• Aucun résultat trouvé

A parareal in time procedure for the control of partial differential equations

N/A
N/A
Protected

Academic year: 2021

Partager "A parareal in time procedure for the control of partial differential equations"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-00798362

https://hal.archives-ouvertes.fr/hal-00798362

Submitted on 11 Mar 2013

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

A parareal in time procedure for the control of partial

differential equations

Yvon Maday, Gabriel Turinici

To cite this version:

Yvon Maday, Gabriel Turinici. A parareal in time procedure for the control of partial differential

equa-tions. Comptes Rendus Mathématique, Elsevier Masson, 2002, 335 (4), pp.387 - 392.

�10.1016/S1631-073X(02)02467-6�. �hal-00798362�

(2)

A parareal in time pro edure for the ontrol of partial di er-ential equations Yvon MADAY a , GabrielTURINICI b . a

LaboratoireJa ques-LouisLions,UniversitePierreetMarieCurie,Bo^te ourrier187,75252Paris Cedex05,Fran e

b

INRIARo quen ourt,B.P.105,78153Le ChesnayCedexFran eand CERMICS,ENPC,Marne laValle,Fran e.

(Proposeeen?? 2002)

Abstra t. Wehaveproposedinapreviousnoteatimedis retizationforpartialdi erentialevolution equationthatallowsforparallelimplementations.Thiss hemeisherereinterpretedasa pre onditioningpro edureonanalgebrai settingofthetimedis retization.Thisallows for extending the parallel methodology to the problem of optimal ontrol for partial di erentialequations. Wereport a rstnumeri alimplementationthatrevealsa large interest.

Une te hnique de ontr^ole d'equations aux derivees partielles en temps parareel.

Resume. On a propose dans unepre edente note, un s hema permettant de pro ter d'une ar- hite ture parallele pour ladis retisation entemps d'equationd'evolutionaux derivees partielles. Ces hemaest i iinterpretesousunangledi erentetmatri iel,permettant d'etendrele on eptpourle ontr^oled'EDP.Lespremieresexperien esnumeriquessont extremementen ourageantes.

Version fran aise abregee(Lesreferen esfontappelalaversionanglaise)

PourunoperateurA lineaire oupas, agissantd'un espa ede Hilbert V dansV 0

on onsidere le problemede ontr^ole(1)ouv estun ontr^oled'unespa eU etB estunoperateurdeL(U;V

0 ). Ce problemeest ompleteparladonneedelafon tionnellede o^ut(2)ouy

T

estune ible. Onsouhaite etendreles hemaparareela e adreetonintroduitdon unesuited'instantsT

n veri ant(3)puis lesfon tionsfy 0 ;y 1 ;:::;y n ;:::;y N 1 gtellesquey n

estlasolutionde(4)pourtoutn=0;:::;N 1. Ilest lairquel'ensemblefy

0 ;y 1 ;:::;y n ;:::;y N 1

gde(4) estliealasolutiony duproblemeinitial (1)sipourtoutn=0;:::;N 1ona(6). Onpeutainsiinterpreterdans(4)

n

ommeun ontr^ole virtuel(alaLions .f. [2℄) e quiameneaintroduire une nouvellefon tionnellede o^ut J

" (v;) ommedans (7) ou  = f 0 = y 0 ;:::; n ;:::; N 1

get " >0est petit. Lamethodedu gradient pour minimiserJ

"

onduit aintroduirelesetatsadjointsp n

, n=N 1;:::;0solutionsde(9) et (10). Onaalors(13)etdon lapro eduredegradient(14). Ilest lairquela onvergen ede ette pro eduredepend de N (souventassezgrand) |et e, independammentduveritable ontr^ole v |etdon qu'il onvientdel'a elerersil'onsouhaitepro terdelade ompositionentemps.

