• Aucun résultat trouvé

sup I/(z) - e'~Xl < 2. sup 1+ ~E a,e'~'l= 1+ ~1 la, I, Some examples of sets with linear independence FOR

N/A
N/A
Protected

Academic year: 2022

Partager "sup I/(z) - e'~Xl < 2. sup 1+ ~E a,e'~'l= 1+ ~1 la, I, Some examples of sets with linear independence FOR"

Copied!
8
0
0

Texte intégral

(1)

A R K I V

FOR

M A T E M A T I K B a n d 5 n r 12

C o m m u n i c a t e d 8 May 1963 b y L. CARL:ESOlff

S o m e e x a m p l e s o f sets w i t h l i n e a r i n d e p e n d e n c e

B y INGv.MAR W i g

A necessary a n d sufficient condition for the real n u m b e r s x 1, x2,..., xN to be linearly independent (rood 2~t) o v e r the rational n u m b e r s is, b y K r o n e c k e r ' s theorem:

(1) F o r e v e r y e > 0 a n d real n u m b e r s 01, 03 . . . 0~, there exists a real n u m b e r t such t h a t

[e't~,-e~~ ( v = 1,2 . . . N).

An. equivalent condition is:

(2) F o r every sequence a 1 .. . . . aN of complex n u m b e r s

N N

sup [1+ ~E a,e'~'l= 1+ ~1 la, I,

t v = l

where t represents a real number.

I n s t e a d of using all real n u m b e r s t, we m i g h t as well use only the positive integers n > 0 , with the same conclusion.

The two conditions a b o v e give rise to generalizations of the notion of linear independence in closed sets,

A. E is a uni[orm Kronecker set if, to every continuous function ] on E, of absolute value 1, a n d to e v e r y ~ > 0 , there exists a real n u m b e r t such t h a t

B.

sup I/(z) - e'~Xl < 2.

X E E

E is a Kronecker set if

where F0(E ) is the class of functions ~u which are constant outside E a n d satisfy F o r a finite set, x 1, z~, . . . , xN, condition B is satisfied if a n d only if x ~ - x 1, x 3 - x I . . . x N - x 1 are linearly independent (mod 2~).

Thus a finite set E is a uniform K - s e t if a n d only if E U {0} is a K-set. I n the general case the following is true:

I / E is a u n i f o r m K-set, then E U {0} is a K-set.

(2)

I. WlK, Sets with linear

independence

Proof. Suppose t h a t E is a uniform K-set and choose an arbitrary p EF0(E U {0}) and an e > 0 . We m a y suppose, :without loss of generality, t h a t p has a real jump a at x=O. We have

sup fEu<o>/d/x = fsu<o>ldp]= l,

where the supremum is taken over all continuous functions on E, of absolute value 1. Thus there exists a continuous / such t h a t I S~u<0>/dl~l> 1 - e , and since E is a uniform K-set t o exists such t h a t

I / ( x ) - e ' t ' ~ l < e o n E . The triangle inequality gives:

] f ~o<o> e'~~ d~(x) l = a + f Er d~ (x) l > l - 2 e.

Since e is arbitrary, E U {0} is a K-set.

The question, raised b y Rudin in [1, p. 113], about the equivalence of K- sets and uniform K:sets i s answered negatively b y Theorem 2. (If E U (0} is a K-set, then E is not necessarily a uniform K-set.)

I t follows from the Riemann-Lebesgue lemma t h a t a K-set cannot have po- sitive Lebesgue measure. (Choose dl~(x)=ex p (iNx).dx/mE.) H o w large can a K-set be? Theorem 1 gives the answer to t h a t question. Finally we prove, in Theorem 3, t h a t a uniform K-set cannot be maximal, i.e. we can always add one point and the set remains a uniform K-set. I t is not known whether the same is true for K-sets.

The idea of the construction in Theorem 1 is the following: Let (p~r be a sequence, such t h a t PN+l/pN--->oo, and I1,I ~ . . . IN intervals on (0, 2z~). A sign + 1 or - 1 is a t t a c h e d to the intervals in every possible way, i.e. 2 N ways. If Pl is large e n o u g h .there are intervals in each /~ where exp(iplx ) is approxima- tely equal to the first combination of signs. The union of these intervals = E 1.

