuous positive funtion on X suh that the urvature satises the

inequality i

h

(E)! inthe sense ofurrents. Then

H q

(X;O(K

X

E)J(h))=0 for allq1:

Inspiteoftherelativesimpliityofthetehniquesinvolved,itisanextremely

powerfultheorem,whihbyitselfontainsmanyofthemostfundamentalresultsof

analytioralgebraigeometry. Theorem(0.7)alsoontainsthesolutionoftheLevi

problem (equivalene ofholomorphionvexityandpseudoonvexity),thevanish-

ing theorems of Kodaira-Serre, Kodaira-Akizuki-Nakano and Kawamata-Viehweg

forprojetivealgebraimanifolds,aswellastheKodairaembeddingtheoremhar-

aterizingthese manifoldsamong theompatomplexmanifolds. Byitsintrinsi

harater, the \analyti" statement of Nadel's theorem appears useful even for

purelyalgebraiappliations. (Thealgebraiversionofthetheorem,knownasthe

Kawamata-Viehwegvanishing theorem, utilizesthe resolutionof singularities and

doesnotgivesuhaleardesriptionofthemultipliersheafJ(h).) Inareentwork

[Siu96℄,Y.T.Siuhasshown thefollowingremarkableresult,byutilizingonlythe

Riemann-Roh formula and an indutive Noetherian argument forthe multiplier

sheaves. Thetehniqueisdesribedinx16(withsomeimprovementsdevelopedin

(17)

0.8. Theorem [Siu96℄,[Dem96℄). LetX be aprojetive manifold andL an

amplelinebundle(i.e. haspositiveurvature)onX. Then thebundleK 2

X L

m

isvery amplefor mm

0

(n)=2+ 3n+1

n

,where n=dimX.

The importane of having an eetive bound for the integer m

0

(n) is that

oneanalsoobtainembeddingsofmanifoldsX in projetivespae,withapreise

ontrolofthedegreeoftheembedding. Asaonsequeneofthis,onehasarather

simpleproofofasigniantnitenesstheorem,namely\Matsusaka's big theorem"

(f. [Mat72℄,[KoM83℄,[Siu93℄,[Dem96℄):

0.9. Matsusaka's BigTheorem. LetX beaprojetive manifold andL an

amplelinebundleoverX. Thereexistsanexpliitboundm

1

=m

1 (n;L

n

;K

X L

n 1

)

dependingonlyonthe dimensionn=dimX andonthersttwooeÆientsof the

Hilbertpolynomialof L,suhthat mLisvery amplefor mm

1 .

Fromthistheorem,oneeasilydeduesnumerousnitenessresults,inpartiular

thefatthatthereexistonlyanitenumberoffamiliesofdeformationsofpolarized

projetivemanifolds(X;L),whereLisanamplelinebundlewithgivenintersetion

numbersL n

andK

X L

n 1

.

(18)

1. Vetorbundles, onnetions and urvature

Thegoalofthis setionis to reallsomebasidenitionsof Hermitiandier-

entialgeometry withregardtotheoneptsof onnetion,urvatureandtherst

Chernlassoflinebundles.

1.A. Dolbeault ohomologyand the ohomology of sheaves. Assume

given X aC-analyti manifold of dimensionn. Wedenote by p;q

T

X

thebundle

of dierential forms of bidegree (p;q) on X, i.e. dierential forms whih an be

written

u=

X

jIj=p;jJj=q u

I;J dz^z

J

; dz

I :=dz

i1

^^dz

ip

; dz

J :=dz

j1

^^dz

jq

;

where (z

1

;:::;z

n

) are loal holomorphi oordinates, and where I = (i

1

;::: ;i

p )

and J =(j

1

;:::;j

q

)are multi-indies (inreasing sequenes ofintegers in the in-

terval[1;:::;n℄,with lengthsjIj=p; jJj=q). LetA p;q

bethesheafofgermsof

dierentialformsofbidegree(p;q)withomplexvaluedC 1

oeÆients. Wereall

thattheexteriorderivativeddeomposesintod=d 0

+d 00

where

d 0

u =

X

jIj=p;jJj=q;1k n u

I;J

z

k dz

k

^dz

I

^dz

J

;

d 00

u =

X

jIj=p;jJj=q;1k n u

I;J

z

k dz

k

^dz

I

^dz

J

areoftype(p+1;q),(p;q+1)respetively. ThewellknownDolbeault-Grothendiek

Lemmaassertsthatalld 00

-losedformsoftype(p;q)withq>0areloallyd 00

-exat

(this is the analoguefor d 00

of the usual PoinareLemma for d, see for example

[Hor66℄). In other words, the omplex of sheaves (A p;

;d 00

) is exat in degree

q>0: and indegreeq=0,Kerd 00

isthesheaf p

X

ofgermsofholomorphiforms

ofdegreeponX.

More generally, if E is aholomorphi vetorbundle of rankr over X, there

existsanaturaloperatord 00

atingonthespaeC 1

(X;

p;q

T

X

E)ofC 1

(p;q)-

forms with valuesin E. Indeed, ifs = P

1r s

e

isa (p;q)-form expressed in

termsofaloalholomorphiframeofE,weandened 00

s:=

P

(d 0 0

s

)e

;byrst

observing that thetransition matries orresponding to a hange of holomorphi

frame are holomorphi, and whih ommute with the operation of d 00

. It then

followsthattheDolbeault-GrothendiekLemmastillholdsforformswithvaluesin

E. Foreveryintegerp=0; 1;:::;n,theDolbeaultohomologygroupsH p;q

(X;E)

are dened asbeingthe ohomologyof theomplexof globalforms of type(p;q)

(indexedbyq):

(1.1) H

p;q

(X;E)=H q

(C 1

(X;

p;

T

X E)):

There is thefollowingfundamental resultof sheaf theory(de Rham-Weil Isomor-

phismTheorem): Let(L

;Æ)bearesolutionofasheafF byaylisheaves,i.e. a

omplex(L

;Æ)givenbyanexatsequeneofsheaves

0!F j

!L 0

Æ 0

!L 1

!!L q

Æ q

!L q+1

!;