(3)

C'estlaqu'intervientlapro edureentempsparareelleintroduitedans[3℄quel'onpeutexpliquer deja sur le probleme sans ontr^ole (15) pour lequel il ne reste que le ontr^ole virtuel dans la fon tionnellede o^ut qui s'e ritsimplement selon(16). Parexemple, sil'on onsidere queA est independantdutemps,onpeutintroduirelepropagateurF

T

telquepourtoutdonne,F T

() estlasolutionautempsT duprobleme(17). Onnotealorsquelasu essiondelaresolutiondes problemes(4),ave B=0estequivalentealaresolutionduproblemeinitial(15)sietseulementsi  n =F T ( n 1

)ouen ore,sousformematri ielle omme(18)ou en ore(19)ave desnotations evidentes. Ce systeme, sous forme d'une matri e triangulaire inferieure, peut ^etre inverse en O(N)operations. Les hemaparareelpermetd'a elerer etteresolutionen onstruisantunesuite 

k

qui onverge vers la solution de (19). On introduit pour ela un propagateur grossierG T

, approximationdeF

T

,parexempleparles hemadetypeEulerimpli ite(20)etonpose(21)qui s'e riten ore,sousformematri ielle(23)ave lamatri e(22)etouleresiduR es

k

=F M k

. On a montre dans [3℄ et [1℄ que ette pro edure iterative onverge en peu d'iterations, ind e-pendamment de N et que les al uls les plus o^uteux (reposant sur F

T

) peuvent^etre faits en parallele.Onendeduitque

f M

1

peutetre onsideree ommepro hedeM 1 ,ausensoulamatri e d'ampli ation f M 1

M est pro hedel'identite.

Deretourauproblemede ontr^olevirtuel,onremarquequelaresolutionde(19)s'e ritÆ e J()=0 quipeutaussiprendrelaforme(24). Onremarqueegalementquelesautp

k n (T + n ) p k n 1 (T n )dans leproblemeadjointestegalauve teurM

 R es

k

'estadireauresidude(24)aupask. Onpretend ainsimaintenantque

f M 1 ( f M 1 ) 

estunbonpre onditionneurdeM 

Metonproposelamethode degradientpre onditionnee(25).

A ndeveri erlapertinen ede etteproposition,onl'atesteesuruneequationd'evolutiontres simpleposeesurl'intervalle℄0;1[: Trouvery solutionde

y t

y 00

=vouv estle ontr^oleetest lafon tionindi atri ede℄1=2;2=3[. Ona ontr^ole etteequationsurl'intervalledetemps℄0;100[ partantdela onditioninitialey

0

=10x(1 x)versla ibley T

=sin(2x). Lessimulations nes ( orrespondantaF

T

)sontrealiseesave lepasdetemps2:10 2

soitsansde ompositionentemps, soit ave lapro edurede ontr^ole paralleliseeave T =1. Ilest interessantde noter qu'apres seulement25iterationsdus hemapre onditionne,lavaleurdelafon tionnellede o^utestdum^eme ordredegrandeurqu'apres100iterationsdel'algorithmede ontr^ole seul(sansde ompositionen temps); e i onduitaune a elerationd'un fa teur environ400! Nous nenous attendons pasa e que e soit le as pour tousles problemesneanmoins, m^eme ave undoublementdu nombre d'iterations du gradient ave pas optimal, la pro edure parareelle donne une a eleration d'un fa teurproportionelaT=T.

REMERCIEMENTS.Cetravailaeteinitialiseen ollaborationave J.L.Lionset 'estave unetresgrande emotionquenoussouhaitonsl'asso iera etravailquis'inspireenparti ulierde[2℄.

1. Introdu tion

LetAbealinearornonlinearoperatorfrom aHilbert spa e V into V 0

and letus onsider the followingstateequation:

( y t +Ay=Bv y(0)=y 0 (1)

wherethe boundary onditionsare imposed impli itly, where the ontrol v(= v(t)) (boundaryor distributed)belongstosomespa eU andwhereB isanoperatorinL(U;V

0

). Weassumethatfor anygivenv2U,thisproblemiswellposed.

We omplementthisproblemwitha ostfun tionalto beminimized

J(v)= 1 2 Z T 0 kv(t)k 2 U dt+ 2 ky(T) y T k 2 ; (2)

(4)

where >0,y isagiventargetandthenormistheH normif,forinstan eV H V (where H isapivotHilbert spa e).

