• Aucun résultat trouvé

A CHARACTERIZATION OF DOUGLAS SUBALGEBRAS

N/A
N/A
Protected

Academic year: 2022

Partager "A CHARACTERIZATION OF DOUGLAS SUBALGEBRAS "

Copied!
9
0
0

Texte intégral

(1)

A CHARACTERIZATION OF DOUGLAS SUBALGEBRAS

BY

SUN-YUNG A. CHANG

University of California at Los Angeles. L.A. Ca. 90024. USA (x)

1. Introduction

Let L ~ be the complex Banach algebra of bounded Lebesgue measurable functions on the unit circle ~D in the complex plane. The norm in L ~176 is the essential supremum over aD. Via radial limits, the algebra H ~176 of bounded analytic functions on the unit disc D forms a closed subalgebra of L ~. This paper studies the closed subalgebras B of L ~ properly containing H ~176 For such an algebra B we let B x denote the closed algebra generated b y H ~ and the complex conjugates of those inner functions which are invertible in the al- gebra B. (An inner function is an H ~ function unimodular on OD). I t is clear t h a t B z c B.

1%. G. Douglas [4] has conjectured t h a t B = B I for all B, and consequently algebras of the form B I are called Douglas algebras.

A discussion of the Douglas problem and a survey of related work can be found in [11]. I n particular, it is noted in [11] t h a t the maximal ideal space ~ ( B ) of B can be identi- fied with a closed subset of ~Vn(H~), and when B is a Douglas algebra, ~ ( B ) completely determines B. This means t h a t if the Douglas question has an affirmative answer then distinct algebras B has distinct maximal ideal spaces. T h a t the latter assertion is true when one of the algebras is a Douglas algebra is the main result of this paper. We prove t h a t if B and B 1 are closed subalgebras of L ~ containing H `~, if ~ ( B ) = ~ ( B 1 ) and if B is a Doug- las algebra, then B = B r Using this theorem, D. E. Marshall [9] has answered the Douglas question affirmatively.

Using functions of bounded mean oscillation, D. Sarason [13] had proved the theorem above in the special case when B is generated b y H ~ and the space of continuous functions on OD. B y similar means, S. Axler [1], T. Weight [15] and the author [3] had verified the theorem for some other specific Douglas algebras.

Section 2 contains some preliminary definitions and lemmas. The more technical aspects of the proof are in section 3 and the main theorem is proved in section 4. Some (~) Research supported in part by National Science Foundation.

6 - 762909 Acta mathematica 137. Imprim6 ]e 22 Septembrc 1976

(2)

8 2 S U N - Y U N G A. C H A N G

readers m a y perfer reading section 4 before sections 2 a n d 3. I n section 5 we describe t h e largest C*-Mgebra c o n t a i n e d in a Douglas algebra.

T h e proof of o u r m a i n result follows a p a t t e r n f r o m Sarason's paper [12]. T h e proof of T h e o r e m 6 b e l o w uses techniques f r o m C. F e f f e r m a n a n d E. M. Stein [6]. I would like to express m y w a r m t h a n k s t o Professor D. Sarason for giving invaluable aid, a n d to Professors R. G. Douglas a n d A. Shields for v e r y helpful discussions. I a m also grateful to Professor J. G a r n e t t for re-organizing t h e paper, i m p r o v i n g t h e English a n d giving a simplified proof of L e m m a 2 below.

2.

Preliminaries

F o r an integrable f u n c t i o n

](t)

on 0D, d e n o t e t h e h a r m o n i c extension of ] to D b y

1 l "

](re ~~ = - ~ J_ P(r, 0 - t) ](t) dt

where

P(r, t) =

(1 -

r~)/(1

- 2r cos t + r 2) is t h e Poisson kernel. L e t V/(re ~~

= (~]/~x(re*O),

~//ay(re'O) ),

a n d

I V/(re'O)]~ = ] e/ /ex(re'O) [ 2 + ] ~]/~y(re~O) ] 2.

Our first l e m m a is a Littlewood- P a l e y identity.