I f Pz/Pl is large enough there are intervals in each /~ fl El, where exp(ip2z ) is approximately equal to the second combination of signs. The union of these

= E 2 c E 1. Proceeding like t h a t we finally get E~N which has the property t h a t an arbitrary combination of signs on /~ is approximated on E,N b y one of the

exp(ip~x), ~, = 1, 2 ... 2 N.

The intervals of E2N are now taken as / / s and we proceed as above. I f we make the pv's grow rapidly, it means t h a t the intervals are partitioned into a great m a n y parts. This makes the Hausdorff measure large. At last we obtain a Cantor set with large Hausdorff measure such t h a t every combination of signs on intervals is approximated b y ' the exp(ip~x)'s. This is roughly speaking the de- finition of a uniform K-set.

I n Theorem 2 we mak6~ the same construction b u t at each partition we leave one " o d d " interval large enough to guarantee t h a t the combination of signs is I~ot approximated on it. This is enough for the set n o t to be a uniform K- set. Since t h e definition of K-sets involves an integration, the set is a K-set if the " o d d " intervals are disjoint and tending to zero.

2os

(3)

ARKIY FOR MATEMATIK. B d 5 n r 12

To facilitate the reading we h a v e o m i t t e d some uninteresting details. There- fore the proofs contain a few unprecise s t a t e m e n t s t h a t can easily be proved.

Theorem 1. Let h(r) be a continuous positive/unction de/ined /or r >10 and such that h ( 0 ) = 0 , h(r) is increasing and lim~_~+o h(r)/r= + co. Then there exists a per/ect uni/orm K-set E o[ positive Hausdor/[ measure with respect to the measure /unction h. (Mh (E) > 0).

Proo/. We p r o v e t h e t h e o r e m b y constructing a set with the desired property.

I f h(r)/r does not t e n d to infinity monotonously when r tends to + 0 , we s t u d y t h e measure function hl(r ) defined b y

hl(r ) = r . in:[ h ' r l ) , (

f l ~ V r 1

which has this property. Since hl,(r ) <. h(r), it follows i m m e d i a t e l y f r o m the de- finition t h a t MhI(E)>0 implies Mh(E)>0. We m a y thus suppose, without loss of generality, t h a t h(r)/r is decreasing.

We construct the set E as a generalized Cantor set E = N ~ EN. L e t (qN}~

be an increasing sequence of positive integers a n d (~N}~ r a decreasing sequence of real n u m b e r s with the p r o p e r t y limN_,~r ON=limN_.:r 1/qN=O.

Suppose t h a t EN h a s been constructed as the union of MN disjoint closed inter- vals I , of length r We a t t a c h to each of these intervals a " s i g n " exp(2~tik/qN), w h e r e k can be 0, 1, 2 . . . q N - 1 . This can be done in qMN different ways. To each combination of signs we choose a positive integer p~. N+I, 9 ' - 1, 2 . . . q~N ~- This choice is m a d e so t h a t the inequalities (1) a n d (4) are satisfied.

P,~I.N+I > 2O "p,. N+I (V= 1,2 . . . qMx--1).

~N+I (1)

Pl, N=I ~ - - " P . M ~ - - I . 2O

(~N+I "N

N M

W e construct EN+I as a finite intersection N qN E~ N+I, where Ev+i, N+I c Ev,'N+I I E~+i.N+I is the part of E~. N+I where

l e,~,+~, N + ~ _ e~,'(~,) I < ~N+~. (2)

H e r e k has the different i n t e g e r values in Ii U E , , N + I t h a t are associated with ~.

EN=.Eo.N+I. Only intervals of equal lengths (~ON+I/P,+LY+I) are accepted.

Then E,. N+l consists of M,. N+I intervals of lengths eo,. N+I. The t o t a l length of E,+I.N+I is a p p r o x i m a t e l y (~N+I times t h e length of E,.~+I a n d we obtain the following relation:

~N+I

M , + I , N+I " (D,+I, N+I >M,.N+I (D,, N+I " 2 (3)

(~N+I

Thus h(o~,+I.N+I)'M,+I.N+I-; h(OJ'+I'N+*)'M,.N~I"eO,.N+I" > 1 (4)

(4)

X. WIK, Sets with linear independence

i f 0 ) v + l , N + l is small enough, because h(r)/r-->oo w h e n r - - > + 0 . Since

~ N + I (D~+I. N + I ~ Dr+l, N+I ~

t h e i n e q u a l i t y (4) is satisfied if P,+L~+I is chosen large enough.

