• Aucun résultat trouvé

S-CHANNEL PHENOMENOLOGY OF DIFFRACTION SCATTERING

N/A
N/A
Protected

Academic year: 2021

Partager "S-CHANNEL PHENOMENOLOGY OF DIFFRACTION SCATTERING"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00215210

https://hal.archives-ouvertes.fr/jpa-00215210

Submitted on 1 Jan 1973

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

S-CHANNEL PHENOMENOLOGY OF DIFFRACTION SCATTERING

Hannu Miettinen

To cite this version:

Hannu Miettinen. S-CHANNEL PHENOMENOLOGY OF DIFFRACTION SCATTERING. Journal

de Physique Colloques, 1973, 34 (C1), pp.C1-263-C1-267. �10.1051/jphyscol:1973130�. �jpa-00215210�

(2)

S-CHANNEL PHENOMENOLOGY OF DIFFRACTION SCATTERING

S-CHANNEL PHENOMENOLOGY OF DIFFRACTION SCATTERING

Hannu I. MIETTINEN +)

CERN

A fruitful way to look at diffraction scattering is to consider it as a shadow of inelastic processes S-channel unitarity gives :

large extent different regions of the phase space.

This suggests that it might be useful to consider their contributions to elastic scattering separa- tely. Hence we split Ginel(t) into two parts :

where Tfi is elastic amplitude and Tni (Tnf) the amplitude of the production process i + n (f + n).

The q-.:,ntities Gi, i = el, inel, are called the elastic and inelastic overlap functions, respecti- vely. C1I

Diffraction scattering has been studied for a long time with the help of the Eq.(l) but the pro- gress has not been very rapid

-

partially due to lack of knowledge of the particle production am- plitudeswhichare the input in the approach, par- tially because Eq.(l) is in spite of its simple appearance actually a very complicated relation. In the last year a new wave of enthusiasm in the above

"shadow approach" has grown. This enthusiasm has been triggered by the results of the experiments at the NAL and the ISR : rising total cross-sections, detailed measurements of the s- and t- dependewe of the elastic differential cross-section in proton- proton scattering and

-

of course

-

by the enormous flow of data on multiparticle production which has greatly improved the understanding of the dynamics of multi-body processes.

I .

-

TheThree-Component Pomeron : The measurements of the inclusive proton spectra at the NAL and the ISR show that at high energies inelastic diffrac- tion and non-diffractive production populates to a

---

+) Herman Rosenberg Foundation Fellow. On leave of absence from the Research Institute for Theoreti- cal Physics, University of Helsinki, Finland.

Here, GT(t) is the shadow of the non-diffractive production (s= "pionization") and G (t) that of

D

diffractive production. Combining Eqs.(l) and (2) one has

This "three-component structure" of the Pomeron is illustrated below :

In the forward direction Eq.(l) reduces to the Optical Theorem. Thus at t=O the size of the indi- vidual components are known : G (0) =ue1=7 mb,

el

GT (0) = UT

=

25 mb and G (0) = U D 3 7 mb at D

200 GeV/c. A question of great interest is : How do these three components build up the t-dependence of the elastic amplitude, especially the interes- ting structures observed experimentally (the break

2 2

at t = -0.1 GeV and the dip at t = -1.3 GeV ) ?

2. Ginel (t) from Experiment : The inelastic com-

-

ponent of the Pomer-on can be directly solved from experimental data..

p'

3j0ne rewrites Eq. (I) :

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1973130

(3)

C1-264 H. I. MIETTINEN

s o l v e s Im Tfi and Re T from e l a s t i c s c a t t e r i n g f i

d a t a w i t h a r e a s o n a b l e assumption on t h e e l a s t i c phase and performes t h e loop i n t e g r a t i o n . The r e - s u l t of t h i s e x e r c i s e i s shown i n Fig. I .

Fig. 1. I n e l a s t i c o v e r l a p f u n c t i o n c a l c u l a t e d from t h e 1500 GeV/c proton-proton d a t a . From Ref. ( 3 ) .

A s t r i k i n g o b s e r v a t i o n i s t h a t G ( t ) changes s i g n

2 i n e l

a t t = -0.6 GeV

.