LE•MA 1. I ] / , gEL s and at least one o//(0)

and g(0)

vanishes, then

l f~_ /(e~t)g(e")dt=I fD

2-~ ~ V](re~~ Vg(re ~0) r

log

drdO.

This l e m m a follows f r o m t h e Parseval i d e n t i t y after expressing t h e gradients in polar co- ordinates. T h e corresponding result for t h e u p p e r half plane is in [14, p. 83].

T h e second l e m m a can be p r o v e d using m e t h o d s in [6] b u t it also follows f r o m an in- v a r i a n t f o r m u l a t i o n of L e m m a 1. F o r z o = r 0 e ~~176 E D, let

(S(Oo, ro) = {re

% ] 0 - 0 o ] ~< 4(1 - r0) , r o < r < l }.

L~MMA 2. Let

s > O ,

I~ol =ro>~1/2. I ! / e i ~ , II/ll~<l and I/(~o)1 > l -~, then

~/S(Oo. ro)(1

- -

r) lv112r dr dO < C~

s(1 -- r0)

where C 1 is independent o] e and r o.

Proo/.

L e t

w = ( Z - Z o ) / ( 1 - 2 o Z ) = s e i~.

On

s = l , zo=roe ~~176 dqJ=P(ro, O-Oo)dO.

L e t

/(z) = F(w)

= ( 2 ~ ) - ~ _ ,

P(s, t-q~) F(t)dt.

T h e n

(2~)-~S ] F(e'~) - F(0) ] 2d~ = (2~)-~ S

P(r o, 0 -00)

]/(e '~ ) -/(Zo)[~dO

= (2~)-~S

P(ro, 0 - 0 o ) ] / ( e ' a )

] ~

dO -

I/(~0) I ~ < 2~

(3)

A C H A R A C T E R I Z A T I O N O F D O U G L A S S U B A L G E B R A S

83

H e n c e b y L e m m a 1,

l-- f lVF(w)plog~lSdSd~<2e.

g~

N o w 1 - I w l ~ = ( 1 - Iz012)(1- ] z ] ~ ) / I 1 - 5 0 z ] ~ a n d w h e n

zeS(Oo, to),

I 1 - 2 o z I ~<c~(1-Iz01) for some c o n s t a n t cl, for all z. T h u s for

re~~ ro)

we h a v e

11 _-rro

~< c2(1 - I w l 2) ~< c31og [-~1 for some c o n s t a n t s c~, ca.

Because

IVF(w) l~sdsdq~ = IV/(z) 12rdrdO,

we h a v e

2 1

ffs(o.,r.)(1-r)lVl(z)l~rdrdO<c3(1-ro)ffnlVF(w)l l o g ~ s d s d e f < ~ C l ( 1 - r o ) 8 .

W e t h u s complete t h e proof.

I f I is an arc on ~D with center e u a n d length

I

I

I

= 2~, we let

R(I)={re'~ IO-tl

A finite positive measure It on D is called a Carleson measure if there exists a c o n s t a n t c such t h a t

#(R(1)) <c[I[

for all subarcs I of ~D,

LEigi~IA 3. (Carleson [2]).

Let tt be a Carleson measure on D such that It(R(I))

< c [ I [

/or all subarc8 I o/~D. Then/or 1 <19 < co

< CA. II /I1 /or all IeL~(aD), where the constant A~ depends only on p.

Following an a r g u m e n t in [14, p. 236] one can easily prove L e m m a 3 using m a x i m a l functions.

F o r a n arc

I c e D ,

let 5 =

]I[-1S~/(t)dt

be t h e average of a function / over I. F o r

/ eLI(~D),

define

W e s a y l has b o u n d e d m e a n o s c i l l a t i o n , / e B M O , if

11111, <

F u n c t i o n s in

B M O

can be related t o Carleson measures b y t h e following

L E M M A 4. (Fefferman a n d Stein).

For / E L ~(aD), the following conditions are equivalent:

(i) I e

B M O

(ii)

I]

dit = (1 - r) I

V /(rei~ 12 r dr dO, then It is a Carleson measure.

(4)

84 SUN*YU~TG A. CHANG

Furthermore i/

~(R(~))

e = s u p - - ,

I.r[<2. ] I I

then there is a constant .4 i such that

A-~ < II/ll~, < A l e .

