• Aucun résultat trouvé

A finite state version of the Kraft-McMillan theorem

N/A
N/A
Protected

Academic year: 2021

Partager "A finite state version of the Kraft-McMillan theorem"

Copied!
21
0
0

Texte intégral

(1)

HAL Id: hal-00619334

https://hal-upec-upem.archives-ouvertes.fr/hal-00619334

Submitted on 6 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Frédérique Bassino, Marie-Pierre Béal, Dominique Perrin

To cite this version:

Frédérique Bassino, Marie-Pierre Béal, Dominique Perrin. A finite state version of the Kraft-McMillan theorem. SIAM Journal on Computing, Society for Industrial and Applied Mathematics, 2000, 30 (4), pp.1211-1230. �hal-00619334�

(2)

FR

ED

ERIQUE BASSINO

, MARIE-PIERRE B

EAL

, AND DOMINIQUE PERRIN

Abstrat. Themainresultisanite-stateversionoftheKraft-MMillantheoremharaterizing

thegeneratingsequeneofak-aryregulartree.Theproofusesanewonstrutionalledthemultiset

onstrutionwhihisaversionwithmultipliitiesofthewell-knownsubsetonstrutionofautomata

theory.

Keywords.generatingseries,regulartrees,nonnegativematries.

AMSsubjet lassiations.68Q45,68R10,94A45,37B10

1. Introdution. TheKraftinequality P

n0 s

n k

n

1haraterizesthegen-

erating sequenes (s

n )

n0

of leaves in a k-ary tree. It is used in onnexion with

Humanalgorithm tobuildprexodesorsearhtreesandusuallyrestritedto the

ase of nite trees. We are interested here in the ase of innite sequenes orre-

sponding to innite trees. These innite trees arise for example as searh trees in

innitesets. Theyalsoappearintheontextofniteautomata havingnestedloops

torepresentthesetofrstreturnstoagivenstate. Thetreethusobtainedisalleda

regulartree. Ithasonlyanitenumberofnon-isomorphisubtreessinetwosubtrees

orresponding to the samestate of theautomaton are isomorphi. The generating

sequenes ofsuh innitetreesare of interestin the appliations ofnite automata

totextompressionorhanneloding.

Our main result is a haraterization of the generating sequenes of leaves of

regular k-ary trees. Its essene is that the two onditions of being the generating

sequeneof

(i) ak-arytree

(ii) aregulartree

are independent in the sense that their onjuntion is enough to guarantee that a

sequeneisthegeneratingsequeneofaregulark-arytree.

The proof uses a new onstrution on graphs alled the multiset onstrution

whihisaounterpartforautomatawithmultipliitiesofthewell-knownsubseton-

strutionofautomatatheory.

Our resultshaveaonnexion with symbolidynamis. Atually, in both ases,

theemphasisisonthespaeofpathsinanite graph. Evenifwedonotuseresults

fromsymbolidynamis,someofthemethodsused,likestate-splittingorthePerron

theory are similar. Using an expression of Lind and Marus [15℄, our treatmentis

\dynamial in spirit". The relationship with symboli dynamis is disussed more

loselyin[7℄and[8℄.

The paper is organized as follows. Setion 2 ontains preliminary results and

denitions on graphs, trees, regularsequenes and the Perron-Frobeniustheory. In

Setion 3,wepresentthe multisetonstrution. Setion 4ontainsthe proofof our

mainresult(Theorem4.2). Thefollowingsetion(Setion5)treatsasimilarproblem,

withthesetofleavesreplaedbytheset ofallnodes.

The results ontained in this paper represent the terminal point of a series of

steps. Inapreviouspaper[7℄(withapreliminaryversionin[5℄),weprovedTheorem

InstitutGaspardMonge,UniversitedeMarne-la-Vallee,77454Marne-la-ValleeCedex2Frane.

fbassino,beal,perringu niv- mlv .fr.

(3)

4.2 in the partiular ase of a strit inequality. The proof uses the tehnique of

state-splitting from symboli dynamis. In the same paper, we also give a proof

of Theorem 5.3 whih is dierent from theproof given here,whih is based on the

multiset onstrution and is more simple. Part of the results of the present paper

waspresentedattheonfereneLATIN'98[6℄. Finally,thesurveypaper[8℄givesan

overviewoflengthdistributionsand regularsequenes.