This r e s u l t has s e v e r a l important consequences. I f Ginel(t) would be a p o l e a s i s assumed e.g. i n t h e o l d AFS approach, t h i s zero would be a p r o p e r t y of t h e r e s i d u e of t h e p o l e . Hence i t should propagate over t o o t h e r p r o c e s s e s s t a y i n g a t a f i x e d v a l u e of t . Such a r e s u l t i s i n a p p a r e n t disagreement w i t h t h e experimental d a t a

( r e p e a t i n g t h e above e x e r c i s e i n ~ + p s c a t t e r i n g g i v e s t h e z e r o a t much l a r g e r t-values t ~ - 1 . 3 GeV 2 ) Another important p o i n t i s t h a t t h e change of s i g n of Ginel(t) p r o v i d e s s t r o n g c o n s t r a i n t s on theore- t i c a l m u l t i - p a r t i c l e models; i t t u r n s o u t n o t t o be e a s y t o g e n e r a t e n e g a t i v e shadows.

3. Models f o r G 7T&: L e t u s s e e how some popu- l a r p a r t i c l e p r o d u c t i o n models b u i l d up t h e t-depen- dence of G ( t ) . I n g e n e r a l t h e s l o p e r e c e i v e s con- t r i b u t i o n s from t h r e e d i f f e r e n t s o u r c e s : t h e magni- tudes of t h e p r o d u c t i o n a m p l i t u d e s , t h e phases of t h e p r o d u c t i o n amplitudes and t h e s p i n s of t h e pro- duced p a r t i c l e s . I n d i f f e r e n t models t h e s e e f f e c t s combine i n d i f f e r e n t ways.

I n t h e u n c o r r e l a t e d j e t model (UJM) t h e produced p a r t i c l e s d o n o t have any mutual c o r r e l a t i o n s i n t h e momentum space. I n p o s i t i o n s p a c e , however, t h e y a r e s t r o n g l y c o r r e l a t e d c l u s t e r i n g around t h e posi-

t i o n of t h e i n i t i a l s t a t e p a r t i c l e s . The model g i v e s

-

i g n o r i n g phases and s p i n s

-

an o v e r l a p f u n c t i o n of roughly Gaussian shape i n b-space. [I]

The RMS r a d i u s of t h i s o v e r l a p f u n c t i o n can be measured by measuring t h e t r a n s v e r s e momentum de- pendence of t h e s p e c t r a of t h e produced p a r t i c l e s . The e x p e r i m e n t a l l y observed v a l u e of t h e average t r a n s v e r s e momentum of t h e p a r t i c l e s , <p,> N 350MeV corresponds t o a r a d i u s of t h e p r o d u c t i o n volume of l e s s t h a n 112 f e r m i . This v a l u e i s much t o o small t o f i t t h e d a t a , r41it corresponds t o a s l o p e of t h e e l a s t i c d i f f e r e n t i a l c r o s s - s e c t i o n of t h e o r d e r of 2 G ~ v - ~ , whereas e x p e r i m e n t a l l y b z 1 0 G ~ v - ~ Hence t h e model i s i n v i o l e n t disagreement w i t h ex- periment.

This unhappy s i t u a t i o n can be avoided by i n c l u - ding momentum dependent phases i n t h e model. 14]Such phases correspond t o t r a n s l a t i o n s i n b-space.

I3.l

Thus t h e phases can s p r e a d o u t t h e b-space volume occupied by t h e produced p a r t i c l e s ( s e e t h e f i g u r e below). It i s obvious t h a t by i n c l u d i n g phases t h e model can be brought i n t o agreement w i t h t h e d a t a . h u t t h e r e s u l t s t h u s o b t a i n e d depend completely on how t h e phases a r e handled. This means t h a t t h e mo- d e l has e s s e n t i a l l y no p r e d i c t i v e power concerning e l a s t i c s c a t t e r i n g . I t can accommodate, f o r example, an a r b i t r a r i l y f a s t s h r i n k a g e a s w e l l a s no s h r i n - kage a t a l l .