(19)

whereH s

(X;L q

)=0forallq0ands1. (Toarriveatthis latteronditionof

ayliity, itis enough forexample that theL q

are asqueorsoft, forexamplea

sheafofmodulesoverthesheafofringsC 1

.) Thenthereisafuntorialisomorphism

(1.2) H

q

( (X;L

))!H q

(X;F):

Weapplythisinthefollowingsituation. LetA p;q

(E)bethesheafofgermsofC 1

setionsof p;q

T

X

E. Then (A p;

(E);d 00

)isaresolutionoftheloally freeO

X -

module p

X

O(E)(Dolbeault-GrothendiekLemma),andthesheavesA p;q

(E)are

ayliasC 1

-modules. Aordingto(1.2),weobtain

1.3. DolbeaultIsomorphismTheorem(1953). Forallholomorphivetor

bundlesE on X,thereexistsaanonial isomorphism

H p;q

(X;E)'H p

(X;

p

X

O(E)):

IfX isprojetivealgebraiandifEisanalgebraivetorbundle,thetheorem

ofSerre(GAGA)[Ser56℄showsthatthealgebraiohomologygroupsH q

(X;

p

X

O(E))omputedviatheorrespondingalgebrai sheafin theZariskitopologyare

isomorphi to the orresponding analyti ohomology groups. Sine our point of

viewhereisexlusivelyanalyti,wewillnolongerneedtorefertothisomparison

theorem.

1.B. Connetions on dierentiable manifolds. Assume given a real or

omplexC 1

vetorbundleEofrankronadierentiablemanifoldM oflassC 1

.

AonnetionD onE isalineardierentialoperatoroforder1

D:C 1

(M;

q

T

M

E)!C 1

(M;

q+1

T

M

E)

suhthatD satisesLeibnitzrule:

(1.4) D(f^u)=df^u+( 1)

degf

f^Du

forallformsf 2C 1

(M;

p

T

M

); u2C 1

(X;

q

T

M

E). Onanopenset M

whereE admitsatrivialization :E

j

'

!C

r

, aonnetionDanbewritten

Du'

du+ ^u

where 2C 1

(;

1

T

M

Hom(C r

;C r

))is agivenmatrixof1-formsandwhered

atsomponentwiseonu'

(u

)

1r

. Itistheneasyto verifythat

D 2

u'

(d + ^ )^uon:

SineD 2

isagloballydened operator,thereexistsaglobal2-form

(1.5) (D)2C

1

(M;

2

T

M

Hom(E;E))

suhthatD 2

u=(D)^uforanyformuwithvaluesinE. This2-formwithvalues

inHom(E;E)isalledtheurvaturetensoroftheonnetionD.

NowsupposethatE isequippedwithaEulideanmetri(resp. Hermitian)of

lass C 1

and that the isomorphismE

j

'C

r

isgivenby aC 1

frame(e

).

(20)

Wethenhaveaanonialbilinearpairing,(resp. sesquilinear).

C 1

(M;

p

T

M

E)C 1

(M;

q

T

M

E)!C 1

(M;

p+q

T

M C) (1.6)

(u;v)7!fu;vg

givenby

fu;vg= X

; u

^v

he

;e

i; u= X

u

e

; v= X

v

e

:

TheonnetionD isalled Hermitianifitsatisestheadditionalproperty

dfu;vg=fDu;vg+( 1) degu

fu;Dvg:

Byassumingthat(e

)isorthonormal,oneeasilyveriesthatDisHermitianifand

onlyif

= . Inthisase(D)

= (D),therefore

i(D)2C 1

(M;

2

T

M

Herm(E;E)):

1.7. A partiular ase. For a omplex line bundle L (a omplex vetor

bundleofrank1),theonnetionform ofaHermitianonnetionDanbetaken

to bea1-formwith purely imaginaryoeÆients =iA (A real). Wethen have

(D)=d =idA. Inpartiulari(L)isalosed2-form. TherstChernlass of

Lisdened tobetheohomologylass

1 (L)

R

=

i

2 (D)

2H 2

DR (M;R):

This ohomologylassis independentofthehoieof onnetion,sineanyother

onnetion D

1

diers by a global 1-form, D

1

u = Du+B^u, so that (D

1 ) =

(D)+dB. It iswell-knownthat

1 (L)

R

is theimagein H 2

(M;R) ofan integral

lass

1

(L) 2 H 2

(M;Z). Indeedif A = C 1

is thesheaf of C 1

funtions on M,

thenviatheexponentialexatsequene

0!Z!A e

2 i

!A

!0;

1

(L) an be dened in

Ceh ohomology as the image of the oyle fg

jk g 2

H 1

(M;A

)deningLbytheoedgemapH 1

(M;A

)!H 2

(M;Z).Seeforexample

[GH78℄formoredetails.

1.C.Connetionson omplexmanifolds. Wenowstudythoseproperties

ofonnetionsgovernedbytheexisteneofaomplexstrutureonthebase mani-

fold. IfM=X isaomplexmanifold,anyonnetionD onaomplexC 1

vetor

bundle E anbe split in aunique manner as asum of a(1;0)-onnetion and a

(0;1)-onnetion, D =D 0

+D 00

. Inaloal trivialization givenby aC 1

frame,

oneanwrite

D 0

u '

d

0

u+ 0

^u;

(1.8 0

)

D 00

u '

d

00

u+ 00

^u;

(1.8 00

)

with = 0

+ 00

. TheonnetionisHermitianifandonlyif 0

= (

00

)

relative

to any orthonormal frame. As a onsequene, there exists a unique Hermitian

00

(21)

NowsupposethatthebundleEisendowedwithaholomorphistruture. The

unique Hermitian onnetion whose omponentD 00

is the operator d 00

dened in

x1.A is alled the Chern onnetion of E. With respet to a loal holomorphi

frame (e

) ofE

j

,the metriis givenby theHermitian matrixH =(h

) where

h

=he

;e

i. Wehave

fu;vg= X

; h

u

^v

= u y

^Hv;

whereu y

isthetransposematrixofu,andaneasyalulationgives

dfu;vg=(du) y

^Hv+( 1) degu

u y

^(dH^v+Hdv)