2. Denitionsand bakground. Inthissetion,wexournotationonern-

ing graphs, trees and regular sequenes. We also reall some notions onerning

positivematries.

Awordontheterminologyusedhere. Weonstantlyusethetermregular where

ariherterminologyisoftenused. Inpartiular,whatweallherearegularsequene

is,in Eilenberg'sterminology,anN-rational sequene(see[11℄,[19℄or[10℄).

2.1. Graphs and trees. Inthispaper,weusediretedmultigraphsi.e.graphs

with possibly several edgeswith thesame originandthe sameend. We simplyall

them graphs in all what follows. We denote G = (Q;E) agraph with Q as set of

vertiesandE asset ofedges. WealsosaythatGisagraphontheset Q.

AtreeT onasetofnodesN witharoot r2N isafuntionT :N frg !N

whih assoiatesto eah node distint from theroot its fatherT(n), in suh away

that, for eah node n, there is a nonnegativeinteger h suh that T h

(n) = r. The

integerhistheheight ofthenoden.

A treeis k-ary ifeahnode hasat mostk hildren. A node withouthildrenis

alled aleaf. Anode whih isnotaleafis alledinternal. Anode nisadesendant

of a node m ifm = T h

(n) for someh 0. A k-ary tree is omplete ifall internal

nodeshaveexatlykhildrenandhaveatleastonedesendantwhihisaleaf.

For eah node n of a tree T, the subtree rooted at n, denoted T

n

is the tree

obtainedbyrestritingtheset ofnodestothedesendantsofn.

TwotreesS;Tareisomorphi,denotedS T,ifthereisamapwhihtransforms

S into T by permuting thehildren ofeah node. Equivalently, S T ifthere is a

bijetivemap f :N !M from theset ofnodesofS ontotheset ofnodesofT suh

thatf ÆS =T Æf. Suhamapf isalledanisomorphism.

If T is a tree with N as set of nodes, the quotient graph of T is the graph

G=(Q;E)where QandE aredenedasfollows. Theset QisthequotientofN by

theequivalenenmifT

n T

m

. Letm denotethelassofanodem. Thenumber

ofedgesfromm to nisthenumberofhildrenofmequivalentton.

Conversely, the set of paths in a graphwith given originis atree. Indeed, let

G = (Q;E) be a graph. Let r 2 Q be a partiular vertex and let N be the set

of paths in G starting at r. The tree T having N as set of nodes and suh that

T(p

0

;p

1

;:::;p

n )=(p

0

;p

1

;:::;p

n 1

)isalled theovering tree ofGstartingat r.

BothonstrutionsaremutuallyinverseinthesensethatanytreeT isisomorphi

totheoveringtreeof itsquotientgraphstartingat theimageoftheroot.

Proposition 2.1. Let T bea tree with root r. Let Gbeits quotient graph and

letibethevertexofGwhih isthe lassofthe rootofT. ForeahvertexqofGand

for eah n0,the numberof paths oflengthn fromi toqisequal tothe numberof

nodesof T atheight nin thelass of q.

A tree is said to beregularif it admits only anite number of non-isomorphi

subtrees,i.e. ifitsquotientgraphisnite.

For example, the innite tree represented on Figure 2.1 is a regular tree. Its

(4)

Fig.2.1. Aregulartree.

1 3

4 2

Fig.2.2.Anditsquotientgraph.

There isalsoaloseonnexion betweentreesand sets ofwordsonanalphabet.

Let X bea set ofwordson thealphabet f0;1;:::;k 1g. The set X is said to be

prex-losed ifanyprex ofanelementofX isalso inX. WhenX isprexlosed,

we anbuild atree T(X) asfollows. Theset of nodes is X, the root is the empty

wordandT(a

1 a

2 a

n )=a

1 a

2 a

n 1 .

LetforexampleX=f;0;1;10;11g.ThetreeT(X)isrepresentedonFigure2.3.

Fig.2.3.ThetreeT(X).

2.2. Regularsequenes. Weonsidersequenesofnaturalintegerss=(s

n )

n0 .

We shall not distinguish between suh a sequene and the formal series s(z) =

P

n0 s

n z

n

:

WeusuallydenoteavetorindexedbyelementsofasetQ,alsoalledaQ-vetor,

withboldfaesymbols. Forv=(v

q )

q2Q

wesaythatvisnonnegative,denotedv0,

(resp. positive, denoted v > 0) if v

q

0 (resp. v

q

> 0) for all q 2 Q. The same

onventions are used for matries. A nonnegative QQ-matrix M is said to be

irreduible if, forallindies p;q, there is anintegerm suh that (M m

) >0. The

(5)

matrixisprimitive ifthereisanintegermsuhthat M m

>0.

