• Aucun résultat trouvé

Plan de sondage informatif, distribution pondérée, et maximum de vraisemblance.

N/A
N/A
Protected

Academic year: 2022

Partager "Plan de sondage informatif, distribution pondérée, et maximum de vraisemblance."

Copied!
23
0
0

Texte intégral

(1)

Plan de sondage informatif, distribution pondérée, et maximum de vraisemblance.

D. Bonnéry, F. Coquet, J. Breidt

* Crest (Ensai)

** Colorado State University

5 novembre 2012

(2)

1 Informative selection and asymptotic framework Informative selection mechanism

Sample distribution

2 Parametric estimation

Maximum pseudo-likelihood estimator Convergence

Simulations

(3)

Motivation and background Inference on a parametric model References

Informative selection mechanism Sample distribution

An observation is the outcome of two random processes:

Thepopulation realization:

variables are generated for each element of a population U of size N.

Theselection mechanism: a sample is drawn fromU. The observation usually consists of the values of the study variables for each element in the sample.

pΩ,A ,Pq

b b

b b

b b b

b b

b b

b

b bbb

b b

b b

b b b

b b

b b

b

b bbb

b

b

b bbb

(4)

Motivation and background Inference on a parametric model References

Informative selection mechanism Sample distribution

Define:

pY1, . . . , YNq: study variable, pZ1, . . . , ZNq: design variables,

Π: design measure and symmetric function of pZ1, . . . , ZNq, pJ1, . . . , JNq: sample (vector of NN),

PΠ,Y,Za.s.pp, y, zq,PJ|Πp,Zz,Yy p.

πkΠptJk¥1uq: inclusion probability, n°

kPUJk: sample size, Assume:

limNÑ8N1n¡0.

D. Bonnéry- Crest ( ) 7e colloque francophone sur les sondages 4/23

(5)

Motivation and background Inference on a parametric model References

Informative selection mechanism Sample distribution

Definition

The weight function is:

ρ:yÞÑ lim

NÑ8ErJk|Yk ys {ErJks

Denotep`qthe `th drawn element.

Does PpYp`qqn`1 ρ.PY1bn

?

(6)

Observations behave like iidρ.f Zk

Yk

1

Observations do not behave like iid ρ.f Zk

Yk

1

Population cdf, empirical sample cdf and

sample cdf

f,ρ.f and sample kernel density estimator

(7)

Motivation and background Inference on a parametric model References

Informative selection mechanism Sample distribution

Results:

Under asymptotic independance of draws in the one-dimensinal case:

the empirical sample cdf converges to αÞÑ pρ.PYqpp8, αsq (Bonnéry, Breidt and Coquet, 2011)

a kernel density estimator (kde) of the pdf converges to

ρ.d PY dλ Goal:

Parametric estimation.

(8)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Inference on population model

D. Bonnéry- Crest ( ) 7e colloque francophone sur les sondages 8/23

(9)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Consider the population model pYkqkPt1,...,Nu pfθ.λqbN,

pYk, ZkqkPt1,...,Nu are iid realizations, PZk|Yk is parametrized byξ PΞ The target of the inference isθ.

Definition

ρθ,ξ :yÞÑ lim

NÑ8EθξrJk|Ykys {EθξrJks.

(10)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Following Pfeffermann and Krieger (1992) we define:

θˆpξq arg max

θPΘ

# n

¸

`1

ln ρθξfθ Yp`q+ .

AssumeA0. Let

ξˆbe a consistent estimator ofξ, L„

Yp`q

`Pt1,...,nu, θ, ξ n1°n

k1lnpρθξfθq Yp`q, θ, ξ Definition

The maximum pseudo-likelihood estimator associated toξˆis:

θˆarg max

θPΘ

!L„ Yp`q

`Pt1,...,nu, θ,ξˆ )

,

D. Bonnéry- Crest ( ) 7e colloque francophone sur les sondages 10/23

(11)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Definition Define

mpyq ErJ1|Y1 ys

m1py1, y2q ErJ2|Y1 y1, Y2 y2s vpyq VarrJ1|Y1 ys

cpy1, y2q CovrJ1, J2|Y1y1, Y2y2s δpy1, y2q m1py1, y2qm1py2, y1q mpy1qmpy2q

Y ρθξfθ.λ J11 Eθ,ξ

Blnpρθξfθq

Bθ pY, θ, ξq 2

J

B p q B p q

p q

(12)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Assumption

Standard conditions on ρθ,ξf, asymptotic independance of draws:

@gP

# 1,

Blnpρθξfθq

Bθ p., θ, ξq 2

,

Blnpρθξfθq

Bθ p., θ, ξqBlnpρθξfθq

Bξ p., θ, ξq +

,

Eθξr|gpY1qgpY2q|c,θ,ξpY1, Y2qs oNÑ8p1q, Eθξr|gpY1qgpY2q|δ,θ,ξpY1, Y2qs oNÑ8p1q, Eθξ

g2pvθ,ξ m2θ,ξq pY1q

opNq.

D. Bonnéry- Crest ( ) 7e colloque francophone sur les sondages 12/23

(13)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Theorem Suppose

?n B

BθL¯ Yp`q

`Pt1,...,nu, θ, ξ ξˆξ

ÝÑNL

0,Σ

Σ11 Σ12 Σ22

.

Then ?

n

θˆθ {σ ÝÑL N p0,1q,

with

σ2 Σ11 J112

J12

J11222J1212q.