=(du+H 1

d 0

H^u) y

^Hv+( 1) degu

u y

^(dv+H 1

d 0

H^v);

by using the fat that dH =d 0

H +d 0

H and H y

= H. Consequently the Chern

onnetionD oinideswiththeHermitianonnetiondened by

(

Du '

du+H 1

d 0

H^u;

D 0

'

d

0

+H 1

d 0

H^=H 1

d 0

(H); D

00

=d 0 0

: (1.9)

TheserelationsshowthatD 02

=D 002

=0. ConsequentlyD 2

=D 0

D 00

+D 00

D 0

,and

theurvaturetensor(D)isoftype(1;1). Sined 0

d 00

+d 00

d 0

=0,weobtain

(D 0

D 00

+D 00

D 0

)u'

H

1

d 0

H^d 0 0

u+d 00

(H 1

d 0

H^u)=d 00

(H 1

d 0

H)^u:

1.10. Proposition. The Chernurvaturetensor (E):=(D) satises

i (E)2C 1

(X;

1;1

T

X

Herm(E;E)):

If : E

! C

r

is a holomorphi trivialization and if H is the Hermitian

matrixrepresentativeof themetri alongthe bersof E

,then

i(E)'

id

0 0

(H 1

d 0

H) on :

If(z

1

;::: ;z

n

)areholomorphioordinatesonXandif(e

)

1r

isanorthog-

onalframeofE,oneanwrite

(1.11) i(E)=

X

1j;k n;1;r

jk dz

j

^dz

k e

e

;

where(

jk

(x))aretheoeÆientsoftheurvaturetensorofEatanypointx2X.

2. Dierentialoperators onvetor bundles

Werstdesribesomebasioneptsonerningdierentialoperators(symbol,

omposition,elliptiity,adjoint),in thegeneralontextofvetorbundles. Assume

given M amanifoldof dierentiable lassC 1

; dim

R

M =m, and E; F givenK

vetorbundles onM, overtheeld K =R orK =C suh thatrankE =r,rank

0

(22)

2.1. Definition. A(linear)dierentialoperatorofdegreeÆfromEtoF isa

K-linearoperatorP :C 1

(M;E)!C 1

(M;F); u7!Puoftheform

Pu(x)= X

jjÆ a

(x)D

u(x);

where E

' K

r

; F

' K

r 0

are loal trivializations on an open hart

M with loal oordinates (x

1

;:::;x

m

), and the oeÆients a

(x) are r 0

r matries (a

(x))

1r 0

;1r

with C 1

oeÆients on . One writes here

D

=(=x

1 )

1

(=x

m )

m

asusual,andthematriesu=(u

)

1r ,D

u=

(D

u

)

1r

areviewedasolumn vetors.

Ift2K isaparameterandf 2C 1

(M;K); u2C 1

(M;E),aneasyalulation

showsthate tf(x)

P(e tf(x)

u(x))isapolynomialofdegreeÆint,oftheform

e tf(x)

P(e tf(x)

u(x))=t Æ

P

(x;df(x))u(x) + terms

j (x)t

j

ofdegreej<Æ;

where

P

isahomogeneouspolynomialmapT

M

!Hom(E;F)dened by

(2.2) T

M;x

37!

P

(x;)2Hom(E

x

;F

x

);

P

(x;)= X

jj=Æ a

(x)

:

Then

P

(x;) is a C 1

funtion of the variables (x;) 2 T

M

, and this funtion

is independent of thehoieof oordinatesortrivialization usedfor E; F.

P is

alled theprinipalsymbolofP. Theprinipalsymbolofaomposition QÆP of

dierentialoperatorsissimplytheprodut.

(2.3)

QÆP

(x;)=

Q (x;)

P (x;);

alulatedasaprodutofmatries. Thedierentialoperatorsforwhihthesymbols

areinjetiveplayaveryimportantrole:

2.4. Definition. A dierentialoperatorP is saidto beelliptiif

P

(x;)2

Hom(E

x

;F

x

)isinjetiveforallx2M and2T

M;x nf0g.

Let us now assumethat M is orientedand assume given aC 1

volume form

dV(x)=(x)dx

1

^^dx

m

,where(x)>0isaC 1

density. IfEisaEulideanor

Hermitianvetorbundle,weandeneaHilbertspaeL 2

(M;E)ofglobalsetions

withvaluesinE,beingthespaeofformsuwithmeasurableoeÆientswhihare

squaresummablesetionswithrespettothesalarprodut

jjujj 2

= Z

M ju(x)j

2

dV(x);

(2.5)

hhu;vii= Z

M

hu(x);v(x)idV(x); u;v2L 2

(M;E):

(2.5 0

)

2.6. Definition. IfP:C 1

(M;E)!C 1

(M;F)isadierentialoperatorand

ifthebundles E; F areEulideanorHermitian, there existsauniquedierential

operator

P

:C 1

(M;F)!C 1

(M;E);

alled the formal adjointof P, suh that for allsetions u2 C 1

(M;E) and v 2

C 1

(M;F)onehasanidentity

hhPu;vii=hhu;P

vii; wheneverSuppu \Supp v M:

(23)

Proof. Theuniqueness is easy to verify, beingaonsequeneof thedensity

of C 1

forms with ompat support in L 2

(M;E). By a partition of unity argu-

ment, we redue the veriation of the existene of P

to the proof of its loal

existene. NowletPu(x)=

jjÆ a

(x)D

u(x)bethedesriptionofP relativeto

thetrivializationsofE; F assoiatedto anorthonormalframeand tothesystem

ofloal oordinatesonanopenset M. ByassumingSuppu\Suppv,

integrationbypartsgives

hhPu;vii= Z

X

jjÆ;;

a

D

u

(x)v

(x)(x)dx

1

;:::;dx

m

= Z

X

jjÆ;;

( 1) jj

u

(x)D

((x)a

v

(x) dx

1

;:::;dx

m

= Z

hu;

X

jjÆ ( 1)

jj

(x) 1

D

(x)a y

v(x)

idV(x):

Wethus seethatP

exists,andisdened inauniquewayby

(2.7) P

v(x)= X

jjÆ ( 1)

jj

(x) 1

D

(x)a y

v(x)

:

Formula(2.7)showsimmediatelythat theprinipal symbolofP

isgivenby

(2.8)

P (x;

)=( 1) Æ

X

jj=Æ a

y

=( 1) Æ

P (x;)

:

Ifrank E =rankF, theoperator P is ellipti ifandonly if

P

(x;)is invertible

for6=0,thereforetheelliptiityofP isequivalenttothat ofP

.