W e h a v e n o w c o n s t r u c t e d E,+I. N+I s t a r t i n g f r o m E,. N+I- El. N+I is c o n s t r u c t e d in a similar w a y f r o m EN. ' W e get E~+I= f')E,.N+I a n d finally E = f)~~ as a perfect set of C a n t o r t y p e .

W e first p r o v e (I) t h a t t h e H a u s d o r f f m e a s u r e w i t h respect t o h is positive a n d t h e n (II) t h a t E is a u n i f o r m K-set.

I. To p r o v e t h a t M h ( E ) > 0 we show t h a t t h e e q u i v a l e n t condition is ful- filled: There exists a n o n - n e g a t i v e set f u n c t i o n ~u(e) with ~u(E)= 1 such t h a t la(S) <~ h(r) for e v e r y i n t e r v a l s of length 2 r .

L e t /~. N be continuous, with its t o t a l m a s s 1 e q u a l l y d i s t r i b u t e d on t h e in- tervals of E,. N, a n d c o n s t a n t outside E,. N. /~+I.N is equal to /~. N outside E,.N a n d t h e mass of ~uN on a n i n t e r v a l I 0 of E~. N is e q u a l l y d i s t r i b u t e d on t h e in- t e r v a l s of E,+I.N t h a t are c o n t a i n e d in I o.

Define juN+I = ~u0. N+z = ~u ~ . N + 1.

T h e n /~-->/~ w h e n N - ~ o o a n d /~ is c o n t i n u o u s a n d distributes its u n i t y mass o n l y on E .

W e n o w prove t h a t h(mI)>~/~(I) for a n a r b i t r a r y interval I . F o r one v a n d one N, I satisfies

w,+I.N< m I < eo~..v.

F r o m t h e ~ a y /~ is c o n s t r u c t e d it follows i m m e d i a t e l y t h a t I~(I) < m I'c,+l.m

1

Cv+l. N M~+I. t~" o)v+l. N where

a n d we h a v e f r o m (3)

2 Cv+l, h r < Cv. N " ~--.

(5)

Since h(r)/r is decreasing a n d (4) holds we o b t a i n h(mI) >h(o~,.N) > 2 > 2

m I eo,.~

(}N'M,.N(,O,.N

~ c'' N > c'+I' N"

T h u s h(mI) ~ m I . c,+1. N. (6)

(5) a n d (6) give h(mI)>ju(I) a n d it follows t h a t M ~ ( E ) > 0 .

I I . W e n o w prove t h a t e v e r y c o n t i n u o u s f u n c t i o n 9 on E such t h a t 19] = 1, c a n be u n i f o r m l y a p p r o x i m a t e d on E b y characters e ~nx.

210

(5)

AllKIV FOIl MATEMATIK. Bd 5 nr 12 L e t r be an a r b i t r a r y function of the described kind a n d choose e > 0 . ~ is uniformly continuous on E a n d t h u s

Iq)(x)-q~(x,)l< e if ] x - x , l < (~.

Choose an N such t h a t coN<~ a n d x, as one point in t h e v:th interval of E~, K > N . A p p r o x i m a t e ~0 with the step function having the values qJ(x,)-~ exp(i0,) on the v:th interval of E~. B y the triangle inequality we obtain

Here the n u m b e r s k m a y be chosen i n the best possible w a y a n d it follows ]exp (inx) -- exp(i0,)] ~ ~g+i -~ 2 I sin (~z/q~:)l < e for n = one of thep,. K+~, v = 1,2 . . . qM~

a n d K > K 0. B u t K is a r b i t r a r y > K 0 a n d thus inf I q ) ( x ) - e " ~ l < 2 e on E.

n

Thus E is a uniform K - s e t q.e.d.

Lemma. I f E is a uniform K-set there exists, to every s > 0 , a 'sequence {t~}~, t,--->~, such that lexp ( i t ~ x ) - l l < e on E.

Proof. L e t ~ be a continuous function of absolute value 1 on E b u t n o t equal to a n y character on E. T h e n there exists {s,}ff where s,-->c~ such t h a t

l e " , x - ~ ( x ) l < 2 on E.

Thus b y the triangle inequality:

I d ' ~ x - d ~ x l < e a n d l e ' ( ~ - 8 ~ ' X - l l < e a n d { s , - st} is a sequence with t h e desired property.

Theorem 2. There exists a set E such that E U {0} is a K-set and E not a uni- form K-set.