Letusin reasealittlebitthe omplexityofthisproblem byde omposing timeasfollows

0=T 0 <T 1 <:::<T n =nT <T n+1 <:::<T N =T: (3)

Thenwede nethefun tionsfy 0 ;y 1 ;:::;y n ;:::;y N 1 gsu hthat y n isthesolutionof ( y n t +Ay n =Bv n ; over(T n ;T n+1 ) y n (T + n )= n ; (4)

foranyn=0;:::;N 1. Itisatrivialitytonotethatthe olle tionofsolutionsfy 0 ;y 1 ;:::;y n ;:::;y N 1 g of(4)is onne tedwiththesolutionyoftheoriginalproblem(1)(inthesensethaty

n =y j(T n ;T n+1 ) ) ifandonlyif,foranyn=0;:::;N 1

v n =v j(Tn;Tn+1) and  n =y(T n ); (5)

oragain,andmoreintrinsin ally,ifandonlyif,foranyn=0;:::;N 1

v n =v j(Tn;Tn+1) and  n =y n 1 (T n ) with y 1 (T 0 )=y 0 : (6) Thisway,in(4), n

anbeinterpretedasa\virtual" ontrol(alaLions .f. [2℄)thatleadstothe followingdevelopment. Inorder tosatisfy(6)approximatively,weproposeto modifyslightlythe ostfun tionalJ asfollows

J " (v;)= 1 2 Z T 0 kv(t)k 2 U dt+ 2 ky N 1 (T) y T k 2 + 1 2"T N 1 X n=1 ky n 1 (T n )  n k 2 ; (7) where=f 0 =y 0 ;:::; n ;:::; N 1 gand">0issmall.

Inorderto solvethisminimizationproblem,we omputethederivativeofJ " (v;) ÆJ " (v;)(Æv;Æ)= N 1 X n=0 Z T n+1 Tn (v n ;Æv n ) U + (y N 1 (T) y T ;Æy N 1 (T)) + 1 "T N 1 X n=1 (y n 1 (T n )  n ;Æy n 1 (T n ) Æ n ): (8)

The introdu tion of an adjoint state is the standard argument for getting an expression of this derivative. Letp

N 1

bethesolutionover(T N 1 ;T N )of ( p N 1 t +A  p N 1 =0 over(T N 1 ;T N ), p N 1 (T)= (y N 1 (T) y T ); (9)

andthe olle tionp n ,n=N 2;N 1;:::;0ofsolutionsof 8 > < > : p n t +A  p n =0 over(T n ;T n+1 ), p n (T n+1 )= 1 (y n (T n+1 )  n+1 ): (10)

(5)

Wemultiplynow(9)byÆy N 1

andweintegrateintimebetweenT N 1

andT N

,thenintegrateby partsanduse(4)soastoobtain

(p N 1 (T );Æy N 1 (T ))+(p N 1 (T + N 1 );Æy N 1 (T + N 1 ))+ Z T N TN 1 (p N 1 ;BÆv N 1 )=0

anotheruseof (9)gives

(y N 1 (T) y T ;Æy N 1 (T ))+(p N 1 (T + N 1 );Æy N 1 (T + N 1 ))+ Z T N T N 1 (B  p N 1 ;Æv N 1 )=0 (11)

similarly,startingfrom (10)over(T n

;T n+1

)weobtainforanyn=0;:::;N 2

1 "T (y n (T n+1 )  n+1 ;Æy n (T n+1 ))+(p n (T + n );Æy n (T + n ))+ Z Tn+1 T n (B  p n ;Æv n )=0: (12)

Usingthisin(8)thenyields

ÆJ " (v;)(Æv;Æ)= N 1 X n=0 Z Tn+1 T n (v n +B  p n ;Æv n ) U + N 1 X n=0 (p n (T + n );Æy n (T + n )) 1 "T N 1 X n=1 (y n 1 (T n )  n ;Æ n ) re alling rstthat p n 1 (T n )= 1 "T (y n 1 (T n )  n

),se ondthat Æy n (T + n )=Æ n ,weget ÆJ " (v;)(Æv;Æ)= N 1 X n=0 Z Tn+1 T n (v n +B  p n ;Æv n ) U + N 1 X n=0 (p n (T + n );Æy n (T + n )) N 1 X n=1 (p n 1 (T n );Æ n ); = N 1 X n=0 Z T n+1 Tn (v n +B  p n ;Æv n ) U + N 1 X n=1 (p n (T + n ) p n 1 (T n );Æ n ); (13) sin eÆ 0