3. Fundamentalresultson ellipti operators

WeassumethroughoutthissetionthatMisaompatorientedC 1

manifold

of dimension m, with volume form dV. Let E ! M be aC 1

Hermitian vetor

bundleofrankr onM.

3.A. Sobolev spaes. For anyreal numbers, we dene the Sobolev spae

W s

(R m

)to be theHilbert spaeof tempereddistributions u2S 0

(R m

)suh that

theFouriertransformu^isaL 2

lo

funtion satisfyingtheestimate

(3.1) jjujj

2

s

= Z

R m

(1+jj 2

) s

j^u()j 2

d() < +1:

Ifs2N, wehave

jjuj 2

s

Z

R m

X

jjs jD

u(x)j 2

d(x);

thereforeW s

(R m

)istheHilbert spaeof funtions usuh thatallthe derivatives

D

uoforderjjsareinL 2

(R m

).

Moregenerally,wedenotebyW s

(M;E)theSobolevspaeofsetionsu:M!

E whose omponents are loally in W s

(R m

) on all open harts. More preisely,

hoose a nite subovering (

j

) of M by open oordinate harts

j ' R

m

on

(24)

Consideranorthonormalframe(e

j;

)

1r ofE

j

andwriteuintermsofits

omponents,i.e. u= P

u

j;

e

j;

. Wethenset

jjujj 2

s

= X

j;

jj

j u

j;

jj 2

s

where (

j

) is a \partition of unity" subordinate to (

j

), suh that P

2

j

= 1.

Theequivaleneofnormsjj jj

s

isindependentofhoiesmade. Wewillneedthe

following fundamental fats, that the reader will be able to nd in many of the

speializedworksdevotedto thetheoryofpartial dierentialequations.

3.2. Sobolevlemma. Foranintegerk2N andanyrealnumberssk+ m

2 ,

wehave W s

(M;E)C k

(M;E)andthe inlusion isontinuous.

Itfollowsimmediatelyfrom theSololevlemma that

\

s0 W

s

(M;E)=C 1

(M;E);

[

s0 W

s

(M;E)=D 0

(M;E):

3.3. Rellih lemma. For allt>s,the inlusion

W t

(M;E),!W s

(M;E)

isaompat linearoperator.

3.B.Pseudodierentialoperators. IfP = P

jjÆ a

(x)D

isadierential

operatoronR m

,theFourierinversionformulagives

Pu(x)= Z

R m

X

jjÆ a

(x)(2i )

^ u()e

2ix

d(); 8u2D(R m

);

whereu()^ = R

R m

u(x)e 2ix

d(x) istheFouriertransformofu. Weall

(x;)= X

jjÆ a

(x)(2i)

;

thesymbol(ortotalsymbol) ofP.

A pseudodierential operator is an operator Op

dened by a formulaof the

type

(3.4) Op

(u)(x)= Z

R m

(x;)^u ()e 2ix

d(); u2D(R m

);

where belongs to a suitable lass of funtions on T

R

m. The standard lass of

symbolsS Æ

(R m

)isdened asfollows: Assume givenÆ2R; S Æ

(R m

)isthelassof

C 1

funtions(x;)onT

R m

suhthatforany; 2N m

andanyompatsubset

KR m

onehasanestimate

(3.5) jD

x D

(x;)jC

;

(1+jj) Æ jj

; 8(x;)2KR m

;

where Æ2R isregardedas the\degree"of. ThenOp

(u) isawell dened C 1

funtiononR m

,sineu^belongstothelassS(R m

)offuntionshavingrapiddeay.

(25)

in abundle F overa ompat manifold M, weintrodue the analogous spae of

symbolsS Æ

(M;E;F). TheelementsofS Æ

(M;E;F)arethefuntions

T

M

3(x;)7!(x;)2Hom(E

x

;F

x )

satisfyingondition(3.5)inalloordinatesystems. Finally,wetakeanitetrivial-

izingover(

j

)ofM anda\partitionofunity" (

j

)subordinateto

j

suh that

P

2

j

=1,andwedene

Op

(u)=

X

j Op

(

j

u); u2C 1

(M;E);

in away whih redues thealulationstothe situationof R m

. The basiresults

pertainingtothetheoryofpseudodierentialoperatorsaresummarizedbelow.

3.6. Existeneofextensionsto thespaesW s

. If2S Æ

(M;E;F),then

Op

extendsuniquelytoaontinuouslinearoperator

Op

:W

s

(M;E)!W s Æ

(M;F):

Inpartiularif2S 1

(M;E;F):=

T

S Æ

(M;E;F),thenOp

isaontinuous

operator sending an arbitrary distributional setionof D 0

(M;E) into C 1

(M;F).

Suhanoperator isalled aregularoperator. It isastandardresultin thetheory

of distributions that the lass R of regular operators oinides with the lass of

operators dened bymeans of aC 1

kernelK(x;y)2 Hom(E

y

;F

x

). That is, the

operatorsoftheform

R:D 0

(M;E)!C 1

(M;F); u7!R u; R u(x)= Z

M

K(x;y)u(y)dV(y):

Conversely,ifdV(y)=(y)dy

1 dy

m on

j

andifwewriteR u= P

R (

j

u),where

(

j

) isapartition of unity, theoperatorR (

j

) is thepseudodierentialoperator

assoiatedtothesymbol dened bythepartial Fouriertransform

(x;)= (y)

j

(y)K(x;y)

^

y

(x;); 2S 1

(M;E;F):

Whenoneworkswithpseudodierentialoperators,itisustomarytoworkmodulo

theregularoperatorsand toallowoperatorsmoregenerallyof theform Op

+R

whereR2Risanarbitraryregularoperator.