Theadjaeny matrix of agraphG=(Q;E) istheQQ-matrixM suh that

foreahp;q2Q,theintegerM

p;q

isthenumberofedgesfromptoq. Theadjaeny

matrixofagraphGisirreduibleithegraphisstronglyonneted. Itisprimitive

if,moreover,theg..d oflengthsofylesin Gis1.

LetGbeanitegraphandletI,T betwosetsofverties. Foreahn0,lets

n

bethenumberofdistintpathsoflengthnfromavertexofI toavertexofT. The

sequenes=(s

n )

n0

isalled thesequenereognized by(G;I;T)oralso by GifI

and T are alreadyspeied. When I =fig and T =ftg,wesimply denote(G;i;t)

insteadof (G;fig;ftg).

A sequene s = (s

n )

n0

of nonnegative integers is said to be regular if it is

reognizedbysuhatriple(G;I;T),whereGisnite. Wesaythatthetriple(G;I;T)

isarepresentationofthesequenes. ThevertiesofI arealledinitial andthoseof

T terminal. Tworepresentationsaresaidtobeequivalent iftheyreognizethesame

sequene.

Arepresentation(G;I;T)issaidto betrim ifeveryvertexofGisonsomepath

fromI toT. Itislearthatanyrepresentationisequivalenttoatrimone.

A wellknownresult in theory of nite automata allowsoneto use apartiular

representationofanyregularsequenessuhthats

0

=0. Oneanalwayshoosein

this ase arepresentation (G;i;t) of s with aunique initial vertex i, a uniquenal

vertext6=isuhthatnoedgeisenteringvertexiand noedge isgoingoutofvertex

t. Suh a representationis alled anormalized representation (see for example[17℄

page14).

Let (G;i;t) be atrim normalizedrepresentation. If we merge theinitial vertex

i and thenal vertext in a singlevertex still denoted byi, weobtaina newgraph

denotedbyG,whihisstronglyonneted. Thetriple(G ;i;i)isalledthelosureof

(G;i;t).

Let sbea regularsequene suh that s

0

=0. The star s

of thesequene sis

denedby

s

(z)= 1

1 s(z) :

Proposition 2.2. If (G;i;t) is a normalized representation of s, its losure

(G ;i;i)reognizesthe sequenes

.

Proof. Thesequene s isthe lengthdistribution ofthe pathsof rst returnsto

vertexiinG,thatisofnitepathsgoingfromitoiwithoutgoingthroughvertexi.

Thelengthdistributionof theset ofall returnsto iis thus 1+s(z)+s 2

(z)+:::=

1=(1 s(z)).

An equivalent denition of regular sequenes uses vetors instead of sets I;F.

Let i be a Q-rowvetorof nonnegativeintegers and let tbe aQ-olumn vetorof

nonnegativeintegers. Wesaythat(G;i;t)reognizesthesequenes=(s

n )

n0 iffor

eahintegern0

s

n

=iM n

t;

whereM istheadjaenymatrixofG. Theproofthatbothdenitionsareequivalent

followsfromthefatthatthefamilyofregularsequenesislosedunderaddition(see

[11℄). Atriple(G;i;t)reognizingasequenesisalsoalledarepresentationofsand

(6)

A sequenes=(s

n )

n0

ofnonnegativeintegersis rational ifitsatisesareur-

rene relationwithintegraloeÆients. Equivalently,s isrational ifthereexist two

polynomialsp(z);q(z)withintegraloeÆientsandwithq(0)=1suhthat

s(z)= p(z)

q(z) :

Anyregular sequeneis rational. Theonverseis howevernottrue(seeSetion

5). Forexample,thesequenesdenedbys(z)= z

1 z z 2

isthesequeneofFibonai

1 2

Fig.2.4.TheFibonaigraph.

numbersalsodenedbys

0

=0;s

1

=1ands

n+1

=s

n +s

n 1

. Itisreognizedbythe

graphofFigure 2.4withI =f1gandT =f2g.

2.3. Regular sequenes and trees. If T is atree, itsgenerating sequeneof

leaves is thesequene of numberss=(s

n )

n0

, where s

n

isthe numberof leavesat

heightn. Wealsosimplysaythat sisthegenerating sequene ofT.