C

L e m m a 4 is proved in [6] for the case of upper half spaces. The proof there can easily be a d a p t e d to the present case using L e m m a s 1 and 3.

3. A distance estimate

Throughout this section we fix an non-constant inner function

b(z)6H ~176

and we set, for 0 < ~ < 1 ,

G~ = {z6D:

Ib(~)l/>

1-(~}.

F o r convenience we assume G$ c {1/2 < [z l < 1}.

L ~ M ~ 5. Let 0<e, ~<1. I / / e L ~ ,

II/ll~<l a~d I/(~)l >~1 - ~ on G~, then the measure

tt defined by

dtt = Za~(z)(1

-r)[V/(z)12rdrdO satis/ies

sup

#(R(I)) <

where C1 is the constant in Lemma 2.

Proo/. Let I

be some arc on ~D. ]~y L e m m a 2 it suffices to find points rj e *~ in G, such t h a t

G, ~ R(I)= [JjS(Oj, rj)

and such t h a t ~(1 - r j ) < ] I [ .

F o r n = 0 , 1, 2 .... and 1 <k~<2 ~, let

{In.k}

be the partition of I into closed arcs of

length [In,k] =2-~[I[.

L e t

T(In.k)={zeR(I~.k); 1 - ] z ]

>~2-~-2]I]} be the top half of

R(I~.k).

We select a subfamily 3 of {In,k} b y the rule

IjeY

if l j is a m a x i m a l arc among those I~.k for which

T(I~.k)~ G,#O.

Then

G~ N R(I)= (J~R(Ij)

and the arcs in Y have pairwise disjoint interiors.

F o r I j 6 y choose

r f ~ 6 T(Ij) A G~

with smallest modulus rj. Then

G, (~ R(Ij)= S(Oj, rj)

and 1 - r j ~ < I I j [ . Hence

G~ ~ R(I)= [J j S(Oj, rj)

and X(1

-rj) < E l lj] <. [I[.

Now consider a function f ~vith the following property:

(5)

A CHA/tACTERIZATION OF DOUGLAS SUBALGEBRAS 85

(P1)

/ E L ~176 a n d t h e r e exist e a n d ~, 0 < e , ~ < 1 , such t h a t t h e m e a s u r e /~, defined b y d#~ =Za~(z) (1 - r ) I VII

~rdrdO

satisfies sup1

#8(R(I))/I I l `<~.

F o r e x a m p l e , a f u n c t i o n satisfying t h e h y p o t h e s i s of L e m m a 5 has p r o p e r t y (P1).

THI~OREM 6.

There is a constant C such that i/] has property

(1)1)

then

lim sup

d(/b ~ , H ~) <~ C e 1/2 .

n--~*O0

Proo/.

Since

L~/H ~

is t h e dual of H 1 = {g ell1; g ( 0 ) = 0 } we h a v e

d(/b ~, H~176 = sup { ] l ; /(e'~ b ~( e~~ g(e'~ dOl : g E H~, H g Hl <<. l }.

(1)

B y a d e n s i t y a r g u m e n t we can a s s u m e g E H % Moreover, if u is t h e Blaschke f a c t o r of g a n d

k=g/u,

t h e n

g=k

+ k ( u - 1 ) where n e i t h e r k n o r k ( u - 1 ) h a s zeros in D. T h u s in esti- m a t i n g

d(]b n, H ~)

using (1), we can a s s u m e

geH~

a n d

g=h 2,

h e l l ~176

HhH~`<I.

Finally, replacing / b y

a] +c

w i t h l al ~< 1 does n o t h a r m p r o p e r t y (P1), so t h a t we can a s s u m e

[[/[[~ ~< 1 a n d f(O) = O.

W i t h these a s s u m p t i o n s we h a v e b y L e m m a 1,

1 9 r log ! dr

2,.

1 = f for, V(bna) dO.

(2)

Since b n a n d g are a n a l y t i c functions, we h a v e

(b~g)(z)=b~(z)g(z)

so t h a t V ( b n g ) =

bnVg+

gVb ~

on D.