3.7. Composition. If 2 S Æ

(M;E;F) and 0

2 S Æ

0

(M;F;G); Æ; Æ 0

2 R,

thereexistsasymbol 0

}2S Æ+Æ

0

(M;E;G) suhthat Op

0ÆOp

=Op

0

} mod

R. Moreover

0

}

0

2S Æ+Æ

0

1

(M;E;G):

3.8. Definition. A pseudodierentialoperator Op

of degreeÆ isalled el-

liptiifitanbedenedbyasymbol 2S Æ

(M;E;F)suhthat

j(x;)ujjj Æ

juj; 8(x;)2T

M

; 8u2E

x

forjjlargeenough,theestimatebeinguniform forx2M.

IfE andF havethesamerank,theelliptiityonditionimpliesthat(x;)is

invertiblefor large. Bytakingasuitabletrunatingfuntion ()equalto1for

large,oneseesthat thefuntion 0

(x;)=()(x;) 1

denes asymbolinthe

spaeS Æ

(M;F;E), andaordingto (3.8)wehaveOp

0 ÆOp

=Id+Op

; 2

1

(26)

expansionId + }2

++( 1) j

}j

+. Itislearthenthatoneobtainsan

inverseOp

} 0

of Op

modulo R. An easy onsequeneof thisobservation isthe

following:

3.9. Ga rding inequality. Assume given P : C 1

(M;E) ! C 1

(M;F) an

ellipti dierential operator of degree Æ, where rankE = rankF = r, and let

~

P

beanextensionofP withdistributionaloeÆientsetions. Forallu2W 0

(M;E)

suhthat

~

Pu2W s

(M;F), onethenhasu2W s+Æ

(M;E)and

jjujj

s+Æ

C

s (jj

~

Pujj

s +jjujj

0 );

whereC

s

isapositiveonstantdependingonlyons.

Proof. SineP isellipti,thereexists asymbol2S Æ

(M;F;E)suh that

Op

Æ

~

P = Id+R ; R 2 R. Then jjOp

(v)jj

s+Æ

Cjjvjj

s

by applying (3.6).

Consequently, in setting v =

~

Pu, we see that u = Op

(

~

Pu) R u satises the

desiredestimate.

3.C. Finiteness theorem. We onlude this setion with the proof of the

followingfundamental nitenesstheorem, whih isthestartingpointofL 2

Hodge

theory.

3.10. Finiteness Theorem. Assume given E; F Hermitian vetor bun-

dles on a ompat manifold M, suh that rank E = rank F = r; and given

P :C 1

(M;E)!C 1

(M;F)an ellipti dierential operator of degreeÆ. Then:

i)KerP isnitedimensional.

ii) P(C 1

(M;E)) is losed and of nite odimension in C 1

(M;F); moreover, if

P

isthe formaladjoint of P,there existsadeomposition.

C 1

(M;F)=P(C 1

(M;E))KerP

asan orthogonal diret sumin W 0

(M;F)=L 2

(M;F).

Proof. (i)The Garding inequality showsthat jjujj

s+Æ

C

s jjujj

0

for allu2

KerP. By the Sobolev Lemma, this implies that KerP is losed in W 0

(M;E).

Moreover,thejj jj

0

-losedunitballofKerPisontainedinthejjjj

Æ

-ballofradius

C

0

,thereforeitisompataordingtotheRellihLemma. RieszTheoremimplies

thatdimKerP <+1.

(ii)Werstshowthat theextension

~

P :W s+Æ

(M;E)!W s

(M;F)

haslosedimage foralls. Forany>0,there existsanite numberof elements

v

1

;:::;v

N 2W

s+Æ

(M;F); N =N(),suh that

(3.11) jjujj

0

jjujj

s+Æ +

N

X

j=1 jhhu;v

j ii

0 j:

Indeedtheset:

K

(vj)

=

u2W s+Æ

(M;F); jjujj

s+Æ +

N

X

jhhu;v

j ii

0 j1

;

(27)

is relatively ompat in W 0

(M;F) and T

(vj) K

(vj)

= f0g. It follows that there

are elements (v

j

) suh that K

(vj)

are ontained in the unit ball of W 0

(M;E),

as required. Substituting the main term jjujj

0

given by (3.11) in the Garding

inequality;weobtain

(1 C

s )jjujj

s+Æ

C

s

jj

~

Pujj

s +

N

X

j=1 jhhu;v

j ii

0 j

:

DeneT =fu2W s+Æ

(M;E); u?v

j

; 1jngandput=1=2C

s

. Itfollows

that

jjujj

s+Æ

2C

s jj

~

Pujj

s

; 8u2T:

Thisimpliesthat

~

P(T)islosed. Asaonsequene

~

P(W s+Æ

(M;E))=

~

P(T) + Vet

~

P(v

1 );:::;

~

P(v

N )

islosed inW s

(M;E). Considernowtheases=0. SineC 1

(M;E)is densein

W Æ

(M;E),weseethat inW 0

(M;E)=L 2

(M;E),onehas

~

P W

Æ

(M;E)

?

=

P C 1

(M;E)

?

=Ker

~

P

:

Wehavethusproventhat

(3.12) W

0

(M;E)=

~

P W

Æ

(M;E)

Ker

~

P

:

Sine P

is also ellipti, it follows that Ker

~

P

is nite dimensional and that

Ker

~

P

= KerP

is ontained in C 1

(M;F). Byapplying the Garding inequal-

ity,thedeomposition formula(3.12) gives

W s

(M;E)=

~

P W

s+Æ

(M;E)

KerP

; (3.13)

C 1

(M;E)=P C 1

(M;E)

KerP

: (3.14)

WenishthissetionbytheonstrutionoftheGreen'soperatorassoiatedto

aself-adjointelliptioperator.

3.15. Theorem. Assumegiven E a Hermitianvetor bundle of rankr ona

ompat manifold M,and P :C 1

(M;E)!C 1

(M;E)a self-adjoint ellipti dif-

ferentialoperatorofdegreeÆ. Then ifH denotestheorthogonalprojetion operator

H :C 1

(M;E)!KerP,there existsaunique operator Gon C 1

(M;E)suhthat

PG + H =GP + H = Id;

moreoverGisapseudo-dierential operator ofdegree Æ,alledthe Green'soper-

ator assoiatedtoP.