Thefollowingresultisadiretonsequeneofthedenitions.

Theorem 2.3. The generatingsequeneof aregulartreeisaregularsequene.

Proof. LetT bearegulartreeandletGbeitsquotientgraph. SineT isregular,

G is nite. The leaves of T form an equivalene lass t. By Proposition 2.1, the

generating sequeneof T is reognizedby(G;i;t) where i isthelass of therootof

T.

Wesaythatasequenes=(s

n )

n1

satisestheKraft inequalityfortheinteger

kif

X

n0 s

n k

n

1;

i.e.usingtheformalseriess(z)= P

n0 s

n z

n

,if

s(1=k)1:

WesaythatssatisesthestritKraftinequalityforkifs(1=k)<1. Thefollowing

resultiswell-known(see[3℄page35forexample).

Theorem 2.4. A sequene s is the generating sequene of a k-ary tree i it

satisesthe Kraft inequalityfor the integerk.

Proof. LetrstTbeak-arytreeandletsbeitsgeneratingsequene. Itisenough

toprovethat,foreahn0,thesequene(s

0

;:::;s

n

)satisestheKraftinequality.

ItisthegeneratingsequeneofthenitetreeobtainedbyrestritingT tothenodes

atheightatmostn. WemaythussupposeT tobeanitetree. Wehave

s(z)=zt

1

(z)+:::+zt

k (z)

wheret

1

;:::;t

k

arethegeneratingsequenesofleavesofthe(possiblyempty)subtrees

rooted at the hildrenof the root of T. By indution on the number of nodes, we

havet (1=k)1whenethedesiredresult.

(7)

Conversely,weuseanindution onntoprovethatthereexistsak-arytreewith

generatingsequene(s

0

;:::;s

n

). Forn=0,wehaves

0

1andT iseitheremptyor

reduedtoonenode. SupposebyindutionhypothesistohavealreadybuiltatreeT

withgeneratingsequene(s

0

;s

1

;:::;s

n 1

). Wehave

n

X

i=0 s

i k

i

1;

then

n

X

i=0 s

i k

n i

k n

;

andthus

s

n k

n n 1

X

i=0 s

i k

n i

:

Thisallowsustoadds

n

leavesatheightnto thetreeT.

LetusonsidertheKraft'sequalityase. Ifs(1=k)=1,thenanytreeT havings

asgeneratingsequeneisomplete. Theonversepropertyisnottrueingeneral(see

[11℄p. 231). However,itis alassialresultthatwhenT is aomplete regulartree,

itsgeneratingsequenesatisess(1=k)=1(seeProposition2.8).

Forthesakeofaompletedesriptionoftheonstrutiondesribedaboveinthe

proof of Theorem 2.4, we have to speify the hoie made at eah step among the

leavesatheightn. Apossiblepoliyistohoosetogiveasmanyhildrenaspossible

tothenodeswhiharenotleavesandofmaximalheight.

IfwestartwithanitesequenessatisfyingKraft'sinequality,theabovemethod

builds a nite tree with generating sequene equal to s. It is not true that this

inremental method givesa regular tree when we start with a regular sequene, as

shownin thefollowingexample.

Lets(z)=z 2

=(1 2z 2

). Sines(1=2)=1=2,wemayapplytheKraftonstrution

to buildabinarytree withlengthdistribution s. Theresultisthe treeT(X)where

X istheset ofprexesoftheset

Y = [

n0 01

n

0f0;1g n

:

whihisnotregular.

Ifsisaregularsequenesuh thats

0

=0,thereexists aregulartreeT havings

asgeneratingsequene. Indeed,let(G;i;t)beanormalizedrepresentationofs. The

generatingsequeneoftheoveringtreeofGstartingatiiss. Ifssatisesmoreover

theKraftinequalityforanintegerk,itishowevernottruethat theregularovering

treeobtainedisk-ary,asshownin thefollowingexample.

Let sbethe regularsequene reognized bythe graphof Figure 2.5on theleft

withi=1andt=4. Wehaves(z)=3z 2

=(1 z 2

). Furthermores(1=2)=1andthus

ssatisesKraft'sequalityfork=2. Howevertherearefouredgesgoingoutofvertex

2and its regularoveringtreestarting at 1is 4-ary. A solution forthis exampleis

given by thegraph of Figure 2.5 onthe right. It reognizess and its overingtree

startingat1is theregularbinarytreeofFigure2.1.