=0. Fromthese omputations,we aneasily implementagradientmethod (orbettera onjugategradientmethod)aniterationofwhi hreads: Assume y

k n ;p k n ;v k n ; k n

areknown,then

v k +1 n =v k n (v k n +B  p k n ) in (T n ;T n+1 ); n=0;:::;N 1  k +1 n = k n (p k n (T + n ) p k n 1 (T n )); n=1;:::;N 1: (14)

It is quite easy to realize that the speed of onvergen e of the latter algorithm depends on the numberN, of timesteps T

n

. Indeed, thetransferofinformation betweentime 0and timeT for y and between time T and time 0 for p an only be done by su essive iterations through the subintervals(T

n ;T

n+1

),andrequires atleastN steps. A tually, the(real) ontrolisnotinvolved in this N dependan y sin e for a standard ontrol problem this gradient pro edure onverges quiterapidly. The dependan y here learly omes from the fa t that we havede omposed time into pie es. In order to understand what kind of pre onditioner an be added to the previous iterativealgorithm,weshallinvestigateinthenextse tionthe(only)virtual ontrol.Thisisdone byletting B=0and =0.

(6)

2. The totallyvirtual problem

Whatwewanttosolvehereisthussimply ( y t +Ay=0 y(0)=y 0 (15)

overthetimeinterval(0;T),thatisassumedtoadmitauniquesolutiony. Themethodofresolution throughthevirtual ontrolinvolvesade omposition ofthetimeinterval. Itisinterestingtonote that the ostfun tionalbe omesafun tion of only: i.e. J

"

(v;) anbeidenti edwith g J() sin ethe ontrolv ismultipliedbyzeroand "T isjustamultipli ativefa tor

g J()= N 1 X n=1 ky n 1 (T n )  n k 2 ; (16) The minimum of e

J is zero and is obtained by the hoi e  n

= y(T n

). We shall not use this informationhoweverbuttryinsteadtodevelopalinkbetweenthisframeandthepararealalgorithm developpedin[3℄. A tually,letusassumethatAistimeindependentsothatwe anintrodu ethe (timeinvariant)propagatorF

T

su hthat,for anygiven,F T

()is thesolution,at timeT oftheproblem ( y t +Ay=0 y(0)= (17)

Withthisnotation,itisimportanttonoti ethatthesu essionofresolutionofproblems(4),with B=0isequivalentto theresolution oftheinitial problem(15)ifandonlyif

n =F T ( n 1 )as notedin (6),oragain,in amatri ialform

0 B  Id 0 ::: 0 F T Id 0 ::: 0 F T Id :: 0 :: F T Id 1 C A 0 B   0  1 ::  N 1 1 C A = 0 B  y 0 0 :: 0 1 C A (18)

that analsobewritten,withobviousnotations

M  = F (19)

ThestandardinversionofthistriangularsysteminvolvesO(N)resolutionsofsystem(17). Inorder toa elerate,wehaveintrodu edaniterativepro edure|theparareals heme|that allowsto onstru tasequen e

k

that onvergestowardtheexa tsolutionof(19). Thispro edureinvolves a oarsepropagatorG

T

,thatisanapproximationofF T

,forinstan ethroughanimpli itEuler s hemeasfollows G T ()  T +AG T ()=0: (20)

Itisde nedas follows(see[1℄)forthisinterpretation)

 k +1 n+1 =G T ( k +1 n )+F T ( k n ) G T ( k n ) (21)

whereithastobenoti edthat,assuming k

isknown,the omputationof k +1

involvesaparallel pro edure ( orresponding to the expensive omputation of the F

T (

k n

)) and a sequential one ( orrespondingtothefast omputationof G

T (

k +1 n

(7)

Byintrodu ingthematrix f M = 0 B  Id 0 ::: 0 G T Id 0 ::: 0 G T Id :: 0 :: G T Id 1 C A (22)

thisiterativepro eduretakesthematri ialform  k +1 =  k + f M 1 R es k (23) wheretheresidualR es

k isde ned byR es k =F M k .

It is provenand numeri ally he kedthat this method onvergesrapidly, independently of N, wheneverthegoverningpartinAislinearpositivede nite. Itresultsthat

f M 1 anbe onsidered as losetoM 1

, inthesensethattheampli ationmatrix f M

1

M is losetoIdentity.