Proof. AordingtoTheorem3.10,KerP =KerP

isnitedimensionaland

ImP=(KerP)

?

. ItthenfollowsthattherestritionofPto(KerP)

?

isabijetive

operator. Onedenes Gto be 0P 1

relativeto the orthogonaldeomposition

C 1

(M;E)=KerP (KerP)

?

. TherelationsPG+H =GP +H =Idarethen

obvious, aswellastheuniqueness ofG. Moreover,Gisontinuousin theFrehet

1

(28)

thefat thatthere existsapseudo-dierentialoperatorQof order Æwhihisan

inverseof P modulo R,i.e. PQ=Id+R ; R2R. Itthenfollowsthat

Q=(GP+H)Q=G(Id+R )+HQ=G+GR+HQ;

whereGRandHGareregular. (H isaregularoperatorofniterankdenedbythe

kernel P

'

s (x)'

s

(y),if('

s

)isabasisofeigenfuntionsofKerPC 1

(M;E).)

ConsequentlyG=QmodRandGisapseudodierentialoperatoroforder Æ.

3.16. Corollary. Underthehypothesesof3.15,theeigenvaluesofP forma

realsequene

k

suhthatlim

k !+1 j

k

j=+1,the eigenspaesV

k

of P arenite

dimensional, andonehas aHilbert spaediretsum

L 2

(M;E)= d M

k V

k :

Foranyintegerm2N, anelementu= P

k u

k 2L

2

(M;E)isinW mÆ

(X;E)ifand

onlyif P

j

k j

2m

jju

k jj

2

<+1.

Proof. TheGreen's operatorextendsto aself-adjointoperator

~

G:L 2

(M;E)!L 2

(M;E)

whihfatorsthroughW Æ

(M;E),andisthereforeompat. Thisoperatordenes

an inverse to

~

P : W Æ

(M;E) ! L 2

(M;E) on (KerP)

?

. The spetral theory of

ompat self-adjoint operators shows that the eigenvalues

k of

~

G form a real

sequene tending to 0and that L 2

(M;E) is a diret sum of Hilbert eigenspaes.

Theorrespondingeigenvaluesof

~

P are

k

= 1

k if

k

6=0andaordingto the

elliptiityofP

k

Id,theeigenspaesV

k

=Ker(P

k

Id)arenitedimensional

and ontained in C 1

(M;E). Finally, if u = P

k u

k 2 L

2

(M;E), the Garding

inequalityshowsthatu2W mÆ

(M;E)ifandonlyif

~

P m

u2L 2

(M;E)=W 0

(M;E),

whiheasilygivestheondition P

j

k j

2m

jju

k jj

2

<+1.

4. Hodge theoryof ompat Riemannianmanifolds

The establishment of Hodge theory as a well developed subjet, was arried

outby W.V.D Hodgeduring the deade 1930-1940(see [Hod41℄, [DR55℄). The

prinipal goal of the theory is to desribethe de Rham ohomology algebraof a

Riemannian manifoldin termsofits harmoniforms. Theprinipal resultis that

anyohomologylasshasauniqueharmonirepresentative.

4.A. Eulidean struture of the exterior algebra. Let(M;g)beanori-

ented Riemannian C 1

manifold of dimension m, and let E ! M be a Hermit-

ian vetor bundle of rank r on M. We denote respetively by (

1

;:::;

m ) and

(e

1

;::: ;e

r

)orthonormalframesofT

M

andofEonaoordinatehartM,and

let (

1

;:::;

m ), (e

1

;::: ;e

r

) be the orresponding dual oframes of T

M

; E

re-

spetively. Further,letdV betheRiemannianvolumeelementonM. Theexterior

algebra

T

M

isendowedwithanaturalinnerproduth;i, givenby

(4.1) hu

1

^^u

p

;v

1

^^v

p

i=det(hu

j

;v

k i)

1j;k p

; u

j

;v

k 2T

M

for all p, with

T

M

= L

p

T

M

an orthogonal diret sum. Thus the family of

ovetors

I

=

i1

^^

ip

; i

1

<i

2

<<i

p

, denes anorthonormal basisof

T

. Onedenotesbyh;i theorrespondinginner produton

T

E.

(29)

4.2. Hodgestar operator. TheHodge-Poinare-deRham?operatoristhe

endomorphismof

T

M

denedbyaolletionoflinearmapssuhthat

?: p

T

M

!

m p

T

M

; u^?v=hu;vidV; 8u;v2 p

T

M :

The existeneand uniqueness of this operator follows easily from theduality

pairing

p

T

M

m p

T

M

!R

(4.3) (u;v)7!u^v=dV =

X

(I;{I)u

I v

{I

;

where u= P

jIj=p u

I

I

; v= P

jJj=m p v

J

J

, andwhere (I;{I)isthe signofthe

permutation (1;2;:::;m) 7!(I;{I) dened by I followed bythe omplementary

(ordered)multi-indies{I. Fromthis, wededue

(4.4) ?v=

X

jIj=p

(I;{I)v

I

{I :

Moregenerally,thesesquilinearpairingf;gdenedby(1.6)induesanoperator

?onthevetor-valuedforms,suhthat

(4.5) ?:

p

T

M

E!

m p

T

M

E; fs;?tg=hs;tidV;

(4.6) ?t=

X

jIj=p;

(I;{I)t

I;

{I e

; 8s;t2 p

T

M E;

fort= P

t

I;

I e

. Sine(I;{I)({I;I)=( 1) p(m p)

=( 1) p(m 1)

,weimme-

diatelyobtain

(4.7) ??t=( 1)

p(m 1)

t on p

T

M E:

Itislearthat?isanisometryof

T

M

E. Wewillalsoneedavariantofthe?

operator,namelytheantilinearoperator

#: p

T

M

E !

m p

T

M

E

dened by s^#t =hs;tidV, where theexteriorprodut ^ is ombinedwith the

anonialpairingEE

!C. Wehave

(4.8) #t=

X

jIj=p;

(I;{I)t

I;