W e n o w e s t i m a t e as follows:

l f fDV/" (b'Vg)rlog~drdO I

.<1 I'I" Ib~l

~ J J D

Ivll Ivglrlog~ardO

_ 1~

ff ]b~l

I V / 1 2 i h l

Ih'lrlog~drdO

xl J J D

(l fro

1 \ 1 / 2 / 4 l'l" ~ )I/2,

`<V~ Ib~l Iv/Plhprlog-drdOI l- / / Ih'prlog drdO r / \2"gj

JD

B y L e m m a 1 t h e second f a c t o r is

4 n "~112

('~r~f~rtlh-h(O)12dO)

~ '8 [I,II1) 1/2 9 (3) T o e s t i m a t e t h e first f a c t o r write

lffo'b =llV/l lhl rlog!araO=L+fo\o=S,+S,.

(6)

86 SUN-YUNG A. C H A N G

Since

G~ c {]z I/> 1/2}

we have log

1/r ~< c(1 - r )

on G~. Using (1)1) and L e m m a 3 we then have

$1 < cA~llhH~ < ~A~lfg]ll. (4)

Also

$2< ( 1 - d )

2nl ffD IV/l~lhl2r log!drdO.

Since ]]/]]. < 2 H/I] ~ < 2, Lemmas 3 and 4 give

S 2 < (1

-cS)2n8A1A2[]gHI .

(5)

Combining (3), (4) and (5) gives

lffDV].bn~grlog~drdO]<C(8112+(1-c~)n)]lg][ 1

(6) for a universal constant C.

We now estimate

~" ffV/'gVb"rlog!drdO=~+ ~\a =S3+S..

7g

Write

1 1 \~zu/1 1 \~/2

]Sa[< (~ffa~

[V/]Z[h]~r

l~ (~ ffa~ IVbnlzlhl2rl~ "

Since IIb-II, 42, the~e two factors can be bounded as were Sx and Sg so t h a t

]Sal <~ 4Axe~/2Az

I]g]ll. (7)

7~

For S a we again use the Schwartz inequality to get

iS41<(ff D iV/12[hlerlogldrdO~l/2((( \o~ r / \aj.\o~lVb"l~lhl~rl~

~ 1 ~ \112

"

As with the estimate for $2, the first factor is dominated b y

(8A~A2[[gU~)a/2,

and since

IW"l < ~(~ - ~)"~ IWl on D\G~, the ~econd factor does not e~ceed ~(X - ~)" 1(8A~ As IIgH~)i'~.

Combining our bound for S 4 with (7) gives

f f V/.gVb"rlog~drdO < C3(sa/2 +n(1-~)"-')[[gH1.

for a universal constant C 3.

With (6) and (2) this inequality implies

1 f/(e,O ) bn(e,O ) g(e,O ) dO < G(s ''2 +

n(1 -- 0) n-x)

Ilalh

(7)

A C H A R A C T E R I Z A T I O N OF D O U G L A S S U B A L G E B R A S 87 w h e n e v e r g ~ H ~ h a s no zeros. B y (1) a n d our r e m a r k s a b o u t g i m m e d i a t e l y following (1) we h a v e

d(/b n, H ~176 <. 3C(e ~/~ + n ( 1 - 6)~,1), a n d this p r o v e s t h e t h e o r e m .

4. A characterization of Douglas algebras

Before p r o v i n g t h e m a i n t h e o r e m we m u s t m a k e some o b s e r v a t i o n s a b o u t m a x i m a l ideal spaces. F u r t h e r details are in [11]. Because H ~176 is a l o g m o d u l a r s u b a l g e b r a of L ~176 [8], each ~0 E ~ ( H ~ has a unique r e p r e s e n t i n g m e a s u r e m~ s u p p o r t e d on ~(L~176 F o r a n y / E L ~176 we can define f(~o)= S/dmr a n d b y t h e uniqueness of m~, f is continuous on ~ ( H r 1 7 6

Of course, if for all g E H ~176 q)(g)=g(z) w i t h z e D , t h e n f ( T ) = [ ( z ) f o r / e L ~176 I f H ~ 1 7 6 B c L ~176 t h e n ~ ( B ) = {~ E 7~I(H~176 f(~v) ~(~0) = (/g) ^ (q)) for all /, g E B}. I f / e (L~176 -1 (i.e. / is a n in- vertible element of L ~176 a n d if ]/] = 1 a.e., t h e n we d e n o t e / - 1 = [. I f B is a Douglas algebra, t h e n ~ ( B ) = { q ~ : Iq0(b)[ = 1 w h e n e v e r b is i n n e r a n d

SeB}

(c.f. [11], [4]).