NO PHASES : PHASES INCLUDED : absorption region

in the UJM.

absorption region from elastic \

scattering doto

I n t h e m u l t i p e r i p h e r a l model (MPM) t h e r e l e v a n t v a r i a b l e s a r e n o t t h e t r a n s v e r s e momenta of t h e produced p a r t i c l e s b u t t h e momentum t r a n s f e r s of t h e v i r t u a l p a r t i c l e s ( o r Reggeons) exchanged. I n simple v e r s i o n s of t h e f.ITM t h e m p l i t u d e i s assumed

;I

t o f a c t o r i z e i n t o a product of ;he momentum t r a n s - f e r s t (short-range o r d e r ) :

j

n - I

T (ab-4 ... n ) =

I I

= TT

e a t i

i = l

b n

(4)

S-C?IANNEL PHENOMENOLOGY O F DIFFRACTION SCA'ITERING Cl-265

The impact parameter s t r u c t u r e o f t h e MPM i s ve- r y d i f f e r e n t from t h a t of t h e UJM. I n t h e MPM t h e n a t u r a l b-space v a r i a b l e s a r e t h e impact parameter s t e p s Abj, i. e . t h e d i f f e r e n c e s between t h e im- p a c t parameters of t h e p a r t i c l e s produced n e x t t o each o t h e r i n t h e chain. The assumption t h a t t h e t . ' s f a c t o r i z e i m p l i e s t h a t t h e impact parameter

3

s t e p s a r e independent. T h i s means t h a t t h e MPM i s

7 1

e q u i v a l e n t t o a random walk i n impact parameter.

The parameters c h a r a c t e r i z i n g t h e b-space walk of t h e MPM, t h e s t e p l e n g t h <Ab

'

and t h e t o t a l

j-

number of s t e p s , can be e s t i m a t e d from p a r t i c l e p r o d u c t i o n d a t a . Numerically t h e above n a i v e v e r - s i o n of t h e MPM t u r n s o u t t o be i n s t r o n g d i s a g r e e ment w i t h experiment : t h e d i f f e r e n t i a l cross-sec-

t i o n g i v e n by t h e model has much too s t e e p t-depen dence ( b ~ 3 0 G ~ v - ' a t 100 GeV/c) and s h r i n k s much too f a s t (a' N 3 G ~ V - ' ) .

C6'

]These t r o u b l e s can

P

b e cured a t l e a s t p a r t i a l l y by i n t r o d u c i n g c l u s t e r i n g e f f e c t s i n t o t h e model. Q u a l i t a t i v e l y i t i s obvious t h a t c l u s t e r i n g works i n t h e r i g h t d i r e c - t i o n : i t reduces t h e number of s t e p s i n t h e c h a i n . Thus i t reduces b o t h t h e t - s l o p e and t h e speed of t h e shrinkage. Q u a n t i t a t i v e l y , however, i t i s n o t c l e a r i f t h e c l u s t e r i n g e f f e c t s a r e enough t o b r i n g t h e model i n t o agreement w i t h d a t a ( n o t i c e t h a t t h e s i z e of t h e c l u s t e r s i s s t r o n g l y c o n s t r a i n e d by t h e m u l t i p a r t i c l e c o r r e l a t i o n d a t a I). C a r e f u l nu- m e r i c a l s t u d i e s of t h e c l u s t e r i n g e f f e c t s i n t h e WM would c l e a r l y be of g r e a t i n t e r e s t .

Another p o s s i b l e way t o modify t h e simple MPM i s t o i n t r o d u c e u n i t a r i t y c o r r e c t i o n s . They cause long-range c o r r e l a t i o n s among t h e produced p a r t i - c l e s . Hence t h e walk i n t h e u n i t a r i z e d MF'M i s n o t

random b u t c o r r e l a t e d . Q u a n t i t a t i v e s t u d i e s o f t h e b-space s t r u c t u r e of t h e u n i t a r i z e d v e r s i o n s of

t h e m u l t i p e r i p h e r a l model would be v e r y i n t e r e s - t i n g .

The problem of how t o b u i l d up t h e Pomeron (and t h e meson t r a j e c t o r i e s ) i n t h e d u a l models has been a c t i v e l y s t u d i e d i n t h e l a s t y e a r . S e v e r a l v e r y i n t e r e s t i n g new i d e a s h a s been p r e s e n t e d . They w i l l be reviewed i n t h e t h e o r e t i c a l s e s s i o n s so we s h a l l n o t d i s c u s s them h e r e .

4 . The D i f f r a c t i v e Component G ( t ) : The shadow D-

of t h e i n e l a s t i c d i f f r a c t i o n G ( t ) c a n be c a l c u - D

l a t e d assuming i ) t h e e x c i t a t i o n spectrum, i i ) t h e phase of t h e e x c i t a t i o n and i i i ) t h e decay of t h e d i f f r a c t i v e l y produced systems. GD(t) i s t h e n ob- t a i n e d by c a l c u l a t i n g t h e loop i n t e g r a l .