Proof. We prove this t h e o r e m b y a construction similar to t h a t in Theorem 1.

Condition (4) need not, however, be fulfilled. B u t when constructing E,. N+I we leave one interval 11 of length 2~/pv-1. n+l a n d one interval 12 of length 2X~/p~, N+I unchanged. I n E,+I. N+I I~. serves as a n 11 a n d a n interval of length 2xe/p,+i. N+I is left unchanged as an 12. The former 11 is, however, divided in accordance with the "sign" a n d so on. These " o d d " intervals m a y be chosen disjoint from all preceeding " o d d " intervals. This is easily checked since the n u m b e r of in- tervals increase b y a factor 3, a t least, a t each partition because of (1). The set E~.N thus consists of one interval o f length 2~/p~-I.N, one of length 27e/p,.n, a n d all the others of length a p p r o x i m a t e l y (~N/P~. N.

rl E,. N+I = E~+I and ffl EN = E

v = l 1

is a perfect set of Cantor t y p e as in Theorem 1.

(6)

L WIK, Sets with linear independence

1. E U {0}

is a K-set.

We choose an a r b i t r a r y e > 0 a n d a function /~ of b o u n d e d variation with support on F U {0}. We n o r m a l i z e /~ so t h a t J'EOO> [d~[ = 1, i.e. E e F 0 ( E 0 {0}), a n d /~ has a real j u m p a at x = 0 . p has j u m p s = a . a t the points xn. Choose p such t h a t ~ + ~ [ n [ < e a n d p u t a

/ai(x)=,a(x)-~+isn(x)

where

an, X ~ Xn

s~(x) = O, x < x~.

T h e n

If~<oe'"~d~(x)-f~o<o>e'~Xd~l(X)l<e.

(7)

We m a k e a finite division of (0, 2~) in intervals I~ such t h a t

where U / , ~ E a n d /,, has its endpoints in the complement of E. F o r the in- terval t h a t contains x = 0 we t a k e 0, = 0. This is possible, for, b y the R a d o n - N i k o d y m theorem,

d#(x)=

exp

(ig(x))ld~(x)[

where

g(x)

is measurable with respect t o

IdOl

a n d t h u s c a n b e a p p r o x i m a t e d b y a step function.

Exp(iO,)ld~(x)l

h a s

constant a r g u m e n t on every interval in EN for N > N 0. F o r N > N 1 > N 0 it is also true t h a t

xn, n=l,2 ... p,

do not lie in a n y " o d d " interval. The conti- nuous p a r t of /~1 is uniformly continuous and thus I I d/~l < e, where we integrate over the two " o d d " intervals of EN and N > N ~ .

F o r N > Max (N1, N2) we obtain

where .11 a n d 12 are the two " o d d " intervals of EN. Hence

IfEeinXd~l(X)l~l~( etnXd[-~l(X)l-e~]~3fie~'(inx+~ 3 JI v

~ ~ ~ , d/~l (x) . - ~a ~l ] l -- e'(nx+~ ][d~Ul (X) ' - 2 e.

F o r n = one of the p~. N+I, ~ = 1, 2 . . . qM~ we find

~ j~]l-e'("x§ ~N+l + 2]sin ~ l <

for N > N a. We thus obtain

sup. ,~f

e"~d/~l(x)l>~l-e-~-2e=l-4e

2 1 2

(7)

AIIKIV FOR MATEMATIK. B d 5 n r 12 a n d b y (7) a n d since e is a r b i t r a r y > 0 it follows

a n d E is a K-set.

2., E is not a uni/orm K-set.

Suppose t h a t E is a uniform K-set. Then, b y the lemma, there exists t o such t h a t

I e'~'x- 1 I< ~ on E. (S)

F o r one v a n d one N

p,.N<<,to< P,+l.N.

On the " o d d " interval of length 2~t/p,.N there are points from E on every in- terval of length 2zr//p,+~. N- B u t exp(itox ) assumes all values of absolute value i on an interval of length 2~t/p,.N. L e t ~ be a point from the " o d d " interval such t h a t exp ( i r o n ) = - 1 . x 0 is a point from E such t h a t I x , - ~ l < 2 ~ / p ~ + 2 , N . T h e n

le "~176 - iI >

I e'~

I I -

I e''~-

e'~'=' I > 2 - 2 ' - t ~ 2____~ [ [Pv+2. NI

> 2 - - 2 sin ~P,+I.N > 2 - - 2 sin go--g~

P,+2. N 20 '

which is a contradiction to (8) if e is sufficiently small.