(14)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Consider:

YNpθ.1, IdNq,

εNp0, IdNq,εandY are independent,

Z ξ.Y ηε,η known, N5000,

N1

N 0.7, NN20.3,

n1

N11{70, Nn2

24{30.

Zk

Yk ZγpNγ1q

D. Bonnéry- Crest ( ) 7e colloque francophone sur les sondages 14/23

(15)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Zk

Yk

Zk

Yk

Zk

Yk

η10 η1 η0.1

(16)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Let

t1limNÑ8NN1 0.7 ζ φ1pt1q

τhlimNÑ8 nh

Nh , τ1 1{70,τ2 4{30 ppyq

P

ε  ζ?

ξ2 η2 ξpθyq η

We get:

ρθ,ξpyq τ1ppyq τ2p1ppyqq τ1t1 τ2p1t1q

Figure: Plot ofρ forθ1.5, ξ2,ηP t.1,1,10u

y ρ8,θ,ξpyq

1 2

D. Bonnéry- Crest ( ) 7e colloque francophone sur les sondages 16/23

(17)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Zk

Yk

Zk

Yk

Zk

Yk

η10 η1 η0.1

(18)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

To estimateξ, we use ξˆ

°n

`1Zp`qYp`qp`q

°n

`1Yp2`qp`q . Compareθˆto

θ˜°n

`1 Yp`q

πp`q arg maxθPΘN

k1

lnpfθpYkqqJk

πk

) ., θ¯n1°

`Pt1,...,nuYp`q.

D. Bonnéry- Crest ( ) 7e colloque francophone sur les sondages 18/23

(19)

Motivation and background Inference on a parametric model References

Maximum pseudo-likelihood estimator Simulations

Table: Calculus of mean and mean square error on 1000 simulations

θ ξ σ Meanr.s MSEr.s b

MSE MSEpˆθq

1

nγlimγÑ8nγVarr.s 1.5 2 0.1 θˆ 1.502 7.643 104 1 6.962 104

θ˜ 1.5 4.811 103 2.509 4.523 103 θ¯ 2.329 6.887 101 30.02 3.979 103

1.5 2 1 θˆ 1.5 1.975 103 1 2.975 103

θ˜ 1.501 5.583 103 1.681 6.024 103 θ¯ 2.241 5.509 101 16.7 3.971 103

1.5 2 10 θˆ 1.497 5.501 103 1 2.943 103 θ˜ 1.5 1.030 102 1.368 1.030 102

¯ 2 3

(20)

Motivation and background Inference on a parametric model References

Summary:

Definition of sample pdf and limit sample pdf, applicable to with or without replacement and fixed or random size samples, Simple and verifiable conditions on the sequence of sample schemes,

Pertinence: The sample behaves like an independent sample (Uniform cdf convergence),

The limit sample pdf can be used for inference (Convergence of the maximum pseudo likelihood estimator),

Asymptotic normality under stratified sampling and fixed number of strata.

D. Bonnéry- Crest ( ) 7e colloque francophone sur les sondages 20/23

(21)

Motivation and background Inference on a parametric model References

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3).

Sugden, R. A. and Smith, T. M. F. (1984). Ignorable and informative designs in survey sampling inference. Biometrika, 71(3).

(22)

Motivation and background Inference on a parametric model References

Bonnéry, D., Breidt, F. J., and Coquet, F. (2011). Uniform convergence of the empirical cumulative distribution function under informative selection from a finite population. To appear in Bernoulli.

Pfeffermann, D. and Krieger, A. M. (1992). Maximum likelihood estimation for complex sample surveys. Survey Methodology, 18(1):225–255.

Gong, G. and Samaniego, F. J. (1981). Pseudomaximum likelihood estimation: theory and applications. The Annals of Statistics, 9(4).

Pfeffermann, D., Krieger, A. M., and Rinott, Y. (1998a). Parametric distributions of complex survey data under informative probability sampling. Statistica Sinica, 8(4).

D. Bonnéry- Crest ( ) 7e colloque francophone sur les sondages 22/23

(23)

Motivation and background Inference on a parametric model References

Thank you for your attention.

Références

Documents relatifs

To demonstrate the generality, applicability and efficiency of our approach, we apply our results to three specific integer valued ODMs, namely, the log-linear Poisson GARCH(p,

In this section, after discussing the computation of the parameters of the quartic exponential for given moments of order 1 to 4, we will discuss several Monte-Carlo

We recently investigated the asymptotic behavior of the Stochastic ML (SML) estimator at high Signal to Noise Ratio (SNR) and finite number of samples [2] in the array

• If the measurement error is assumed to be distributed quasi-uniformly, OMNE / GOMNE is a Maximum Likelihood Estimator. • Maximum Likelihood Estimation in an interval

Figure 5 illustrates the geometrical tracking principle using the 3D range information on the Lissajous pattern, to (a) identify targets on the object or any useful geometrical

Keywords: Data assimilation, local scale simulation, boundary conditions, shal- low water model, 3D-Var, back and forth nudging algorithm, iterative ensemble Kalman smoother..

En ce qui concerne le bilan lipidique chez nos sujets, on rapporte des concentrations significativement diminuées en cholestérol et triglycérides chez les femmes âgées comparées

In a recent work Ben Alaya and Kebaier [1] use a new approach, based on Laplace transform technics, to study the asymptotic behavior of the MLE associated to one of the drift