T H E O R E M 7. I / B and B 1 are closed subalgebras o / L ~176 containing H ~176 i/ ~ ( B ) = 7In(B1) and i ] B is a Douglas algebra, then B = B r

Proof. T h a t B c B 1 is n o t difficult. I t reduces t o showing t h a t 5 E B 1, w h e n e v e r b is a n inner f u n c t i o n invertible in B. B u t since ~ ( B ) = ~ ( B 1 ) , b h a s no zeros on ~ ( B 1 ) a n d as b E H ~ 1 7 6 b is invertible in B 1. H e n c e b = b -1 is in B r

T o p r o v e B l c B suppose B is g e n e r a t e d b y H ~176 a n d a f a m i l y {bz} of conjugates of in- n e r functions. F o r a n y finite set F of t h e i n d e x set {2}, let b F = H F b~, a n d let BF be t h e algebra g e n e r a t e d b y H ~~ a n d Sv- Clearly b~ e B y if % e F . W r i t e G~(bF) = {z E D: I bF(z) I >~

1 - ~ } , 0 < ~ < 1 .

L e t g e B I. A d d i n g a constant, we can a s s u m e geB11. L e t hE(H~176 -1 satisfy Ihl = ]g[

a.e. a n d let ] = g h - l E B 1 . T h e n / e B ; ~ a n d [][ = 1 a.e. I t suffices t o p r o v e ] E B 1.

Since B is a Douglas algebra, ~ ( B ) - - N { ~ ( B v ) : F ~ {bx}, F finite}. Since If[ = 1 on

~ ( B 1 ) = ~ ( B ) , c o m p a c t n e s s implies t h a t for a n y e > 0 t h e r e is a finite set F c { $ x } such t h a t Ill > 1 - e / 2 on :~l(B~). This m e a n s ]](z)l > 1 - e on s o m e region Ge(bv), 6 > 0 . I n d e e d , if t h e r e were z~eal/~(bF) with [/(zn) [ ~ < l - e , t h e n a n y cluster p o i n t ~0 of {zn} in ~ t ( H ~176 would satisfy [~(bv)[ = 1 so t h a t ~ 0 e ~ ( B ~ ) . B u t since ] is continuous on ~ ( H ~ 1 7 6 W e would h a v e a contradiction. Decreasing ~, we can a s s u m e Ge(bv)c {Iz I > 1/2}. F r o m L e m m a 5 a n d T h e o r e m 6 we now h a v e

d(/, B) < d(/, By) < d(/, b~ H ~) = d(/b~, H ~ < Ce ~/~

for s u i t a b l y large n. Because B is closed this m e a n s / ~ B.

(8)

8 8 S U N - Y U ~ G A. CHANG

5. A description of the largest C*-algebra contained in a subalgebra

Suppose B is a closed subalgebra of L ~ p r o p e r l y c o n t a i n i n g H ~176 The largest C*-algebra c o n t a i n e d in B is t h e algebra B N/~ w h e r e / ] denotes t h e space of complex conjugates of functions in B. The proof of T h e o r e m 7 yields a description of t h e functions in B (I/~

when B is a Douglas algebra. I n view of t h e paper [9] this description of B f//~ is valid whenever H ~ c B c L ~

T~V~OREM 8. Suppose B is a Douglas algebra. L e t / E L ~. T h e n / E B N B i / a n d only i/

/ satis/ies

(P~) /or every s > 0 there is an inner/unction b e B -1 and there is (~, 0 < 8 < 1 such that the measure d/z =Zc~(b)(z)(1 - r) I V/12rdrdO satis/ies /z(R(I)) <~e I I I / o r all subarcs I o/~D.