{I e

:

4.9. Contrationbya vetoreld. Assumegivenatangentvetor2T

M

andaformu2 p

T

M

. Theontrationyu2 p 1

T

M

isdened by

yu(

1

;:::;

p 1

)=u(;

1

;:::;

p 1

);

j 2T

M :

Intermsofthebasis(

j

); yisthebilinearoperatorharaterizedby

l y(

i1

^^

ip )=

(

0 ifl62fi

1

;:::;i

p g,

( 1) k 1

i

1

^

^

i

k

i

p

ifl=i

k :

Thissameformulaisalsovalidwhen(

j

)is notorthonormal. An easyalulation

showsthatyisaderivation oftheexterioralgebra,i.e. that

degu

(30)

Moreover,if

~

=h;i2T

M

, theoperatoryistheadjointof

~

^,i.e.,

(4.10) hyu;vi=hu;

~

^vi; 8u;v2

T

M :

Indeed,thispropertyisimmediatewhen=

l

; u=

I

; v=

J .

4.B. Laplae-Beltrami operator. Let E bea Hermitianvetorbundleon

M, and letD

E

be a Hermitian onnetionon E. We onsider the Hilbert spae

L 2

(M;

p

T

M

E) of p-forms on M with values in E, with the given L 2

salar

produt

hhs;tii= Z

M hs;tidV

alreadyintroduedin (2.5). Here hs;tiisthespei salarproduton p

T

M

E

assoiated totheRiemannian salarproduton p

T

M

and theHermitianpairing

onE.

4.11. Theorem. The formal adjoint of D

E

ating onC 1

(M;

p

T

M

E)is

given by

D

E

=( 1) mp+1

?D

E

?:

Proof. Ifs2C 1

(M; p

T

M

E)andt2C 1

(M;

p+1

T

M

E)haveompat

support,wehave

hhD

E s;tii=

Z

M hD

E

s;tidV = Z

M fD

E s;?tg

= Z

M

dfs;?tg ( 1) p

fs;D

E

?tg=( 1) p+1

Z

M fs;D

E

?tg

byanappliationofStokestheorem. Asaonsequene,(4.5)and(4.7)imply

hhD

E

s;tii=( 1) p+1

( 1) p(m 1)

Z

M

fs;??D

E

?tg=( 1) mp+1

hhs;?D

E

?tii:

Thedesiredformulafollows.

4.12. Remark. In the aseof the trivial onnetiond on E =MC, the

formulabeomesd

=( 1) m+1

?d?. Ifmiseven,these formulasredue to

d

= ?d?; D

E

= ?D

E

?:

4.13. Definition. TheLaplae-Beltramioperatoris theseond orderdier-

entialoperatoratingonthebundle, p

T

M

E,suhthat

E

=D

E D

E +D

E D

E :

In partiular, the Laplae-Beltramioperator ating on p

T

M

is = dd

+d

d.

ThislatteroperatordoesnotdependontheRiemannianstruture(M;g).

It is lear that the Laplaian is formally self-adjoint i.e. hh

E

s;tii =

hhs;

E

tii whenever the forms s;t are C 1

and that one of them has ompat

(31)

4.14. Calulation of the symbol. ForeveryC 1

funtion f,Leibnitz rule

givese tf

D

E (e

tf

s)=tdf^s+D

E

s. Bydenitionofthesymbol,wethereforend

D

E

(x;)s=^s; 82T

M;x

; 8s2 p

T

M E:

Fromformula(2.8),weobtain

D

E

= (

D

E )

,therefore

D

E

(x;)s=

~

ys

where

~

2T

M

istheadjoint tangentvetorof. Theequality

E

=

D

E

D

E +

D

E

DE

impliesthat

E

(x;)s= ^(

~

ys)

~

y(^s)= (

~

y)s;

E

(x;)s= jj 2

s:

In partiular,

E

is always an ellipti operator. In the speial ase where M is

anopen subsetofR m

withtheonstantmetrig = P

m

i=1 dx

2

i

, allthese operators

d; d

; have onstant oeÆients. They are ompletely determined by their

prinipalsymbol(notermoflowerorderanappear). Oneeasilyomputes:

s= X

jIj=p s

I dx

I

; ds= X

jIj=p;j s

I

x

j dx

j

^dx

I

;

d

s= X

I;j s

I

x

j

x

j ydx

I

;

s=

X

I

X

j

2

s

I

x 2

j

dx

I :

ConsequentlyhasthesameexpressionastheelementaryLaplaianoperator,up

toaminussign.

4.C.Harmoniforms andtheHodgeisomorphism. LetEbeaHermit-

ianvetorbundleonaompatRiemannianmanifold(M;g). WeassumethatEis

givenaHermitianonnetionD

E

suhthat (D

E )=D

2

E

=0. Suh aonnetion

is said to be integrable or at. It is known that this is equivalent to suh an E

givenbyarepresentation

1

(M)!U(r). Suhabundleis alledaat bundleor

aloalsystemofoeÆients. AstandardexampleisthetrivialbundleE=MC

with its obvious onnetion D

E

=d. Our assumption impliesthat D

E

denes a

generalizeddeRhamomplex

C 1

(M;E) DE

!C 1

(M;

1

T

M

E)!!C 1

(M;

p

T

M

E)

DE

!:

Theohomologygroupsofthisomplexaredenoted byH p

DR

(M;E).

Thespaeof harmoniforms ofdegreeprelativetothe Laplae-Beltramiop-

erator

E

=D

E D

E +D

E D

E

isdenedby

H p

(M;E)=

s2C 1

(M;

p

T

M

E);

E s=0 :

Sine hh

E

s;sii = jjD

e sjj

2

+jjD

E sjj

2

, we see that s 2 H p

(M;E) if and only if

D

E s=D

s=0.