3. Ba k to the ontrol problem

Letusgoba knowtoourvirtual ontrolproblem. It anbeeasilyguessed,duetothesymmetri formoftheLagrangeequationsarisingfrom(9){(10)thattheresolutionofÆ

e J()=0 analsobe writenas M  M  = M  F (24)

Indeed,theve torofjumps p k n (T + n ) p k n 1 (T n

)in the dualstateis exa tely equaltothe ve tor M

 R es

k

i.e. totheresidualof(24)atstepk. Thereasonwhytheoriginalgradients hemeisslow omesfromthefa tthatthe onditionningofM isO(N). Thefa tthatwehaveprodu edagood pre onditionerforMallowstoforseethat

f M 1 ( f M 1 ) 

maybeagoodpre onditionnerforM 

M so that, going ba k to the original ontrol problem, we propose the following pre onditionned gradientmethod v k +1 n =v k n (v k n +B  p n ) in(T n ;T n+1 ); n=0;:::;N 1  k +1 = k [ f M 1 ( f M 1 )  ℄  p k n (T + n ) p k n 1 (T n )  N 1 n=1 ; n=1;:::;N 1 (25)

Inorder to he k thepertinen eof this approa h, wehavetested onaverysimpleexampleof aonedimensionalparaboli equationontheinterval℄0;1[: Findy su hthat

y t

y 00

=vwhere v is the ontrol and  is the indi ator of ℄1=2;2=3[. We have simulated this equation over the time interval ℄0;100[ from the initial ondition y

0

= 10x(1 x) so as to drive it to the target y

T

=sin(2x). The ne simulations( orresponding to F T

) are performed with the time step 2:10

2

either withoutde omposition in timeorbyusing thepre onditionned ontroledproblem with T =1. It is impressive(and nottotally understood)to obtain that after 25iterationsof thepre onditionneds heme,the ostfun tionisaboutthesameasafter100iterationsoftheplain ontrolpro edure. Wehaveusedagradientmethodwithoptimalstep. Theparareals hemethus a hievesaspeedupof morethat 400! Wedonotexpe tthat theparareals hemewillprovidean improvementoftheiteration ount(thatmaybedueheretothelongtimeevolutionwithaquite vis ous term)onmore omplexproblems, neverthelesswe expe t that thenumberwill be about thesamesothat itwillallowforaspeedup proportionaltoT=T.

Referen es

[1℄ BaÆ o L., Bernard S., Maday Y., Turini i G. and G. Zerah, Parallel intimemole ular dynami ssimulations,submittedtoCEMRACS'01pro eedings.

[2℄ LionsJ.-L.,Virtualande e tive ontrolfordistributedsystemsandde ompositionofeverything,J.d'Anal. Math.,80,2000,pp257{297.

[3℄ Lions J.-L., Maday Y. and Turini i G.Resolutiond'EDPparuns hma entemps"pararel",C.R. A ad.S i. ParisSer. IMath. 332(2001),no.7,661{668.

Références

Documents relatifs

We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation..

´ E crire l’´eq uation d’E uler de ce prob l`eme et en d´eduire q ue la valeur du minimum est b ien la premi`ere valeur propre et q ue les points de minimum sont des vecteurs

(Zweite Mitteilung. Jessen, Mean-value theorems for the Riemann zeta-function.. Zur Theorie der fast periodischen Funktionen. Eine Verallgemeine- 1924 rung der Theorie

Due to their general philosophical character these investigations of Hjelmslev created great interest beyond the sphere of the mathematicians.. Naturally different

Of BUDAPEST. The explicite form of this polynomial is given by the formula.. FABER, Uber die interpolatorische Darstellung stetiger Funktionen, Jahresbericht d.. On

The moduli space of Mukai stable bundles is then related to the Hilbert scheme of points on the dual Abelian surface via the Fourier- Mukai transform.. Functorial properties of

First of all, Bonnet's theorem tells us that for a compact manifold with positive sectional curvature, the fundamental group must be finite and this was later generalized by

Method •4 subjects completed 75 hours of training; •there was 4 targets and 4 distractors; •Display sizes were small (D=1, 2 or 4); •Errors had to be kept low (ss did 1.5% false