Proo/. Suppose / satisfies (P~). T h e n for a n y s > 0 there is b E B -1 so t h a t b y T h e o r e m 6, d(/, bnH~176 1/2 w h e n n is large. H e n c e / E B . Since [ also satisfies ( P 2 ) , / E B N B.

On t h e other h a n d , if / E B N/~ a n d I / I = 1, t h e n the proof of T h e o r e m 7 shows t h a t / has (P~). Being a C* algebra, B N/~ is t h e closed linear span of t h e u n i m o d u l a r functions in B N/~. A n d b y L e m m a 4 a n d t h e inequality IigiI.~<21[gll~, t h e space of functions in L ~176 h a v i n g (P2) is u n i f o r m l y closed. Hence each / E B N/~ has (P2).

I n t h e special case b = z , t h e closed algebra g e n e r a t e d b y H ~ a n d ~ is actually t h e space H ~176 + C ([7], [11]). T h e o r e m 8 t h e n gives t h e description f r o m [12] of (H ~ + C) N (H~176 C) as V M O N L %

References

[1]. A~LER, S., On some properties of H ~ +L~. Proprint.

[2]. CARLESO~, L., Interpolations by bounded analytic functions and the corona problem.

Ann. o/Math., 76 (1962), 547-559.

[3]. CHANO, S. Y., On the structure and characterization of some Douglas subalgobras. To appear in Amer. J. Math.

[4]. DOUGLAS, R. G., On the Spectrum of Toeplitz and Wiener-Hopf Operators. Prec. Con- /erence on Abstract Spaces and Approximation, (Oberwolfach, 1968), I.S.N.M., 10 (birkhauser Vorlag, Basel, 1969), 53-66.

[5]. - - Banach Algebra Techniques in Operator Theory, Academic Press, New York 1972.

[6]. FEF~'E~MAN, C. & STEIN, E. iYI., H p spaces of several variables. Acta Math., 129 (1972), 137-193.

[7]. HELSON, H. & SARASON, D., Past and Future. Math. Scand., 21 (1962), 5-16.

[8]. HOFFMAN, K., Banach space o/analytic /unctions. Prentice Hall, Englewood Cliffs, N.J., 1962.

[9]. M ~ S H ~ L , D., Subalgebras of Z ~176 containing H ~ Acta Math., 137 (1976), 91-98.

[10]. SARASON, D., An addendum to 'Past and Future'. Math. Scand., 30 (1972), 62-64.

[11]. - - Algebras of functions on the unit circle. Bull. Amer. Math. Soc., 79 (1973), 286-299.

[12]. Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., 207 (1975), 391-405.

(9)

A CHARACTERIZATION OF DOUGLAS SUBALGEBRAS 89 [13]. STEIN, E . M . & WEISS, G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton

Math. Series, 1971.

[14]. STEIn, E. M., Singular Integrals and di]/erentiability Properties o] Functions. Princeton Math. Series 1970.

[15]. WEIGET, T., Some Subalgebras of L~(T) determined b y their m a x i m a l ideal spaces. Bull.

Amer. Math. Soc., 81 (1975), 192-194.

Received August 29, 1975

Références

Documents relatifs

For ES levels close to one (between 0.5 and 1.5), the specification (29) in level gives a pretty good approximation of the exact CES function (24) with no visual difference (see

(Since we do not even use the countable axiom of choice, we cannot assume the countable additivity of Lebesgue measure; e.g. the real numbers could be a countable union of

Show that there exist entire functions of arbitrarily large order giving counterexamples to Bieberbach’s claim p.. Let f be an

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

SUMMARY - We give an intuitively appealing description of the character space of the algebra of regulated functions on a compact interval.. The character space of the

We give a very simple algorithm to compute the error and complemen- tary error functions of complex argument to any given

The first testcase corresponds to the loop detection problem in the trajectory of a mobile robot using proprioceptive measurements only.. In this situation, we have to find the

Having determined the singularities of the kernel of the Fourier transform ~(t) of the spectral measure when ] t I &lt; e, we shall now invert the