(32)

4.16. Theorem. For allp, thereexistsanorthogonal deomposition

C 1

(M;

p

T

M

E)=H p

(M;E)Im D

E

ImD

E

; where

ImD

E

=D

E C

1

(M;

p 1

T

M

E)

;

ImD

E

=D

E C

1

(M;

p+1

T

M

E)

:

Proof. It is immediate that H p

(M;E) is orthogonal to the two subspaes

ImD

E

andIm D

E

. The orthogonalityof these twosubspaesisalso obvious, asa

resultofthehypothesisD 2

E

=0,namely:

hhD

E s;D

E

tii=hhD 2

E

s;tii=0:

Wenowapplyth. 3.10totheelliptioperator

E

=

E

atingonthep-forms,i.e.

theoperator

E :C

1

(M;F)!C 1

(M;F)atingonthebundle F = p

T

M E.

Weobtain

C 1

(M;

p

T

M

E)=H p

(M;E)

E (C

1

(M;

p

T

M E));

Im

E

=Im(D

E D

E +D

E D

E

)Im D

E +ImD

E :

Further, sine ImD

E

and Im D

E

are orthogonal to H p

(M;E), these spaes are

ontainedinIm

E

.

4.17. Hodge Isomorphism Theorem. The de Rham ohomology groups

H p

DR

(M;E) arenite dimensional;moreoverH p

DR

(M;E)'H p

(M;E).

Proof. Fromthedeompositionin (4.16),weobtain

B p

DR

(M;E)=D

E (C

1

(M;

p 1

T

M E));

Z p

DR

(M;E)=KerD

E

=(Im D

E )

?

=H p

(M;E)ImD

E :

ThisshowsthatanydeRhamohomologylassontainsauniqueharmonirepre-

sentative.

4.18. Poinare duality. Thepairing

H p

DR

(M;E)H m p

DR (M;E

)!C; (s;t)7!

Z

M s^t

isanon-degenerate bilinearform,and thus denesaduality betweenH p

DR (M;E)

andH m p

DR (M;E

):

Proof. First observe that there is a naturally dened at onnetion D

E

suhthatforalls2C 1

(M;

T

M

E); t2C 1

(M;

T

M

E

),onehas

(4.19) d(s^t)=(D

E

s)^t+( 1) degs

s^D

E t:

ItthenfollowsfromStokestheoremthatthebilinearmap(s;t)7!

R

M

s^tfators

throughtheohomologygroups. Fors2C 1

(M;

p

T

M

E),thereaderaneasily

verifythe followingformulas(use(4.19) in asimilar wayto that whih wasdone

fortheproofofth. 4.11):

(4.20)

D

E

(#s)=( 1) p

#D

s; (D

E )

(#s)=( 1) p+1

#D

E

s;

E

(#s)=#

s

:

(33)

21 5. Hermitianand ahler manifolds

Consequently#s2H m p

(M;E

)ifandonlyifs2H p

(M;E). Sine

Z

M

s^#s= Z

M jsj

2

dV =jjsjj 2

;

it follows that the Poinare duality pairing has trivial kernel in the left fator

H p

(M;E)'H p

DR

(M;E). Bysymmetry,italsohastrivialkernelintheright. This

ompletestheproof.

5. Hermitianand Kahlermanifolds

Let X be a omplex manifold of dimension n. A Hermitian metri on X

is a positive denite Hermitian C 1

form on T

X

. In terms of loal oordinates

(z

1

;::: ;z

n

),suhaform anbewritten

h(z)= X

1j;k n h

jk (z)dz

j dz

k

;

where(h

jk

)isapositiveHermitianmatrixwithC 1

oeÆients. Thefundamental

(1;1)-formassoiatedto his

!= Imh= i

2 X

h

jk dz

j

^dz

k

; 1j;kn:

5.1. Definition.

a) AHermitianmanifoldisapair(X;!)where! isapositivedeniteC 1

(1;1)-

formonX.

b) Themetri! issaidtobeKahlerifd!=0.

) X isalled aKahlermanifoldifX hasatleastoneKahlermetri.

Sine! isreal,theonditionsd!=0; d 0

!=0; d 00

!=0areallequivalent. In

loaloordinates,weseethatd 0

!=0ifandonlyif

h

jk

z

l

= h

lk

z

j

; 1j;k;ln:

Asimplealulationgives

! n

n!

=det(h

jk )

^

1jn

i

2 dz

j

^dz

j

=det (h

jk )dx

1

^dy

1

^^dx

n

^dy

n

;

wherez

n

=x

n +iy

n

. Consequentlythe(n;n)form

(5.2) dV =

1

n!

! n

ispositiveandoinideswiththeHermitianvolumeelementofX. IfX isompat,

then R

X

! n

= n!Vol

!

(X) > 0. This simple observation already implies that a

ompatKahlermanifoldmustsatisfyertainrestritivetopologialonditions:

5.3. Consequene.

a) If (X;!) is ompat Kahler and if f!g denotes the ohomology lass of ! in

H 2

(X;R) , thenf!g n

6=0.

b) If X isompat Kahler,thenH 2k

(X;R) 6=0for 0kn. Indeed, f!g k

isa

non-zerolass of H 2k

(X;R).

Références

Documents relatifs

It starts with an introduction to complex manifolds and the objects naturally attached to them (differential forms, cohomology theo- ries, connections...). In Section 2 we will

3. The set of global sections of a complex or holomorphic vector bundle has a natural C -vector space structure given by adding fibrewise. local holomorphic frame).. Show that we have

In this paper, we use the more elementary theory of homological units (see [Abu17]) in order to dene and compute Hodge numbers for smooth proper C-linear triangulated categories

The theory of variation of Hodge Structure (VHS) adds to the local system the Hodge structures on the cohomology of the fibers, and transforms geometric prob- lems concerning

Another important property satisfied by the cohomology algebra of a compact K¨ ahler manifold X is the fact that the Hodge structure on it can be polarized using a K¨ ahler class ω ∈

À partir d’un tore complexe non projectif, on construit une variété kählérienne compacte X qui n’a pas l’anneau de cohomologie rationnelle d’une variété projective lisse..

T HEOREM 2.2.3 (Hodge–Lefschetz for Intersection Cohomology).. – The Hodge–Lefschetz Theorem 2.2.3 is due to several authors. The Weak Lefschetz Theorem is due to Goresky and

We will show, in particular, that under favorable conditions the latter locus may be identified Hodge-theoretically (Corollaries 3.2, 4.2); in the case of an embedding f