This proves p a r t 2 of the theorem.

T h e o r e m 3. There exists no maximal uni]orm K-set.

Proo[. L e t E be a uniform K-set. Then, b y the lemma, there exists, to an a r b i t r a r y e > 0 , a sequence {t~}~ such t h a t lexp ( i t ~ x ) - l l < e , v = 0 , 1 . . . L e t ((~,}~ be a sequence of positiye n u m b e r s tending to zero. We m a y t a k e the increasing sequence (t,}~. so thin t h a t

~,/t,>2~/t,+l,

v = o , 1, 2 . . . (9) T h e n there exists a point ~ E C(E) such t h a t {exp (it,~)}~ is everywhere dense on the unit circle.

We construct this point as a N ~ E , , where E , + l c E , . T h e complement of E contains an interval I a n d m I > 2 ~/tN for some h r.

E 0 = interval in C(E) of length 2~/tN, E l = o n e interval where le~tN+l x - 11< 41-

E~ = one interval where l exp (itN+,x) - exp (2~ir,) I < 8,, v = 2, 3 . . . where r, runs through t h e rational n u m b e r s between 0 a n d 1.

(9) secures t h a t this can be done.

(8)

L ~ , Sets w i t h linear i n d e p e n d e n c e

L e t ] be a n a r b i t r a r y c o n t i n u o u s function, I/1=1, on E U {e} a n d / ( ~ ) = e x p (i~%). Since E is a u n i f o r m K - s e t there exists, to a n a r b i t r a r y e > 0, a real n u m - ber s o such t h a t I / ( x ) - e x p ( / s o x ) l < e on E. B u t exp ( i s o ~ ) = e x p (i~ox), where q~l m a y be different f r o m ~o o. T h e w a y we c o n s t r u c t e d ~ gives us a n u m b e r t~. such t h a t l exp (it, o ~) - exp (i(~0 o - q01))l < e a n d l exp (its. x) - 11 < e on E. H e n c e

I/(~) - e x p (r + t,.) z) l < I/(~) - e"~ 1 + I e''' - e ' ' "exp (~t,.~) I < 2

o n E. I/(~) - e x p (i(8o + t,.)~) I = l e'~' - e'~'. e x p (its. ~)1 < e.

T h u s s o + t~o is a t such t h a t ]exp (itx) - ](x) l < 2 e on E tJ {~}. Since ~ is a r b i t r a r y E U {~} is a u n i f o r m K-set, which p r o v e s T h e o r e m 3.

R E F E R E N C E S

1. RUDII~, W . , F o u r i e r a n a l y s i s o n g r o u p s . I n t e r s c i e n c e t r a c t s in p u r e a n d a p p l i e d m a t h e m a t i c s , no. 12. 1962.

2 1 4

Tryckt den 9 december 1963

Uppsala 196B. Almqvist & Wiksens Boktryckeri AB

Références

Documents relatifs

Éléments fondamentaux de la prestation de soins : Les expériences d’apprentissage associées à ce but aideront les élèves à acquérir les connaissances et les compétences

b) En déduire le nombre minimum de planches nécessaires à la construction du mur ABCD, puis le nombre minimum de planches nécessaires à la construction des deux murs

Dies ersieht man, indem man, ebenso wie am E n d e des vorigen Paragraphen, ein geschlossenes Integral betrachtet; nur soll der Integrationsweg bier in derselben

Dieser Mahnung eingedenk erscheint es bei Gelegenheit der Feier des hundert- j~hrigen Geburtstages ABr;L'S, eines der grSssten Mathematiker des neun- zehnten

In diesen Zeilen beabsichtige ieh einen Beweis des ReGiprocitatsge- setzes der quadratisehen Reste vorzutragen, der - - mit Ausschluss eines jeden andern

Der in der Uberschrift genannte Beweis sell dadurch geliefert werden, dass ffir das fragliche Potential ein Ausdruck gebildet wird, der es dar- stellt als

Délégation d’entreprises à Djibouti et Addis-Abeba, conduite par Philippe LABONNE, président du conseil d’entreprises France – Afrique de l’Est, directeur général adjoint

Mme BERNON commente le bilan de l'exercice incendie qui s'est déroulé le 12 septembre 2016 : un bon déroulement a été constaté.. L'évacuation s'est faite normalement et dans