T h i s problem h a s been s t u d i e d i n d e t a i l by Sa- k a i and White

p?

These a u t h o r s show t h a t t h e b- space s t r u c t u r e of t h e d i f f r a c t i v e o v e r l a p func- t i o n GD(b) depends c r i t i c a l l y on t h e assumed s p i n and h e l i c i t y s t r u c t u r e s of t h e e x c i t e d systems.

They d e t e r m i n e t h e e x c i t a t i o n v e r t i c e s from t h e ISR p r o t o n s p e c t r a . A c a l c u l a t i o n w i t h t h e assump- t i o n s of a l i n e a r mass-spin r e l a t i o n and of s-chan- n e l h e l i c i t y c o n s e r v a t i o n l e a d s t o a v e r y c e n t r a l p r o f i l e f o r G ( b ) . A s i m i l a r c a l c u l a t i o n w i t h t h e

D

assumption of t-channel h e l i c i t y c o n s e r v a t i o n , on t h e o t h e r hand, l e a d s t o a p e r i p h e r a l p r o f i l e : t h e d i f f r a c t i v e p r o d u c t i o n i s happening a t t h e edge of t h e a b s o r p t i o n r e g i o n around b z l f e r m i ( s e e f i g . 2 )

The experimental d a t a of low mass d i f f r a c t i v e p r o d u c t i o n i s known t o be i n rough agreement w i t h t-channel h e l i c i t y c o n s e r v a t i o n (and t o completely d i s a g r e e w i t h s-channel h e l i t i c i t y c o n s e r v a t i o n . ) . The assumption of e x a c t t-channel h e l i c i t y conser- v a t i o n i s a c t u a l l y n o t a t a l l c r u c i a l f o r o b t a i - ning a p e r i p h e r a l G ( b ) . Any combination of ampli-

D

tudes w i t h a "reasonable" amount of s-channel he- l i c i t y f l i p amplitudes would g i v e a p e r i p h e r a l r e s u - l t f o r t h e d i f f r a c t i v e shadow.

19

(5)

C1-266 H . I . MIET

I

b 0.5 1.0 1.5 fermi

-Fig. 2 : The decomposition of t h e imaginary p a r t of t h e e l a s t i c amplitude i n t o i t s components assuming t-channel h e l i c i t y c o n s e r v a t i o n i n i n e l a s t i c d i f f r a c t i o n . From Ref. 191.

5.- Pomeron Phenomenology : The measurements

bOl

of e l a s t i c d i f f e r e n t i a l c r o s s - s e c t i o n s i n proton- p r o t o n s c a t t e r i n g a t t h e ISR have a t t r a c t e d much p ~ ~ e n o m e n o l o g i c a l i n t e r e s t . The d a t a show c l e a r s t r u c t u r e s a t small t-values : a r a p i d change of t h e s l o p e of t h e o r d e r of Ab 2 t a k e s p l a c e a t t " -0.1 Gev 2

.

Another i n t e r e s t i n g f e a t u r e of t h e d a t a i s t h a t t h e break observed a t lower e n e r g i e s a t t = -1.3 GeV 2 h a s developed t o a b e a u t i f u l d i f - f r a c t i o n minimum a t t h e ISR.

The observed s m a l l - t s t r u c t u r e can be simply ac- comodated by a two-component "disk"

+

"ring" para- m e t r i z a t i o n of t h e i n e l a s t i c o v e r l a p f u n c t i o n Ginel(t) ( o r , a l t e r n a t i v e l y , of t h e e l a s t i c s c a t t e - r i n g a m p l i t i d e i t s e l f ) . S e v e r a l a u t h o r s have p e r f o r - med such two-component f i t s

Cl?

T h e i r r e s u l t s show

t h a t i ) i t i s easy t o f i t t h e d a t a w e l l and i i ) t h e r e l a t i v e s i z e of t h e two components depends c r i t i c a l - l y on t h e i r assumed shapes. The s m a l l - t break c o r r e s - ponds t o a long t a i l i n G (b) extending o u t t o

i n e l

b-values much l a r g e r than one f e r m i . I n t h e two-com- ponent f i t s t h i s large-b t a i l can be d e s c r i b e d e i t h e r by t h e "disk" component ( s e e e.g t h e f i t s of Sakai

t l J

and White

lgl

and Henzi and V a l i n o r by t h e "ring"

1 1

1

component (Henyey e t al.[

).