TheaimofSetion4istobuildfromaregularsequenesthatsatisestheKraft

inequalityfor aninteger k a tree with generating sequene s whih is both regular

(8)

1 2 3

4

1 3

4 2

Fig.2.5.Graphsreognizings(z)=3z 2

=(1 z 2

).

2.4. Approximate eigenvetor. Let M be the adjaeny matrix of a graph

G. Bythe Perron-Frobenius theorem (see [12℄, for ageneral presentation and [15℄,

[14℄or[9℄forthelinkwithgraphsandregularsequenes),thenonnegativematrixM

hasanonnegativereal eigenvalueof maximalmodulus denotedby ,alsoalled the

spetralradiusofthematrix.

WhenGisstronglyonneted,thematrixisirreduibleandthePerron-Frobenius

theoremassertsthat thedimensionoftheeigenspaeofthematrixM orresponding

toisequalto one,andthat thereisapositiveeigenvetorassoiatedto .

Letkbeaninteger. Ak-approximateeigenvetorofanonnegativematrixM is,

bydenition,anintegralvetorv0suhthat

Mvkv :

Onehasthefollowingresult(see[15℄p.152).

Proposition 2.5. An irreduible nonnegative matrix M with spetral radius

admitsa positive k-approximate eigenvetorik.

Foraproof,see[15℄p.152. WhenMistheadjaenymatrixofagraphG,wealso

saythatvisak-approximateeigenvetorofG. Theomputationofanapproximate

eigenvetoranbeobtainedbytheuseofFranaszek'salgorithm(seeforexample[15℄).

Itanbeshownthatthereexistsak-approximateeigenvetorwithelementsbounded

abovebyk 2n

wheren isthedimensionof M [4℄. Thusthesize oftheoeÆientsof

ak-approximate eigenvetoris bounded abovebyanexponentialinn andanbein

theworstaseofthisorderofmagnitude.

Thefollowingresultiswell-known. Itlinkstheradiusofonvergeneofasequene

withthespetralradiusoftheassoiatedmatrix.

Proposition2.6. Letsbearegularsequenereognizedbyatrimrepresentation

(G;I;T). LetM bethe adjaeny matrixof G. Theradiusofonvergeneof sisthe

inverseof the maximaleigenvalueof M.

Proof. ThemaximaleigenvalueofM is=limsup

n0 n p

kM n

k,where kkis

anyof theequivalentmatrixnorms. Letbetheradiusofonvergeneofsand, for

eahp;q2Q, let

pq

betheradiusof onvergeneofthe sequeneu

pq

=(M n

pq )

n0 .

Then 1== min

pq

. Sine (G;I;T)is trim, we have

pq

for allp;q2 Q. On

the other hand, min

pq

sine s is a sum of some of the sequenes u

pq . Thus

s

=min

pq

whih onludestheproof.

Asaonsequeneofthisresult,theradiusofonvergeneofaregularsequene

sisapole. Indeed,withtheabovenotation,s(z)=i(1 Mz) 1

t. Thendet(I Mz)

is adenominator ofthe rationalfration s, thepolesof s areamong theinversesof

theeigenvaluesofM. Andsine1=istheradiusofonvergeneofs,ithasto bea

Références

Documents relatifs

[5] HO DANG PHUC, Universal distribution for infinitely divisible distributions in a Banach space (Prepint).. NISIO, On the convergence of sums of independent Banach

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

If R and S are two commuting normal (of course bounded) operators on an Hilbert space H then, via the Gelfand transform, R and S correspond to some continuous functions on a

We give a crossed product con- struction of (stabilized) Cuntz-Li algebras coming from the a-adic numbers and investigate the structure of the associated algebras.. In particular,

In a second step, we will use an analogue of the well-known closed subgroup theorem (also called Cartan theorem for finite dimensional Lie groups) which, in the Banach Lie context

In Section 2, we recall the notions of isomorphic left D-modules and equivalent matrices, as well as the effective version of Fitting’s result and the statement of Warfield’s

We give a simple proof of the “tree-width duality theorem” of Seymour and Thomas that the tree-width of a finite graph is exactly one less than the largest order of its brambles..

This theorem was motivated by Hilbert’s 2nd problem, which asked whether arithmetic is consistent; Hilbert’s rather vague question was interpreted to ask whether the “standard