I t i s v e r y tempting t o i d e n t i f y t h e "ring" compo- n e n t w i t h i n e l a s t i c d i f f r a c t i o n and t h e "disk" com- ponent w i t h n o n - d i f f r a c t i v e production[31. I n such

r e s u l t s of Sakai and White a l s o s u p p o r t t h i s i d e a . I n t h e i r model c a l c u l a t i o n shown i n f i g . 2 t h e d i f - f r a c t i v e component i s e s s e n t i a l l y a r i n g c e n t e r e d a t I f e r m i and nail-diffractive component dominates b o t h a t s m a l l and a t l a r g e impact parameters. Henyey e t a l . have a d i f f e r e n t i n t e r p r e t a t i o n . They a s s o c i a t e t h e "ring" component t o " d i s s o c i a t i o n p r o c e s s e s " , t h a t i s t o p r o c e s s e s i n which t h e beam p a r t i c l e s d i s - s o c i a t e i n t o t h e i r v i r t u a l c o n s t i t u e n t s b e f o r e s c a t - t e r i n g and then o n l y some of t h e s e c o n s t i t u e n t s i n t e r - a c t w i t h r h e t a r g e t .

L e t u s f i n a l l y comment on t h e observed energy de- pendence of t h e d a t a . A c a r e f u l s t u d y of G inel@) a s a f u n c t i o n of t h e incoming energy r e v e a l s two v e r y important r e s u l t s ( s e e Ugo Amaldi's review i n t h e s e p r o c e e d i n g s ) : i ) t h e v a l u e of G (b=O) i s e s s e n t i a l -

i n e l

l y c o n s t a n t through t h e whole ISR energy r a n g e a t a l e v e l which i s c l e a r l y below t h e u n i t a r i t y l i m i t (roughly 92-94% of t h e u n i t a r i t y l i m i t ) and i i ) t h e observed r i s e of t h e proton-proton t o t a l c r o s s - s e c t i o n comes from t h e r e g i o n around 6 = 1 f e r m i . The f i r s t r e s u l t i n d i c a t e s t h a t t h e r i s e of tot is n o t caused by a "naive" s a t u r a t i o n of t h e u n i t a r i t y l i n i t ( i n which t h e a b s o r p t i o n f i r s t r e a c h e s t h e 100% c e i l i n g a t b = 0 and then s t a r t s t o expand o u t i n b) b u t i s a a more complicated e f f e c t . A f t e r t h i s o b s e r v a t i o n i t

$$ n a t u r a l tFiat t h e r i s l n g c o n t r i B u t i o n i s c e n t e r e d a t I f e r m i . An expanding "disk" component w i t h a r a d i u s of about 1 f e r m i would obviously g i v e such a r i s e . A l t e r n a t i v e l y , t h e r i s e could be caused by a growing "ring" c o n t r i b u t i o n c e n t e r e d a t I f e r m i . The q u e s t i o n of t h e p h y s i c a l o r i g i n of t h i s r i s e i s one of t h e most e x c i t i n g problems of t o d a y ' s hadron phy- s i c s and i n s o l v i n g i t one w i l l probably l e a r n q u i t e a l o t about t h e s t r u c t u r e of elementary p a r t i c l e s .

ACKNOWLEDGEMENTS :

I thank Chan Hong-Mo, E.H. De Groot, F.S. Henyey, G.L. Kane, R.J.N. P h i l l i p s , R.G. R o b e r t s , DP. Roy e t R. Worden f o r many u s e f u l d i s c u s s i o n s on d i f f r a c - t i o n s c a t t e r i n g . I am g r a t e f u l t o D r . C . Michael f o r c r i t i c a l r e a d i n g of t h e manuscript.

an i n t e r p r e t a . t i o n one should probably blame t h e non- d i f f r a c t i v e component f o r t h e large-b t a i l . The

(6)

S-CHANNEL PHENOMENOLOGY OF DIFFHKCTION SCATTERING

REFERENCES :

[I]

VAN HOVE ( L . ) , Nuovo Cimento

28

(1963 798; Rev.

Mod. Phys.

2

(1964)655.

[~~ZACHARIASEN (F.), Phys. R e p o r t s

C

(1971) 1;

De GROOT (E.H.), Ph.D t h e s i s , U t r e c h t U n i v e r s i t y ( 1 3 7 1 ) .

@]

~e GROOT (E

.

H. ) and MIETTINEN (H. I. ) P r o c e e d i n g s o f t h e V I I I t h R e n c o n t r e De Morion, M 6 r i b e l - l e s - A l l u e s , F r a n c e , 6-16 March 1973, J. T r a n Thanh Van ( E d i t . )

.

r4]

MICHEJDA (L. )

,

TURNAU ( 3 . ) and BIALAS (A. )

,

Nuovo Cimento

g ,

(1968) 241; MICHEJDA ( L . ) , Nucl. Phys.

3,

(1968) 113.

[ 5 ] ~ e e , f o r example, 2 . KOBA and M. NAMI:<I, Nucl.

Phys. (1968) 413.

[ 6 ] ~ h a t t h e MPM c o r r e s p o n d s t o a random w a l k i n b-space h a s b e e n known f o r a l o n g t i m e among t h e e x p e r t s . F o r a r e c e n t c l e a r d i s c u s s i o n s e e F.S. Henyey, Phys. L e t t e r s

45B

(1973) 469.

[?I]HwA

(R.C.), S l o p e o f t h e Forward Peak : An S-Chan- n e l A n a l y s i s , Oregon p r e p r i n t , J a n u a r y 1973.

@ ] s e e , f o r example, CANESCHI (L.) and SCHWIMMER (A) Nucl. Phys.

B44

(1972) 31.

[9] SAKAI (N.) and WHITE (J.N. J . ) Nucl. P h y s . e (1973) 511. . .

S e e a l s o :

AJDUK ( Z . ) , CERN-TH-1608 ( J a n u a r y 1973).

GORDON (E.M) and HWA (R. C . ) " R e l a t i o n s h i p b e t - ween D i f f r a c t i v e P e a k s of E l a s t i c and E x c i t a -

t i o n P r o c e s s e s " , Oregon p r e p r i n t , A p r i l 1973.

fi01

AMALDI (U.) e t a l . , P h y s . L e t t e r s

43B

(1973)231

BARBIELLINI (C) e t a l . , Phys. L e t t e r s (1972) 663 663.

Aachen - CERN

-

Genova

-

Harward

-

T u r i n Col- l a b o r a t i o n , p r e s e n t e d a t t h e XVI I n t e r n a t i o - n a l C o n f e r e n c e o n High E n e r g y P h y s i c s , Bata- v i a , September 1972.

G I ]

A p a r t i a l l i s t i n c l u d e s :

KANE (G.L.), Phys. L e t t e r s

40B

(1972) 3 6 3 , BARGER (V)

,

PHILLIPS (R. J.N.) a n d GEER (K.)

,

Nucl. P h y s i c s

K ,

(1972) 29.

HENYEY ( F . S . ) , HONG TUAN (R.) and KANE (G.L.) M i c h i g a n p r e p r i n t UM HE 73-18.

HENZI (R.) and VALIN (P.) M o n t r e a l p r e p r i n t , August 1973 and p a p e r n e 450 a t t h i s c o n + e - r e n c e .

S e e a l s o R e f s . (3) a n d ( 9 ) .

Références

Documents relatifs

Zaprionus indianus is assigned to the subgenus Zaprionus, species group armatus and species subgroup vittiger (Chassagnard, 1988; Chassagnard and Tsacas, 1993).. We provide here

J'ai vécu l'expérience dee run* de té B et 3( H â LVRF avec de* chercheur* qui n'ont par craint d'uiiliter mon matériel et d'accepter ma cet laboration. Tardieu et J.L. Ranck,

increasingly thought of as bitwise contiguous blocks of the entire address space, rather than a class A,B,C network. For example, the address block formerly known as a Class

The &#34;info&#34; Registry supports the declaration of public namespaces that are not part of the URI allocation in a manner that facilitates the construction of URIs

The Sieve base specification demands that all Sieve extensions used in a given script be specified in the initial require

The RTSP RFC [RFC2326] defines a media stream as &#34;a single media instance, e.g., an audio stream or a video stream as well as a single whiteboard or shared application

Design of an FTP server would be simpler if all command verbs were the same length, and design of an FTP user would be simpler if either all command verbs were the same length, or

Because the service is UUS1 implicit for the ISDN User-to-User service, the inclusion of the &#34;uui&#34; option tag in a Supported header field conveys no additional